These problems must be written up in \LaTeX, and are due this Friday, March 8.

1. (a) List the possible cycle structures for an element of S_6.

 (b) Make a table showing the number of elements of S_6 with each cycle structure.

2. Let $n \in \mathbb{N}$, and let G be a subgroup of S_n. If $i \in \{1, 2, \ldots, n\}$, the \textbf{stabilizer} of i in G is the set
 \[\text{stab}_G(i) = \{ \alpha \in G \mid \alpha(i) = i \}. \]

 Prove that stab$_G(i)$ is a subgroup of G.

3. If $n \geq 2$, prove that all of the 2-cycles in S_n are conjugate to one another.

4. In a \textbf{perfect riffle shuffle}, a deck of 52 cards is cut into two halves, which are then merged in an interleaving fashion:

 \[
 \begin{array}{c}
 \begin{array}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{array}
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \begin{array}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{array}
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \begin{array}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{array}
 \end{array}
 \end{array}
 \]

 Note that the top card of the deck remains on top after the shuffle.

 (a) Write an element $\sigma \in S_{52}$ that represents a perfect riffle shuffle of a 52-card deck. Express σ both as a table and as a product of disjoint cycles.

 (b) What is σ^8? In simple terms, what does this say about perfect riffle shuffles?