Homework 1 Solutions
Math 318, Spring 2016

Problem 1.

Proposition. Define a sequence \(a_1, a_2, a_3, \ldots \) recursively by \(a_1 = 2 \) and \(a_{n+1} = a_n(a_n + 1) \) for \(n \geq 1 \). Then each \(a_n \) is divisible by at least \(n \) different primes.

Proof. We proceed by induction on \(n \). For the base case \(n = 1 \) observe that \(a_1 \) is divisible by one prime, namely 2. Now suppose that \(a_n \) is divisible by \(n \) different primes \(p_1, \ldots, p_n \). Since \(a_n \) and \(a_n + 1 \) are relatively prime, we know that none of the primes \(p_1, \ldots, p_n \) divide \(a_n + 1 \), so \(a_n + 1 \) must be divisible by at least one prime \(p_{n+1} \) that is distinct from \(p_1, \ldots, p_n \). Then \(a_{n+1} = a_n(a_n + 1) \) is divisible by all of the primes \(p_1, \ldots, p_{n+1} \), so it is divisible by at least \(n + 1 \) different primes. \(\square \)

Problem 2.

Proposition. The set \(P_{3,4} = \{ p \in \mathbb{N} \mid p \text{ is prime and } p \equiv 3 \pmod{4} \} \) is infinite.

Proof. Suppose to the contrary that the set \(P_{3,4} \) is finite, say \(P_{3,4} = \{ p_1, \ldots, p_k \} \), and let

\[n = 4p_1 \cdots p_k - 1. \]

Note that \(n \) is congruent to 3 modulo 4. But since \(n \) is not divisible by any \(p_i \) and \(n \) is odd, every prime in the prime factorization of \(n \) must be congruent to 1 modulo 4. Since \(n \) is a product of these, \(n \) must itself be congruent to 1 modulo 4, a contradiction. \(\square \)