Instructions: Solve both of these problems. Your solutions must be written in \LaTeX.

Due Date: Friday, November 4

1. Let \(C \) be the cylinder \(x^2 + y^2 = 1 \), and let \(f: C \to \mathbb{R}^3 \) be the function

\[
f(x, y, z) = (x \cos z, y \cos z, \sin z).
\]

Recall that the vectors \(t_1 = (-y, x, 0) \) and \(t_2 = (0, 0, 1) \) are a basis for the tangent space to \(C \) at each point.

(a) Find the \(3 \times 2 \) matrix for \(Df \) with respect to the basis \(\{t_1, t_2\} \).
(b) Compute the set of all critical points for \(f \). Describe this set geometrically.
(c) Prove that the image of \(f \) is precisely the unit sphere \(S^2 \).
(d) Find the preimages under \(f \) of the points \((0, 0, 1), (0, 0, -1), \) and \((1, 0, 0)\). Describe these preimages geometrically.

2. Use the method of Lagrange multipliers to solve the following problems:

(a) Find the four critical points for the function \(f(x, y, z) = xy + z^2 \) on the cylinder \(x^2 + y^2 = 1 \).

(b) Find the six critical points for the function \(g(x, y, z) = xz + yz \) on the unit sphere.