3. Infinite Series

A series is an infinite sum of numbers:

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \]

The individual numbers are called the terms of the series. In the above series, the first term is \(\frac{1}{2}\), the second term is \(\frac{1}{4}\), and so on. The \(n\)th term is \(\frac{1}{2^n}\):

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots + \frac{1}{2^n} + \cdots \]

We can express an infinite series using summation notation. For example, the above series would be written as follows:

\[\sum_{n=1}^{\infty} \frac{1}{2^n} \]

The \(\sum\) symbol means "sum". The \(n = 1\) on the bottom refers to the fact that the first term is \(n = 1\) (some series start with \(n = 0\) or \(n = 2\)), and the \(\infty\) on the top indicates that the series continues indefinitely.

The Sum of a Series

Many series add up to an infinite amount. For example:

\[\sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + 1 + 1 + \cdots = \infty \]

\[\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + \cdots = \infty \]

However, if the terms of a series become smaller and smaller, it is possible for the series to have a finite sum. The basic example is the series

\[\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots \]

which sums to 1.
But what exactly does it mean to find the sum of an infinite series? Given a series
\[\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots, \]
a partial sum is the result of adding together the first few terms. For example, the third partial sum is \(a_1 + a_2 + a_3 \), and the hundredth partial sum is \(a_1 + a_2 + \cdots + a_{100} \). The partial sums form a sequence:
\[
\begin{align*}
s_1 &= a_1 \\
s_2 &= a_1 + a_2 \\
s_3 &= a_1 + a_2 + a_3 \\
s_4 &= a_1 + a_2 + a_3 + a_4 \\
&\quad \vdots
\end{align*}
\]
By definition, the sum of the series is the limit of this sequence:

DEFINITION (SUM OF A SERIES)

The sum of the series \(\sum_{n=1}^{\infty} a_n \) is the limit of the partial sums:
\[
\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} (a_1 + \cdots + a_n)
\]

EXAMPLE 1 Consider the series
\[
\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots
\]
The first few partial sums of this series are listed below:
\[
\begin{align*}
s_1 &= \frac{1}{2} \\
s_2 &= \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \\
s_3 &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8} \\
s_4 &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}
\end{align*}
\]
As you can see, the partial sums are converging to 1. Therefore, according to our definition of the
sum of an infinite series,

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots = 1
\]

EXAMPLE 2 Find the sum of the series:

\[
0.3 + 0.03 + 0.003 + 0.0003 + \cdots
\]

SOLUTION Here are the first few partial sums:

\[
s_1 = 0.3
\]

\[
s_2 = 0.3 + 0.03 = 0.33
\]

\[
s_3 = 0.3 + 0.03 + 0.003 = 0.333
\]

\[
s_4 = 0.3 + 0.03 + 0.003 + 0.0003 = 0.3333
\]

As you can see, the partial sums are converging to the repeating decimal 0.3333\ldots, which is equal to 1/3.

We use the same terminology for sums of series that we do for limits of sequences and for improper integrals:

CONVERGENCE AND DIVERGENCE

We say the series \(\sum a_n \) **converges** if its sum is a real number. If the sum is infinite or does not exist, then the series \(\sum a_n \) **diverges**.

Keep in mind that a series can only converge if its terms get smaller and smaller. That is, the sum \(\sum_{n=1}^{\infty} a_n \) can only be finite if \(\lim_{n \to \infty} a_n = 0 \).

DO THE TERMS APPROACH ZERO?

1. If \(\lim_{n \to \infty} a_n \neq 0 \), then the series \(\sum_{n=1}^{\infty} a_n \) **diverges**.

2. If \(\lim_{n \to \infty} a_n = 0 \), then the series \(\sum_{n=1}^{\infty} a_n \) **may converge, or it may diverge**.
EXAMPLE 3 Find the sum of the series:

\[\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \cdots \]

SOLUTION Since the individual terms of the series are getting closer and closer to 1, the sum of the series is infinite (for the same reason that \(1 + 1 + 1 + \cdots = \infty \)).

EXAMPLE 4 Determine whether the series \(\sum_{n=1}^{\infty} \frac{n}{2n+1} \) converges or diverges.

SOLUTION Since \(\lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2} \neq 0 \), this series diverges to \(\infty \).

By the way, it is quite possible for the sum of a series to be infinite even if the terms get smaller and smaller. For example, even though the terms of the series

\[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots \]

become smaller and smaller, the sum of this series is infinite! This series is important enough to have its own name: the harmonic series (named for the frequencies of harmonic overtones in music). You should always remember that the harmonic series diverges.

Geometric Series

A geometric series is the sum of the terms of a geometric sequence. For example, the series

\[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \]

is geometric, with a common ratio of 1/2 (i.e. each term is 1/2 times the previous term).

Here are several more examples:

\[12 + 4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \cdots \quad \text{(common ratio of 1/3)} \]

\[1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \cdots \quad \text{(common ratio of 2/5)} \]

\[3 + 2 + \frac{4}{3} + \frac{8}{9} + \frac{16}{27} + \cdots \quad \text{(common ratio or 2/3)} \]

In our study of geometric sequences, we learned that the formula for the \(n \)th term of a geometric sequence has the form \(ar^n \), where \(r \) is the common ratio. If we start the series at \(n = 0 \), then the constant \(a \) can be interpreted as the value of the first term:
GEOMETRIC SERIES FORMULA

The formula for a geometric series is

\[\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \cdots \]

where \(a \) is the first term and \(r \) is the common ratio.

EXAMPLE 5 Rewrite the series

\[3 + 2 + \frac{4}{3} + \frac{8}{9} + \frac{16}{27} + \cdots \]

using summation notation.

SOLUTION The first term of the series is 3, and each term is \(\frac{2}{3} \) of the previous term. Therefore:

\[3 + 2 + \frac{4}{3} + \frac{8}{9} + \frac{16}{27} + \cdots = \sum_{n=0}^{\infty} 3 \cdot \left(\frac{2}{3} \right)^n \]

Notice that the terms of a geometric series \(\sum_{n=0}^{\infty} ar^n \) only approach 0 if the ratio \(r \) is between \(-1\) and 1. It turns out that any such series converges:

The geometric series \(\sum_{n=0}^{\infty} ar^n \) converges for \(|r| < 1 \) and diverges for \(|r| \geq 1 \).

There is a special trick to finding the sum of a geometric series, illustrated in the next several examples:

EXAMPLE 6 Find the sum of the series:

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \]

SOLUTION We already know that this sum is 1, but this series is useful for illustrating the general method. Let \(x \) be the (unknown) sum of the series:

\[x = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \]

If we multiply this equation by \(\frac{1}{2} \) (the common ratio), each term of the sum is halved:
\[
\frac{1}{2}x = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots
\]

But the sum on the right is just the later portion of the original series:
\[
x = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots
\]

This gives us the equation
\[
x = \frac{1}{2} + \frac{1}{2}x
\]

and therefore \(x = 1\). We conclude that the sum of the series is 1.

EXAMPLE 7 Find the sum of the series:
\[
1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots
\]

SOLUTION Let \(x\) be the unknown value of the sum:
\[
x = 1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots
\]

If we ignore the initial 1, the remaining terms of the series are simply \(\frac{2}{3}x\):
\[
x = 1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots
\]

This gives us the equation
\[
x = 1 + \frac{2}{3}x
\]

and therefore \(x = 3\). We conclude that the sum of the series is 3.

This trick only works for geometric series. The key idea is that a geometric series is *self-similar*, in the sense that the portion of the series after the first term is simply a multiple of the whole series.

By the way, a similar trick can be used to convert any repeating decimal to a fraction:

EXAMPLE 8 Express 0.48484848… as a fraction of integers.

SOLUTION Let \(x = 0.48484848\ldots\). Then \(x\) can be written as a sum of two parts:
\[
x = 0.48 + 0.00484848\ldots
\]

The first part is the same as 48/100, and the second part is actually \(x/100\). This gives us the
This trick not only looks the same, it is the same. The decimal in the previous example is by itself a geometric series:

\[0.48484848\ldots = \frac{48}{100} + \frac{48}{10,000} + \frac{48}{1,000,000} + \cdots = \sum_{n=1}^{\infty} \frac{48}{(100)^n} \]

Similar reasoning can sometimes be used to evaluate infinite algebraic expressions that aren’t series:

EXAMPLE 9 Find the value of the expression \(\sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}} } \).

SOLUTION Observe that this expression contains itself. In particular, if we let

\[x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}} } \]

then

\[x = \sqrt{6 + x} \]

Squaring and solving for \(x \) yields \(x = 3 \) or \(x = -2 \). Since the square root must be positive, we conclude that \(x = 3 \).

You can verify this for yourself on your calculator. Starting with any number, alternately add 6 and take the square root. The more times you repeat these steps, the closer the result will be to 3.

EXAMPLE 10 Find the value of the expression \(2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} } \).

SOLUTION This kind of expression is known as a **continued fraction**. If we let \(x \) be the value of the entire expression, then

\[x = 2 + \frac{1}{x} \]

Solving for \(x \) yields \(x = 1 \pm \sqrt{2} \). Rejecting the negative solution as nonsensical, we conclude that the continued fraction above is equal to \(1 + \sqrt{2} \).
General Formula for a Geometric Series

It is possible to avoid repeating this same trick over and over by doing it once in general. Given the series

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \cdots$$

let \(x\) be the unknown value of the sum:

$$x = a + ar + ar^2 + ar^3 + \cdots$$

Ignoring the initial \(a\), the rest of the sum is equal to \(rx\):

$$x = a + \frac{ar + ar^2 + ar^3 + \cdots}{x}$$

This gives us the equation

$$x = a + rx.$$

Solving for \(x\) yields the formula

$$x = \frac{a}{1 - r}.$$

SUM OF A GEOMETRIC SERIES

If \(|r| < 1\), then

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \cdots = \frac{a}{1 - r}.$$

EXAMPLE 11 Find the sums of the following series:

(a) \(\sum_{n=0}^{\infty} \frac{5}{3^n}\) \qquad (b) \(8 + 6 + \frac{9}{2} + \frac{27}{8} + \frac{81}{32} + \cdots\)

SOLUTION

(a) We have \(\sum_{n=0}^{\infty} \frac{5}{3^n} = \sum_{n=0}^{\infty} 5 \cdot \left(\frac{1}{3}\right)^n = \frac{5}{1 - 1/3} = \frac{15}{2}\).

(b) The first term of this series is \(a = 8\), and the ratio between terms is \(r = \frac{3}{4}\). Therefore, the sum is \(\frac{a}{1 - r} = \frac{8}{1 - 3/4} = 32\).
You should be familiar with both methods for summing a geometric series (using the trick or using the formula).

Combining Series

Because infinite series and integrals are two different sorts of infinite sums, they obey many of the same rules:

RULES FOR SERIES

1. \[\sum_{n=1}^{\infty} Ca_n = C \sum_{n=1}^{\infty} a_n \] (where \(C \) is a constant)

2. \[\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \]

3. \[\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n \]

EXAMPLE 12 Find the sum of the series \(\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{5}{3^n} \right) \).

SOLUTION We can break this series up into two geometric series:

\[
\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{5}{3^n} \right) = \sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{5}{3^n}
\]

\[
= \frac{1}{1 - 1/2} + \frac{5}{1 - 1/3} = 2 + \frac{15}{2} = \frac{19}{2}
\]
1–6 ■ Rewrite the given series using summation notation.

1. \(\frac{1}{5} + \frac{2}{6} + \frac{4}{7} + \frac{8}{8} + \frac{16}{9} + \cdots \)

2. \(2 + \frac{5}{2} + \frac{10}{6} + \frac{17}{24} + \frac{26}{120} + \cdots \)

3. \(9 + \frac{9}{2} + \frac{9}{4} + \frac{9}{8} + \frac{9}{16} + \cdots \)

4. \(1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots \)

5. \(9 + 6 + 4 + \frac{8}{3} + \frac{16}{9} + \cdots \)

6. \(\frac{1}{10} + \frac{1}{5} + \frac{2}{5} + \frac{4}{5} + \frac{8}{5} + \cdots \)

7–14 ■ Find the sum of the given geometric series.

7. \(1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \frac{1}{625} + \cdots \)

8. \(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \frac{1}{1024} + \cdots \)

9. \(\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \frac{2}{243} + \cdots \)

10. \(10 + 5 + \frac{5}{2} + \frac{5}{4} + \frac{5}{8} + \cdots \)

11. \(\frac{1}{18} + \frac{1}{6} + \frac{1}{2} + \frac{3}{2} + \frac{9}{2} + \cdots \)

12. \(\frac{1}{24} + \frac{1}{18} + \frac{2}{27} + \frac{8}{81} + \cdots \)

13. \(9 + 6 + 4 + \frac{8}{3} + \frac{16}{9} + \cdots \)

14. \(10 + 4 + \frac{8}{5} + \frac{16}{25} + \frac{32}{125} + \cdots \)

15. Express the number 0.151515… as a fraction of integers.

16. Express the number 0.135135135… as a fraction of integers.

17–18 ■ Find the value of the given self-similar expression.

17. \(3 + \frac{1}{2} \left(3 + \frac{1}{2} \left(3 + \frac{1}{2} \left(3 + \frac{1}{2} \left(\cdots \right) \right) \right) \right) \)

18. \(4 + \frac{1}{2 + \frac{1}{4 + \frac{1}{2 + \frac{1}{4 + \cdots}}} \)} \}

19–28 ■ Determine whether the given series is convergent or divergent. If it is convergent, find the sum.

19. \(\sum_{n=0}^{\infty} \frac{2^n}{5^n} \)

20. \(\sum_{n=1}^{\infty} \frac{1}{3^n} \)

21. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}} \)

22. \(\sum_{n=1}^{\infty} (-1)^n \)

23. \(\sum_{n=0}^{\infty} \frac{1}{e^{2n}} \)

24. \(\sum_{n=0}^{\infty} \frac{4^{n+1}}{5^n} \)

25. \(\sum_{n=1}^{\infty} \tan^{-1}(n) \)

26. \(\sum_{n=1}^{\infty} \frac{n^3}{n(n+2)} \)

27. \(\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n} \)

28. \(\sum_{n=1}^{\infty} \left[2(0.1)^n + (0.2)^n \right] \)