Curves on Surfaces

Outline

1. The Darboux Frame
 Let S be a surface, and let γ be a curve on S. At each point on γ, consider the following three vectors:
 - The unit normal vector \mathbf{N} to the surface.
 - The unit tangent vector \mathbf{t} to the curve γ.
 - The tangent normal vector $\mathbf{g} = \mathbf{N} \times \mathbf{t}$. This vector is tangent to the surface S, but normal to the curve γ.
 These vectors $\{\mathbf{N}, \mathbf{t}, \mathbf{g}\}$ form a right-handed frame, known as the **Darboux frame** for γ on S.
 If we position the surface so that the normal vector \mathbf{N} points towards us, then the tangent normal vector \mathbf{g} points 90° counterclockwise from the tangent vector \mathbf{t}.

2. Normal and Geodesic Curvature
 Now suppose that γ is a unit-speed curve. Then $\ddot{\mathbf{y}}$ is perpendicular to \mathbf{t}, but $\ddot{\mathbf{y}}$ may have components in the normal and tangent normal directions:
 \[
 \ddot{\mathbf{y}} = \kappa_n \mathbf{N} + \kappa_g \mathbf{g}.
 \]
 The quantity κ_n is called the **normal curvature** of γ, and κ_g is called the **geodesic curvature**. These are related to the total curvature κ of γ by the formula
 \[
 \kappa^2 = \|\ddot{\mathbf{y}}\|^2 = \kappa_n^2 + \kappa_g^2.
 \]
 Note that γ is a geodesic if and only if $\kappa_g = 0$, in which case the normal curvature is the same as the curvature. In general, the geodesic curvature κ_g measures the extent to which γ fails to be a geodesic.
 Both κ_n and κ_g may be positive or negative. Specifically, κ_n is positive if γ curves towards the normal vector \mathbf{N}, and κ_g is positive if γ curves towards the tangent normal vector \mathbf{g}.

3. Frenet-Serret Formulas for the Darboux Frame
 The Darboux frame has its own set of Frenet-Serret formulas. Given a unit-speed curve γ on a surface S, the unit tangent, unit normal, and tangent normal vectors obey the formulas
 \[
 \begin{align*}
 \dot{\mathbf{N}} &= 0 \mathbf{N} - \kappa_n \mathbf{t} - \tau_g \mathbf{g} \\
 \dot{\mathbf{t}} &= \kappa_n \mathbf{N} + 0 \mathbf{t} + \kappa_g \mathbf{g} \\
 \dot{\mathbf{g}} &= \tau_g \mathbf{N} - \kappa_g \mathbf{t} + 0 \mathbf{g}
 \end{align*}
 \]
 Here τ_g is something called the “geodesic torsion”, which we shall not concern ourselves with. From our point of view, these equations interesting primarily because they give us some new formulas for κ_n and κ_g:
 \[
 \kappa_n = -\dot{\mathbf{N}} \cdot \mathbf{t} \quad \text{and} \quad \kappa_g = -\dot{\mathbf{g}} \cdot \mathbf{t}
 \]
The first of these is particularly important and useful. Conceptually, it says that the normal curvature of a curve depends only on the shape of the surface and the direction that the curve is traveling.

By the way, the scalar quantity τ_g that appears in the derivative formulas for N and g is called the “geodesic torsion” of γ. It plays essentially no role in the theory.

4. The Gauss-Bonnet Theorem for Closed Curves

There is a version of the Gauss-Bonnet theorem for closed curves on a surface:

Theorem. Let S be a surface. Let R be a simply-connected region in S, and let C be its boundary curve, oriented counterclockwise. Then

$$2\pi - \int_C \kappa_g ds = \iint_R K dA,$$

where κ_g is the geodesic curvature of C, and K is the Gaussian curvature of S.

For example, if R is a simply-connected region on the unit sphere, and C is the boundary curve of R, then

$$\text{area of } R = 2\pi - \int_C \kappa_g ds.$$
Practice Problems

1. Let γ be a unit-speed curve on S^2, and suppose that

$$\gamma(0) = (1, 0, 0), \quad \dot{\gamma}(0) = (0, 4/5, 3/5) \quad \text{and} \quad \ddot{\gamma}(0) = (-1, -6, 8).$$

(a) Compute the Darboux frame $\{N, t, g\}$ for γ at $t = 0$.
(b) Find the normal and geodesic curvatures of γ at $t = 0$.

2. Let γ be a unit-speed curve on the cylinder $x^2 + y^2 = 1$, and suppose that

$$\gamma(0) = (1, 0, 0) \quad \text{and} \quad \dot{\gamma}(0) = (0, 4/5, 3/5).$$

(a) Compute the value of \dot{N} at $t = 0$, where N is the outward-pointing unit normal vector.
(b) Compute the normal curvature of γ at $t = 0$.

3. Let P be the paraboloid $z = x^2 + y^2$, and let C be the circle on P obtained by intersecting with the plane $z = 1$.

(a) Compute the normal curvature of C.
(b) Find the magnitude of the geodesic curvature of C.
Solutions

1. (a) The normal vector \(\mathbf{N} \) is just \((1, 0, 0) \), and the tangent vector \(\mathbf{t} \) is \((0, 4/5, 3/5) \). The tangent normal vector is the cross product of these:
\[
\mathbf{g} = (1, 0, 0) \times (0, 4/5, 3/5) = (0, -3/5, 4/5)
\]
(b) We have \(\ddot{\gamma} = (-1, -6, 8) = -\mathbf{N} + 10\mathbf{g} \), so \(\kappa_n = -1 \) and \(\kappa_g = 10 \). The same answers could also be obtained by taking the dot products \(\ddot{\gamma} \cdot \mathbf{N} \) and \(\ddot{\gamma} \cdot \mathbf{g} \).

2. (a) Since \(\mathbf{N} = (x, y, 0) \), we have \(\dot{\mathbf{N}} = (\dot{x}, \dot{y}, 0) = (0, 4/5, 0) \).
(b) We have \(\kappa_n = -\dot{\mathbf{N}} \cdot \mathbf{t} = -(0, 4/5, 0) \cdot (0, 4/5, 3/5) = -16/25 \).

3. (a) By symmetry, the normal curvature should be the same on all of \(C \), so we will compute the normal curvature at the point \((1, 0, 1) \). If \(\ddot{\gamma} \) is a unit-speed parametrization, then \(\ddot{\gamma} = (-1, 0, 0) \) at this point, and \(\mathbf{N} = (2, 0, -1)/\sqrt{5} \), so \(\kappa_n = \ddot{\gamma} \cdot \mathbf{N} = -2/\sqrt{5} \).
(b) Since \(\kappa = 1 \) and \(\kappa_n^2 + \kappa_g^2 = \kappa^2 \), the magnitude of \(\kappa_g \) must be \(1/\sqrt{5} \).