1. Let $\vec{X}(u, v) = (u \cos v, u \sin v, uv)$. Compute the matrix for the corresponding first fundamental form.

2. Let $\vec{X}(u, v)$ be a surface parametrization, and suppose that the corresponding first fundamental form is

$$ g(u, v) = \begin{bmatrix} u + v & \sqrt{v} \\ \sqrt{v} & 1 \end{bmatrix}. $$

(a) Let $\vec{x}(t) = (t, 1)$ be a curve on the uv-plane, and let $\vec{y}(t) = \vec{X}(\vec{x}(t))$ be the corresponding curve on the surface. Compute the length of $\vec{y}(t)$ for $0 < t < 3$.

(b) Let \mathcal{R} be the region in the uv-plane defined by $0 < u < 4$ and $0 < v < 4$, and let $\vec{X}(\mathcal{R})$ be the corresponding region on the surface. Find the area of $\vec{X}(\mathcal{R})$.

3. Let C be the portion of the cylinder $x^2 + y^2 = 1$ lying above the xy-plane, let P be the paraboloid $z = x^2 + y^2$, and let $f: C \to P$ be the map

$$ f(x, y, z) = (x \sqrt{z}, y \sqrt{z}, z). $$

(a) Compute $df_p(0, 0, 1)$ and $df_p(1, 0, 0)$, where p is the point $(0, 1, 4)$.

(b) Compute the Jacobian of f at the point $(0, 1, 4)$.

4. Let S_1 be the cylinder $x^2 + y^2 = 1$ for $z > 0$, let S_2 be the cone $z = \sqrt{x^2 + y^2}$, and let $f: S_1 \to S_2$ be the map

$$ f(x, y, z) = (xe^{kz}, ye^{kz}, e^{kz}) $$

where k is a constant. Find a value of k for which f is conformal.

5. Let S be the surface $z = \cos(3x) + 6 \sin(xy)$, oriented so that normal vectors point upwards.

(a) Compute the principle curvatures of S at the point $(0, 0, 1)$.

(b) Compute the Gaussian curvature and mean curvature of S at this point.
6. Let \(C \) be a circle of radius 5 that contains the points \((0, 0, 4)\) and \((0, 0, -4)\), and let \(A \) be the (open) minor arc of \(C \) between these points. Let \(S \) be the surface obtained by rotating the arc \(A \) around the \(z \)-axis, oriented so that normal vectors point outwards.

Note that the surface \(S \) does not include the cusp points \((0, 0, 4)\) and \((0, 0, -4)\).

(a) Find the principle curvatures of \(S \) at the point \((2, 0, 0)\).

(b) Find the principle curvatures of \(S \) at the point \((1, 0, 3)\).

(c) Find the image of \(S \) under the Gauss map. Express your answer as one or more inequalities defining a region on the unit sphere.

(d) Use your answer to part (c) to evaluate \(\iint_{S} K \,dA \), where \(K \) is the Gaussian curvature of \(S \).

7. Let \(S \) be the surface \(r = 2 + \cos z \) for \(-\pi < z < \pi\), oriented with normal vectors pointing outwards.

(a) Find the principle curvatures of \(S \) at the point \((3, 0, 0)\).

(b) Find the principle curvatures of \(S \) at the point \((2, 0, \pi/2)\).

(c) For what values of \(z \) in the range \(-\pi < z < \pi\) is the Gaussian curvature of \(S \) positive?

8. Let \(P \) be the paraboloid \(z = \frac{2}{3}(x^2 + y^2) \), oriented so that the normal vectors point inwards, and consider the curve on this surface defined by \(\vec{x}(t) = (\cos t, \sin t, 2/3) \).

(a) Find the vectors \(\{\vec{N}, \vec{T}, \vec{U}\} \) of the Darboux frame for \(\vec{x} \) at the point \((1, 0, 2/3)\).

(b) Find the normal curvature \(\kappa_n \) and geodesic curvature \(\kappa_g \) of \(\vec{x} \) at the point \((1, 0, 2/3)\).

(c) Use the Gauss map to compute \(\iint_{\mathcal{R}} K \,dA \), where \(\mathcal{R} \) is the portion of the surface for which \(z < 2/3 \).