Derivatives of Vector-Valued Functions

Outline

1. Components
Consider a function general vector-valued function \(f: \mathbb{R}^m \to \mathbb{R}^n \). Such a function can be written as
\[
f(x_1, \ldots, x_m) = (f_1(x_1, \ldots, x_m), \ldots, f_n(x_1, \ldots, x_m)),
\]
where each \(f_i: \mathbb{R}^m \to \mathbb{R} \). The real-valued functions \(f_1, \ldots, f_n \) are called the components of \(f \).

For example, if \(f: \mathbb{R}^2 \to \mathbb{R}^3 \) is the function
\[
f(x, y) = (x^2 + y^2, x^2 - y^2, 2xy)
\]
then \(f \) has components \(f_1(x, y) = x^2 + y^2 \), \(f_2(x, y) = x^2 - y^2 \), and \(f_3(x, y) = 2xy \).

2. Partial Derivatives
If \(f: \mathbb{R}^m \to \mathbb{R}^n \), the partial derivative of \(f \) with respect to \(x_i \) is the vector
\[
\frac{\partial f}{\partial x_i} = \left(\frac{\partial f_1}{\partial x_i}, \ldots, \frac{\partial f_n}{\partial x_i} \right).
\]
We sometimes use subscripts to denote partial derivatives. For example, if \(f(x, y, z) \) is vector-valued function on \(\mathbb{R}^3 \), then \(f_y \) would denote the partial derivative of \(f \) with respect to \(y \).

3. Parameter Curves
Given a function \(f: \mathbb{R}^m \to \mathbb{R}^n \), a parameter curve for \(f \) is a curve \(\gamma: \mathbb{R} \to \mathbb{R}^n \) of the form
\[
\gamma(t) = f(p + te_i)
\]
where \(p \) is a point in \(\mathbb{R}^m \), and \(e_i \) is a unit vector in the \(x_i \) direction. Note that \(\gamma \) is obtained obtained from \(f(x_1, \ldots, x_m) \) by varying \(x_i \) and holding the other \(x \)'s constant. Thus parameter curves can be thought of as the images of the “gridlines” under the function \(f \).

The partial derivatives of a function \(f \) at a point \(p \) can be interpreted as the tangent vectors to the parameter curves through \(f(p) \). Specifically, if \(\gamma \) is the parameter curve defined above, then
\[
\gamma'(0) = \frac{\partial f}{\partial x_i}(p).
\]
4. The Derivative Matrix
 If $f: \mathbb{R}^m \to \mathbb{R}^n$ the derivative of f at a point p is the matrix
 \[
 D_p f = \begin{bmatrix}
 \frac{\partial f_1}{\partial x_1}(p) & \cdots & \frac{\partial f_1}{\partial x_m}(p) \\
 \vdots & \ddots & \vdots \\
 \frac{\partial f_n}{\partial x_1}(p) & \cdots & \frac{\partial f_n}{\partial x_m}(p)
 \end{bmatrix}
 \]
 That is, $D_p f$ is the matrix whose columns are the partial derivatives $\frac{\partial f}{\partial x_1}(p), \ldots, \frac{\partial f}{\partial x_m}(p)$.

 For example, if $f: \mathbb{R}^2 \to \mathbb{R}^3$ is the function $f(x,y) = (x^2 + y^2, x^2 - y^2, 2xy)$, then
 \[
 D_{(x,y)} f = \begin{bmatrix}
 2x & 2y \\
 2x & -2y \\
 2y & 2x
 \end{bmatrix}
 \]
 Note that the derivative is actually a function that takes a point (x,y) as input and outputs a matrix of numbers.

 In some books, the derivative $D_p f$ is denoted Df_p, $Df(p)$, df_p, or $f'(p)$. In addition, the derivative is sometimes referred to as the Jacobian, in which case it may be denoted with a J instead of a D. We will use the notation $D_p f$ to mean the derivative of f at p, and $D_p f(v)$ to mean the product of the matrix $D_p f$ with a vector v.

5. Special Cases of the Derivative
 For a parametric curve $\gamma: \mathbb{R} \to \mathbb{R}^n$, the derivative of γ is the same as the tangent vector $\dot{\gamma}$:
 \[
 D_t \gamma = \dot{\gamma}(t) = \begin{bmatrix}
 \dot{\gamma}_1(t) \\
 \vdots \\
 \dot{\gamma}_n(t)
 \end{bmatrix}
 \]

 For a real-valued function $f: \mathbb{R}^m \to \mathbb{R}$, the derivative $D_p f$ is the transpose of the gradient vector ∇f:
 \[
 D_p f = \begin{bmatrix}
 \frac{\partial f}{\partial x_1}(p) & \cdots & \frac{\partial f}{\partial x_m}(p)
 \end{bmatrix}^T = \nabla f(p)^T.
 \]

6. Directional Derivatives
 Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable function, and let e_i be a unit vector in the x_i direction. Then:
 \[
 D_p f(e_i) = \frac{\partial f}{\partial x_i}(p).
 \]
 That is, the i’th column of $D_p f$ is the partial derivative on the right.
More generally, if v is any vector in \mathbb{R}^m, then the product

$$D_p f(v)$$

is called the **directional derivative** of f in the direction of v. This is something like a "partial derivative" in the direction of the vector v.

The directional derivative $D_p f(v)$ can be interpreted as a tangent vector to a certain parametric curve. Specifically, let $\gamma: \mathbb{R} \to \mathbb{R}^n$ be the curve

$$\gamma(t) = f(p + tv).$$

That is, γ is the image under f of a straight line in the direction of v. Then

$$\dot{\gamma}(0) = D_p f(v).$$

7. Differentials

The derivative of a function $f: \mathbb{R}^m \to \mathbb{R}^n$ can also be thought of in terms of **differentials**. Specifically, let p be a point in \mathbb{R}^m, with corresponding value $f(p)$. Now, suppose we move from p to a nearby point $p + dp$, and let df denote the corresponding change in the value of f

$$df = f(p + dp) - f(p).$$

Then the vectors df and dp are related by the formula

$$df \approx D_p f(dp).$$

That is, the change in f is roughly the product of the matrix $D_p f$ with the vector dp. Note that, since we cannot divide vectors, we cannot interpret $D_p f$ as the "ratio" of df to dp.

8. The Chain Rule

Suppose we have a pair of differentiable functions $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^k \to \mathbb{R}^m$. Since the codomain of g is the same as the domain of f, we can form the composition $f \circ g: \mathbb{R}^k \to \mathbb{R}^n$.

In this case, the **Chain Rule** gives us a formula for the derivative of $f \circ g$. According to the rule, if $p \in \mathbb{R}^k$ and $q = g(p)$, then

$$D_p(f \circ g) = (D_q f)(D_p g).$$

That is, the derivative matrix for $f \circ g$ at p is the product of the derivative matrix for f at q and the derivative matrix for g at p. This is simply a matrix form of the Chain Rule for partial derivatives.

As a special case, let $f: \mathbb{R}^m \to \mathbb{R}^n$, let $\gamma: \mathbb{R} \to \mathbb{R}^m$ is a parametric curve in \mathbb{R}^m, and let $p = \gamma(0)$. Then the composition $\dot{\gamma} = f \circ \gamma$ is a parametric curve in \mathbb{R}^n, and

$$\dot{\gamma}(0) = D_p f(\dot{\gamma}(0))$$

That is, the tangent vector to $\dot{\gamma}$ is the product of the derivative matrix $D_p f$ with the tangent vector to γ.

Practice Problems

1. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be the polar coordinates transformation \(f(r, \theta) = (r \cos \theta, r \sin \theta) \).

 (a) Make a drawing showing the parameter curves \(\theta = C \) for \(C \in \{0, \pi/4, \pi/2, 3\pi/4, \pi\} \), as well as the curves \(r = C \) for \(C \in \{1, 2, 3\} \).

 (b) Compute \(D_{(2, 3\pi/4)} f \). Add the the vectors \(f_r(2, 3\pi/4) \) and \(f_\theta(2, 3\pi/4) \) to your drawing as tangent vectors to parameter curves.

 (c) Let \(\gamma : \mathbb{R} \to \mathbb{R}^2 \) be a regular curve, and suppose that \(\gamma(0) = (2, 3\pi/4) \) and \(\dot{\gamma}(0) = (3, 1) \). Find the tangent vector to the curve \(f \circ \gamma \) at the point \((f \circ \gamma)(0)\).

2. Let \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) be a differentiable function, and suppose that \(f(3, 9) = (5, 3, 1) \) and
\[
D_{(3, 9)} f = \begin{bmatrix} 2 & 1 \\ 3 & 5 \\ 1 & 2 \end{bmatrix}.
\]

 (a) Estimate \(f(3.02, 9.05) \).

 (b) Compute the directional derivative of \(f \) in the direction of the vector \((1, 1) \).

 (c) Let \(\gamma : \mathbb{R} \to \mathbb{R}^3 \) be the curve \(\gamma(t) = f(t, t^2) \). Compute \(\dot{\gamma}(3) \).

3. Let \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) be the map \(f(\theta, \phi) = (\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi) \).

 (a) Compute the matrix \(D_{(\theta, \phi)} f \).

 (b) At each point on the unit sphere, let \(\hat{\theta} \) be a unit tangent vector pointing in the direction of increasing \(\theta \), and let \(\hat{\phi} \) be a unit tangent vector pointing in the direction of increasing \(\phi \). Use your answer to part (a) to find formulas for \(\hat{\theta} \) and \(\hat{\phi} \).

4. Let \(\psi : \mathbb{R}^3 \to \mathbb{R} \), and suppose that \(\psi(1, 2, 5) = 3 \) and \(\nabla \psi(1, 2, 5) = (1, 3, 2) \). Let \(\gamma : \mathbb{R} \to \mathbb{R}^3 \) be a regular curve, and suppose that \(\gamma(3) = (1, 2, 5) \) and \(\dot{\gamma}(3) = (4, 5, 2) \).

 (a) Let \(f : \mathbb{R} \to \mathbb{R} \) be the function \(f(t) = \psi(\gamma(t)) \). Compute \(f'(3) \).

 (b) Let \(g : \mathbb{R}^3 \to \mathbb{R}^3 \) be the function \(g(x, y, z) = \gamma(\psi(x, y, z)) \). Compute \(D_{(1, 2, 5)} g \).