Solutions to Exam Practice Problems
Math 352, Fall 2011

1. Note first that \((0,0,1) = \gamma(0)\). Now \(\dot{\gamma}(t) = (2t + 1, \cos t, e^t)\) and \(\ddot{\gamma}(t) = (2, -\sin t, e^t)\), so \(\dot{\gamma}(0) = (1,1,1)\) and \(\ddot{\gamma}(0) = (2,0,1)\). The tangent vector \(t\) should be a unit vector parallel to \(\dot{\gamma}(0)\), so

\[
\mathbf{t} = \frac{1}{\sqrt{3}} (1,1,1)
\]

To find the normal vector \(n\), we must find the component of \(\ddot{\gamma}(0)\) that is perpendicular to \(t\):

\[
\ddot{\gamma}(0) - (\ddot{\gamma}(0) \cdot \mathbf{t}) \mathbf{t} = (2,0,1) - \frac{3}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} (1,1,1) \right) = (1,-1,0).
\]

Then \(n\) is a unit vector in this same direction:

\[
\mathbf{n} = \frac{1}{\sqrt{2}} (1,-1,0)
\]

Finally, the binormal vector \(b\) is equal to \(t \times n\):

\[
\mathbf{b} = \frac{1}{\sqrt{3}} (1,1,1) \times \frac{1}{\sqrt{2}} (1,-1,0) = \frac{1}{\sqrt{6}} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = \frac{1}{\sqrt{6}} (1,1,-2)
\]

2. The arc length of \(\gamma(t)\) is

\[
s = \int \|\dot{\gamma}(t)\| \, dt
\]

\[
= \int \sqrt{(2e^t \cos t - 2e^t \sin t)^2 + (2e^t \sin t + 2e^t \cos t)^2 + (e^t)^2} \, dt
\]

\[
= \int e^t \sqrt{4 \cos^2 t - 8 \cos t \sin t + 4 \sin^2 t + 4 \sin^2 t + 8 \sin t \cos t + 4 \cos^2 t + 1} \, dt
\]

\[
= \int 3e^t \, dt = 3e^t + C.
\]

In particular, the arc length from \(\gamma(0) = (2,0,1)\) to \(\gamma(\pi) = (-2e^\pi,0,e^\pi)\) is \(3e^\pi - 3\).

For a unit speed parametrization, we solve for \(t\) in terms of \(s\). Assuming \(C = 0\), this gives:

\[
t = \log(s/3)
\]

Substituting this into the formula for \(\gamma(t)\) gives the following unit-speed parametrization:

\[
s \mapsto \left(\frac{2s}{3} \cos \left(\log \frac{s}{3} \right), \frac{2s}{3} \sin \left(\log \frac{s}{3} \right), \frac{s}{3} \right)
\]
3. The turning angle for γ is

$$\tau(s) = \int \kappa_s(s) \, ds = \int s^2 \, ds = \frac{1}{3}s^3 + C.$$

Since $\dot{\gamma}(0) = (0, 1)$, we can choose $\tau(0) = \pi/2$, in which case $C = \pi/2$. Then

$$\dot{\gamma}(s) \equiv (\cos \tau(s), \sin \tau(s)) = \left(\cos \left(\frac{1}{3}s^3 + \frac{\pi}{2}\right), \sin \left(\frac{1}{3}s^3 + \frac{\pi}{2}\right)\right)$$

4. (a) Note that

$$\dot{\gamma}(t) = (-\sin t - 2\sin 2t, \cos t - 2\cos 2t)$$

and

$$\ddot{\gamma}(t) = (-\cos t - 4\cos 2t, -\sin t + 4\sin 2t).$$

In particular, at the point $(2, 0) = \gamma(0)$, we have $\dot{\gamma}(0) = (0, -1)$ and $\ddot{\gamma}(0) = (-5, 0)$. Since $\ddot{\gamma}(0)$ is clockwise from $\dot{\gamma}(0)$, the signed curvature is negative, so $\kappa_s(0) = -5$.

(b) The osculating circle must be directly to the left of $(2, 0)$, and must have a radius of $1/5$. Therefore, the equation for the circle is

$$\left(\frac{x - 9}{5}\right)^2 + y^2 = \frac{1}{25}$$

(c) We know that the value of this integral is $2\pi n$, where n is the number of counterclockwise rotations made by the unit tangent vector t. The following picture shows how the direction of t changes as we travel around the curve:

As you can see, t makes two full clockwise rotations, and therefore the value of the integral is -4π.

5. By Green’s theorem, $\int_\gamma 2y \, dx + 5x \, dy = \int_{\text{int}(\gamma)} 3 \, dx \, dy = 3A(\gamma)$, where $A(\gamma)$ denotes the area inside γ. By the Isoperimetric Inequality, this area will be maximized when γ is a circle of radius $5/\pi$. In particular, the maximum possible area is $\pi(5/\pi)^2 = 25/\pi$, so the maximum possible value of the integral is $\frac{75}{\pi}$.
6. Since $\|\gamma(t)\| = 1$, we know that $\gamma(t) \cdot \gamma(t) = 1$. Taking the derivative of this equation gives
\[
\dot{\gamma}(t) \cdot \gamma(t) + \gamma(t) \cdot \dot{\gamma}(t) = 0,
\]
which simplifies to
\[
\gamma(t) \cdot \dot{\gamma}(t) = 0.
\]
Taking the derivatives again yields
\[
\dot{\gamma}(t) \cdot \dot{\gamma}(t) + \gamma(t) \cdot \ddot{\gamma}(t) = 0.
\]
Since γ is unit speed, we know that $\dot{\gamma}(t) \cdot \dot{\gamma}(t) = \|\dot{\gamma}(t)\|^2 = 1^2 = 1$, and therefore $\gamma(t) \cdot \dot{\gamma}(t) = -1$.

7. As the small circle rolls, the arc length rolled along the small circle is the same as the arc length rolled along the big circle. This gives us the following picture:

![Diagram](image)

The large circle has circumference 32π, so the highlighted arc on the large circle has a length of 8π. The highlighted arc on the small circle must have the same length. Since the total circumference of the small circle is 12π, it follows that the length of the arc from P to Q is π, so the angular distance from P to Q is $\pi/6$ radians. Then the position of P at the end is
\[
(10, 0) + 6(\cos \pi/6, \sin \pi/6) = (10 + 3\sqrt{3}, 3).
\]

8. Since the curve lies on the graph $z = f(x, y)$, we know that
\[
\gamma_3(t) = f(\gamma_1(t), \gamma_2(t)).
\]
Taking the derivative of this equation using the Chain Rule gives
\[
\dot{\gamma}_3(t) = f_x(\gamma_1(t), \gamma_2(t)) \dot{\gamma}_1(t) + f_y(\gamma_1(t), \gamma_2(t)) \dot{\gamma}_2(t)
\]
so
\[
\dot{\gamma}_3(0) = (9)(2) + (4)(-3) = 6.
\]
We conclude that $\dot{\gamma}(0) = (2, -3, 6)$, so $\mathbf{t} = \left(\frac{2}{7}, -\frac{3}{7}, \frac{6}{7} \right)$.
9. Since γ has torsion 0, the curve γ must lie entirely in a single plane. Since the curvature is 1, it must be a circle with radius 1. The values of $\gamma(0)$, $\dot{\gamma}(0)$, and $\ddot{\gamma}(0)$ tell us exactly where this circle is:

Then $\gamma(\pi/2)$ is a quarter-turn around this circle, at the point $(3, 0, 1)$.

10. The center of the circle is halfway between $(3, 3, 4)$ and $(5, 7, 8)$, at the point

$$\frac{1}{2} (3, 3, 4) + \frac{1}{2} (5, 7, 8) = (4, 5, 6).$$

Let \mathbf{v} be the vector from the center to the point on the right of the circle, and let \mathbf{w} be the vector from the center to the point on the top of the circle. Then the desired parametrization is

$$\gamma(t) = (4, 5, 6) + (\cos t)\mathbf{v} + (\sin t)\mathbf{w}$$

$$= (4, 5, 6) + (\cos t)(1, 2, 2) + (\sin t)(-2, 2, -1)$$

$$= \begin{pmatrix} 4 \cos t - 2 \sin t, & 5 + 2 \cos t + 2 \sin t, & 6 + 2 \cos t - \sin t \end{pmatrix}$$