Quiz 1 Practice Problems: Cyclic Groups
Math 332, Spring 2010

These are not to be handed in. The quiz will be on Tuesday.

1. Find all generators of Z_6, Z_8, and Z_{20}.

2. List all elements of the subgroup $\langle 30 \rangle$ in Z_{80}.

3. If $|a| = 60$, what is the order of a^{24}?

4. How many subgroups does Z_{20} have? List the possible generators for each subgroup.

5. Suppose that $|a| = 24$. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. In general, what is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?

6. In Z_{60}, list all generators for the subgroup of order 12.

7. Let G be a group and let a be an element of G.
 a. If $a^{12} = e$, what can we say about the order of a?
 b. If $a^m = e$, what can we say about the order of a?

8. List all elements of order 8 in $Z_{8000000}$. How do you know your list is complete?

9. Determine the subgroup lattice for Z_{p^2q}, where p and q are distinct primes.

10. Determine the subgroup lattice for Z_{p^n}, where p is a prime and n is some positive integer.

11. If $|x| = 40$, list all elements of $\langle x \rangle$ that have order 10.

12. Determine the orders of the elements of D_{33} and how many there are of each.

13. If $|a^5| = 12$, what are the possibilities for $|a|$? What if $|a^5| = 15$?
Answers

1. For \(Z_6 \), generators are 1 and 5; for \(Z_8 \), generators are 1, 3, 5, and 7; for \(Z_{20} \), generators are 1, 3, 7, 9, 11, 13, 17, and 19.

2. 0, 10, 20, 30, 40, 50, 60, 70

3. Since \(\langle a^{24} \rangle = \langle a^{12} \rangle \) is a subgroup of order 5, the element \(a^{24} \) must have order 5 as well.

4. Six subgroups: \(Z_{20} \) (generated by 1, 3, 7, 9, 11, 13, 17, or 19), the subgroup of even numbers (generated by 2, 6, 14, or 18), the subgroup of multiples of 4 (generated by 4, 8, 12, or 16), the subgroup of multiples of 5 (generated by 5 or 15), the subgroup of multiples of 10 (generated by 10), and the trivial subgroup (generated by 0).

5. \(\langle a^{21} \rangle \cap \langle a^{10} \rangle = \langle a^6 \rangle \). In the general case \(\langle a^m \rangle \cap \langle a^n \rangle = \langle a^k \rangle \), where \(k = \text{lcm}(m, n) \mod 24 \).

6. 5, 25, 35, and 55.

7. a. \(|a| \) divides 12. b. \(|a| \) divides \(m \).

8. 1000000, 3000000, 5000000, 7000000. By Theorem 4.3, \(\langle 1000000 \rangle \) is the unique subgroup of order 8, and only those on the list are generators

9.

\[
\begin{array}{c}
\langle 1 \rangle \\
\langle p \rangle \\
\langle q \rangle \\
\langle p^2 \rangle \\
\langle pq \rangle \\
\langle 0 \rangle
\end{array}
\quad \text{or} \quad
\begin{array}{c}
Z_{p^2 q} \\
Z_{pq} \\
Z_p
\end{array}
\]

10.

\[
\begin{array}{c}
\langle 1 \rangle \\
\langle p \rangle \\
\langle p^2 \rangle \\
\vdots \\
\langle p^{n-1} \rangle \\
\langle 0 \rangle
\end{array}
\quad \text{or} \quad
\begin{array}{c}
Z_p^n \\
Z_{p^{n-1}} \\
Z_{p^{n-2}} \\
\vdots \\
Z_p
\end{array}
\]

11. \(x^4, x^{12}, x^{28}, x^{36} \).

12. 33 of order 2, 20 of order 33, 10 of order 11, 2 of order 3, one of order 1.

13. \(|a| = 12 \) or \(|a| = 60; |a| = 75 \).