1. Let S be the portion of the paraboloid $z = x^2 + y^2$ lying below the plane $z = 4$.
 (a) Find the surface area of S.
 (b) Evaluate $\int \int_S \sqrt{1 + 4z} \, dA$.

2. Let \mathcal{P} be the plane $5x + 4y + 3z = 36$, and let $f : \mathcal{P} \to \mathbb{R}$ be the function
 $$f(x, y, z) = x^2 + 2y^2 + 3z^2.$$
 Use the method of Lagrange multipliers to find the critical point for f on \mathcal{P}.

3. Let $\sigma : (0, \infty) \times \mathbb{R} \to S$ be the surface patch
 $$\sigma(u, v) = (u \cos v, u \sin v, uv).$$
 Compute the matrix for the first fundamental form of S with respect to $\{\sigma_u, \sigma_v\}$.

4. Let S^2 be the unit sphere, and let
 $$p = \left(\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2} \right) \quad \text{and} \quad q = \left(-\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2} \right).$$
 (a) Find the length of the arc of the great circle from p to q.
 (b) Find the length of the arc of the small circle $z = \sqrt{2}/2$ from p to q.

5. Let S be a smooth surface, let $\sigma : \mathbb{R} \times (0, \infty) \to S$ be a surface patch, and suppose that the first fundamental form of S is
 $$I = \begin{bmatrix} u^2 & uv \\ uv & v^2 \end{bmatrix}.$$
 Use this information to find the length of the curve $\gamma(t) = \sigma(t, t)$ for $0 \leq t \leq 1$.

6. Let \mathcal{C}_1 be the cylinder $x^2 + y^2 = 1$, let \mathcal{C}_2 be the cylinder $x^2 + y^2 = 4$, and let $f : \mathcal{C}_1 \to \mathcal{C}_2$ be the map
 $$f(x, y, z) = (2x, 2y, kz),$$
 where k is a constant.
 (a) For what real values of k is the map f conformal? Explain.
 (b) For what real values of k is the map f equiareal? Explain.
7. Let \(p \) and \(q \) be the points \((0,0,-4)\) and \((0,0,4)\). Let \(C \) be a circle of radius 5 that contains \(p \) and \(q \), and let \(A \) be the (open) arc of \(C \) from \(p \) to \(q \). Let \(S \) be the surface obtained by rotating the arc \(A \) around the \(z \)-axis.

\[\text{Note that the surface } S \text{ does not include the cusp points } p \text{ and } q. \]

(a) Find the principal curvatures of \(S \) at the point \((2,0,0)\).

(b) Find the Gaussian curvature of \(S \) at the point \((2,0,0)\).

(c) Find the image of \(S \) under the Gauss map.

(d) Use your answer to part (c) to evaluate \(\iint_S K \, dA \), where \(K \) is the Gaussian curvature of \(S \).

8. Let \(C \) be the cone \(z = 3r \) with outward-pointing normal vectors, and let \(\gamma : \mathbb{R} \to C \) be the curve \(\gamma(t) = (\cos t, \sin t, 3) \).

(a) Compute the vectors \(\{N, t, g\} \) of the Darboux frame for \(\gamma \) at the point \((1,0,3)\).

(b) Compute the normal and geodesic curvatures of \(\gamma \) at the point \((1,0,3)\).

9. Let \(S \) be the ellipsoid \(x^2 + 2y^2 + 2z^2 = 5 \), and let \(p = (1,1,1) \). Then the vectors

\[
\mathbf{t}_1 = \frac{1}{3}(2,1,-2) \quad \text{and} \quad \mathbf{t}_2 = \frac{1}{3}(-2,2,-1)
\]

are a basis for \(T_pS \), and the second fundamental form for \(S \) at \(p \) with respect to this basis is

\[
\mathbb{II} = -\frac{2}{27} \begin{bmatrix} 7 & 2 \\ 2 & 7 \end{bmatrix}.
\]

Use this information to find the principal curvatures of \(S \) at the point \(p \).
10. Let T_A, T_B, T_C, and T_D be the linear transformations of \mathbb{R}^2 represented by the following matrices:

$$
A = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 \\ 2 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}.
$$

For each entry of the following table, place an “X” if the given linear transformation has the given property:

<table>
<thead>
<tr>
<th></th>
<th>T_A</th>
<th>T_B</th>
<th>T_C</th>
<th>T_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation-Preserving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equiareal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isometric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Evaluate $\int \int_S xy \, dA$, where S is the portion of the surface $z = x^2$ for which $0 \leq x \leq 1$ and $0 \leq y \leq 3$.

12. Let $\gamma : [0, \pi/2] \rightarrow S^2$ be the curve $\gamma(t) = (0, \cos t, \sin t)$.

(a) Find the vectors $\{N, t, g\}$ of the Darboux frame for γ at time t.

(b) Let $v(t)$ be a parallel vector field along γ, and suppose that $v(0) = (1, 0, 3)$. Find a formula for $v(t)$.