\(L^p \) Functions

Given a measure space \((X, \mu)\) and a real number \(p \in [1, \infty)\), recall that the \(L^p \)-norm of a measurable function \(f : X \rightarrow \mathbb{R} \) is defined by

\[
\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}
\]

Note that the \(L^p \)-norm of a function \(f\) may be either finite or infinite. The \(L^p \) functions are those for which the \(p \)-norm is finite.

Definition: \(L^p \) Function

Let \((X, \mu)\) be a measure space, and let \(p \in [1, \infty)\). An \(L^p \) function on \(X\) is a measurable function \(f\) on \(X\) for which

\[
\int_X |f|^p \, d\mu < \infty.
\]

Like any measurable function, and \(L^p \) function is allowed to take values of \(\pm \infty \). However, it follows from the definition of an \(L^p \) function that it must take finite values almost everywhere, so there is no harm in restricting to \(L^p \) functions \(X \rightarrow \mathbb{R}\).

It is easy to see that any scalar multiple of an \(L^p \) is again \(L^p \). Moreover, if \(f\) and \(g\) are \(L^p \) functions, then by Minkowski’s inequality

\[
\|f + g\|_p \leq \|f\|_p + \|g\|_p < \infty
\]

so \(f + g\) is an \(L^p \) function. Thus the set of \(L^p \) functions forms a vector space.

EXAMPLE 1 \(L^p \) Functions on \([0, 1]\)

Any bounded function on \([0, 1]\) is automatically \(L^p \) for every value of \(p\). However it is possible for the \(p \)-norm of a measurable function on \([0, 1]\) to be infinite. For example,
let $f : [0, 1] \to \mathbb{R}$ be the function
\[f(x) = \frac{1}{x} \]
where the value of $f(0)$ is immaterial. Then by the monotone convergence theorem,
\[
\int_{[0,1]} |f| \, dm = \lim_{a \to 0^+} \int_{[a,1]} \frac{1}{x} \, dm(x) = \lim_{a \to 0^+} \left[\log x \right]_a^1 = \infty
\]
so f is not L^1. Indeed, it is easy to check that f is not L^p for any $p \in [1, \infty)$.

A function with a vertical asymptote does not automatically have infinite p-norm. For example, if
\[f(x) = \frac{1}{\sqrt{x}} \]
then f has a vertical asymptote at $x = 0$, but
\[
\int_{[0,1]} |f| \, dm = \lim_{a \to 0^+} \int_{[a,1]} \frac{1}{\sqrt{x}} \, dm(x) = \lim_{a \to 0^+} \left[2\sqrt{x} \right]_a^1 = 2.
\]
In general,
\[
\int_{[0,1]} \frac{1}{x^r} \, dm(x) = \begin{cases}
\infty & \text{if } r \geq 1 \\
\frac{1}{1/(1-r)} & \text{if } r < 1.
\end{cases}
\]
It follows that the function $f(x) = 1/x^r$ is L^p if and only if $pr < 1$, i.e. if and only if $p < 1/r$. For example, $f(x) = 1/\sqrt{x}$ is L^p for all $p \in [1, 2)$, but is not L^p for any $p \in [2, \infty)$.

The last example suggests that it should be harder for a function to be L^p the larger we make p. The following proposition confirms this intuition.

Proposition 1 Relation Between L^p and L^q

Let (X, μ) be a measure space, and let $1 \leq p \leq q < \infty$. If $\mu(X) = 1$, then
\[
\|f\|_p \leq \|f\|_q
\]
for every measurable function f. More generally, if $0 < \mu(X) < \infty$, then
\[
\|f\|_p \leq \mu(X)^r \|f\|_q
\]
for every measurable function f, where $r = (1/p) - (1/q)$, and hence every L^q function is also L^p.

PROOF The case where $\mu(X) = 1$ is the generalized mean inequality for the p-mean and the q-mean. For $0 < \mu(X) < \infty$, let $C = \mu(X)$, and let ν be the measure
\[
d\nu = \frac{1}{C} d\mu.
\]
Then $\nu(X) = 1$, so by the generalized mean inequality
\[
\left(\int_X |f|^p d\mu \right)^{1/p} = C^{1/p} \left(\int_X |f|^p d\nu \right)^{1/p} \leq C^{1/p} \left(\int_X |f|^q d\nu \right)^{1/q} = C^{1/p} C^{-1/q} \left(\int_X |f|^q d\mu \right)^{1/q}.
\]

Note that this proposition only applies in the case where $\mu(X)$ is finite. As the following example shows, the relationship between L^p and L^q functions can be more complicated when $\mu(X) = \infty$.

EXAMPLE 2 Horizontal Asymptotes
Let $f : [1, \infty) \to \mathbb{R}$ be the function
\[
f(x) = \frac{1}{x}.
\]
Then f is not L^1, since by the monotone convergence theorem
\[
\int_{[1,\infty)} |f| d\mu = \lim_{b \to \infty} \int_{[1,b]} \frac{1}{x} d\mu(x) = \lim_{b \to \infty} [\log x]_1^b = \infty.
\]
However f is L^2, since
\[
\int_{[1,\infty)} |f|^2 d\mu = \lim_{b \to \infty} \int_{[1,b]} \frac{1}{x^2} d\mu(x) = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_1^b = 1.
\]
In general,
\[
\int_{[1,\infty)} \frac{1}{x^r} d\mu(x) = \begin{cases}
1/(r-1) & \text{if } r > 1 \\
\infty & \text{if } r \leq 1.
\end{cases}
\]
Thus $f(x) = 1/x^r$ is L^p if and only if $pr > 1$, i.e. if and only if $p > 1/r$.

Thus, for horizontal asymptotes it is easier for a function to be L^p the larger the value of p. Intuitively, this is because numbers close to 0 get smaller when taken to a larger power, so $|f|^p$ will be closer to the x-axis the larger the value of p.
ℓ^p Sequences

An important special case of L^p functions is for the measure space (\mathbb{N}, μ), where μ is counting measure on \mathbb{N}. In this case, a measurable function f on \mathbb{N} is just a *sequence*

$$f(1), \ f(2), \ f(3), \ldots$$

and the Lebesgue integral is the same as the sum of the series

$$\int_{\mathbb{N}} f \, d\mu = \sum_{n \in \mathbb{N}} f(n).$$

The definition of an L^p function on \mathbb{N} takes the following form.

Definition: ℓ^p-Norm and ℓ^p Sequences

If $p \in [1, \infty)$, the ℓ^p-norm of a sequence $\{a_n\}$ of real numbers is defined by the formula

$$\|\{a_n\}\|_p = \left(\sum_{n \in \mathbb{N}} |a_n|^p \right)^{1/p}.$$

An ℓ^p sequence is a sequence $\{a_n\}$ of real numbers for which

$$\sum_{n \in \mathbb{N}} |a_n|^p < \infty.$$

Sequences behave in a similar manner to functions with horizontal asymptotes.

EXAMPLE 3 P-series

Recall that the p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges if and only if $p > 1$. It follows that the sequence $\{1/n^p\}$ is ℓ^1 if and only if $p > 1$. For example,

$$\left\{ \frac{1}{n^2} \right\} \text{ is } \ell^1 \quad \text{but} \quad \left\{ \frac{1}{n} \right\} \text{ and } \left\{ \frac{1}{\sqrt{n}} \right\} \text{ are not.}$$

Moreover, since $(1/n^r)^p = 1/n^{rp}$, we find that $\{1/n^r\}$ is ℓ^p if and only if $p > 1/r$. Thus

$$\left\{ \frac{1}{n} \right\} \text{ is } \ell^2 \text{ but not } \ell^1,$$
and
\[
\left\{ \frac{1}{\sqrt{n}} \right\} \text{ is } \ell^3 \text{ but not } \ell^2.
\]

All of this is very similar to our analysis of the function \(1/x^p\) on \([1, \infty]\). Indeed, it follows from the integral test that
\[
\int_1^{\infty} \frac{1}{x^p} \, dx < \infty \quad \text{if and only if} \quad \sum_{n=1}^{\infty} \frac{1}{n^p} < \infty
\]
so there is a strong theoretical relationship between these two cases.

Proposition 2 Relationship Between \(\ell^p\) and \(\ell^q\)

If \(1 \leq p < q < \infty\), then every \(\ell^p\) sequence is also \(\ell^q\).

PROOF Let \(\{a_n\}\) be an \(\ell^p\) sequence. Then
\[
\sum_{n \in \mathbb{N}} |a_n|^p
\]
converges, so it must be the case that \(a_n \to 0\) as \(n \to \infty\). In particular, there exists an \(N \in \mathbb{N}\) such that \(|a_n| < 1\) for all \(n \geq N\). Then \(|a_n|^q < |a_n|^p\) for all \(n \geq N\), so
\[
\sum_{n \in \mathbb{N}} |a_n|^q
\]
converges by the comparison test.

Incidentally, Hölder’s inequality is very interesting for sequences, since it essentially functions as a new convergence test for series.
Theorem 3 Hölder’s Inequality for Sequences

Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of real numbers, and let \(p, q \in [1, \infty) \) so that \(1/p + 1/q = 1 \). If the series

\[
\sum_{n=1}^{\infty} |a_n|^p \quad \text{and} \quad \sum_{n=1}^{\infty} |b_n|^p
\]

both converge, then the series

\[
\sum_{n=1}^{\infty} a_n b_n
\]

converges absolutely, and

\[
\left| \sum_{n=1}^{\infty} a_n b_n \right| \leq \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{1/p} \left(\sum_{n=1}^{\infty} |b_n|^q \right)^{1/q}.
\]

Corollary 4 Cauchy-Schwarz Inequality for Sequences

Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of real numbers. If the series

\[
\sum_{n=1}^{\infty} a_n^2 \quad \text{and} \quad \sum_{n=1}^{\infty} b_n^2
\]

both converge, then the series

\[
\sum_{n=1}^{\infty} a_n b_n
\]

converges absolutely, and

\[
\left(\sum_{n=1}^{\infty} a_n b_n \right)^2 \leq \left(\sum_{n=1}^{\infty} a_n^2 \right) \left(\sum_{n=1}^{\infty} b_n^2 \right).
\]
\section*{L^p Completeness}

It is possible to generalize the completeness theorem to L^p.

\textbf{Definition: L^p Sequences}

Let (X, μ) be a measure space, let $\{f_n\}$ be a sequence of measurable functions on X, and let $p \in [1, \infty)$.

1. We say that $\{f_n\}$ is an \textbf{L^p Cauchy sequence} if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ so that
 \[i, j \geq N \implies \|f_i - f_j\|_p < \epsilon. \]

2. We say that $\{f_n\}$ has \textbf{bounded L^p-variation} if
 \[\sum_{n \in \mathbb{N}} \|f_{n+1} - f_n\|_p < \infty. \]

3. We say that $\{f_n\}$ \textbf{converges in L^p} to a measurable function f if
 \[\lim_{n \to \infty} \|f_n - f\|_p = 0. \]

\section*{Theorem 5 L^p Convergence Criterion}

\begin{center}
\textit{Let (X, μ) be a measure space, and let $\{f_n\}$ be a sequence of measurable functions on X with bounded L^p-variation. Then $\{f_n\}$ converges pointwise almost everywhere to a measurable function f, and $f_n \to f$ in L^p.}
\end{center}

\textbf{PROOF} Let
\[M = \sum_{n \in \mathbb{N}} \|f_{n+1} - f_n\|_p < \infty. \]
and let
\[g = \sum_{n=1}^{\infty} |f_{n+1} - f_n| \quad \text{and} \quad g_N = \sum_{n=1}^{N} |f_{n+1} - f_n| \]
for each $N \in \mathbb{N}$. By Minkowski’s inequality,
\[\|g_N\|_p \leq \sum_{n=1}^{N} \|f_{n+1} - f_n\|_p \leq M \]
for all $N \in \mathbb{N}$. By the monotone convergence theorem, it follows that

$$\int_X g^p \, d\mu = \int_X \lim_{N \to \infty} g^p_N \, d\mu = \lim_{N \to \infty} \int_X g^p_N \, d\mu = \lim_{N \to \infty} \|g_N\|^p_p \leq M^p < \infty.$$

From this we conclude that $g(x) < \infty$ for almost all $x \in X$, so $\{f_n(x)\}$ has bounded variation for almost all $x \in X$, and hence $\{f_n(x)\}$ converges pointwise almost everywhere.

Let f be the pointwise limit of the sequence $\{f_n\}$, and note that for each $n \in \mathbb{N}$,

$$f - f_n = \lim_{N \to \infty} f_{N+1} - f_n = \lim_{N \to \infty} \sum_{k=n}^{N} (f_{k+1} - f_k) = \sum_{k=n}^{\infty} (f_{k+1} - f_k)$$

almost everywhere. Then

$$|f - f_n|^p = \left| \sum_{k=n}^{\infty} (f_{k+1} - f_k) \right|^p \leq \left(\sum_{k=n}^{\infty} |f_{k+1} - f_k| \right)^p \leq g^p$$

almost everywhere, so by the dominated convergence theorem

$$\lim_{n \to \infty} \int_X |f - f_n|^p \, d\mu = \int_X \lim_{n \to \infty} |f - f_n|^p \, d\mu = 0.$$

Thus $f_n \to f$ in L^p. $lacksquare$

L^p completeness follows easily. We leave the proof to the reader.

Theorem 6 \textit{L}p Completeness

\begin{center}
\begin{tabular}{|l|}
\hline
\textit{Let (X, μ) be a measure space, and let $\{f_n\}$ be an L^p Cauchy sequence on X. Then $\{f_n\}$ converges in L^p to some measurable function f on X.} \\
\hline
\end{tabular}
\end{center}
The L^∞ Norm

It is possible to extend the L^p norms in a natural way to the case $p = \infty$.

Definition: L^∞-Norm

Let (X, μ) be a measure space, and let f be a measurable function on X. The L^∞-norm of f is defined as follows:

$$\|f\|_\infty = \min \{M \in [0, \infty] \mid |f| \leq M \text{ almost everywhere} \}.$$

We say that f is an L^∞ function if $\|f\|_\infty < \infty$.

Note that the set

$$\{M \in [0, \infty] \mid |f| \leq M \text{ almost everywhere}\}$$

really does have a minimum element, for if $|f| \leq M + 1/n$ almost everywhere for all $n \in \mathbb{N}$, then it follows that $|f| \leq M$ almost everywhere.

The L^∞-norm $\|f\|_\infty$ is sometimes called the essential supremum of $|f|$, and L^∞ functions are sometimes said to be essentially bounded or bounded almost everywhere. Note that a continuous function on \mathbb{R} is L^∞ if and only if it is bounded, in which case $\|f\|_\infty$ is equal to the supremum of $|f|$.

Much of what we have done for $p \in [1, \infty)$ also works for $p = \infty$. We list some of the results, and leave the proofs to the reader:

Minkowski’s Inequality. If f and g are L^∞ functions, then $f + g$ is L^∞, and

$$\|f + g\|_\infty \leq \|f\|_\infty + \|g\|_\infty.$$

Hölder’s Inequality. If f is an L^1 function and g is an L^∞ function, then fg is Lebesgue integrable and

$$|\langle f, g \rangle| \leq \|f\|_1 \|g\|_\infty.$$

L^∞ Convergence. If $\{f_n\}$ is a sequence of functions, we say that $\{f_n\}$ converges in L^∞ to a function f if

$$\lim_{n \to \infty} \|f_n - f\|_\infty = 0.$$

This turns out to be the same as uniform convergence almost everywhere, i.e. $f_n \to f$ in L^∞ if and only if there exists a set Z of measure zero such that $f_n \to f$ uniformly on Z^c.
L∞ Completeness. If \(\{ f_n \} \) is an \(L^\infty \) Cauchy sequence of measurable functions, then \(\{ f_n \}_\infty \) converges in \(L^\infty \) to some measurable function \(f \).

Relation Between \(L^\infty \) and \(L^p \) If \(\mu(X) = 1 \), then \(\| f \|_p \leq \| f \|_\infty \) for any measurable function \(f \) on \(X \). More generally, if \(0 < \mu(X) < \infty \) then
\[
\| f \|_p \leq \mu(X)^{1/p} \| f \|_\infty
\]
for all \(p \), so any \(L^\infty \) function on \(X \) is also \(L^p \) for all \(p \in [1, \infty) \).

In the case of sequences, the \(L^\infty \) norm takes the following form.

Definition: \(\ell^\infty \)-Norm

Let \(\{ a_n \} \) be a sequence of real numbers. The \(\ell^\infty \)-norm of \(\{ a_n \} \) is defined as follows:
\[
\| \{ a_n \} \|_\infty = \sup_{n \in \mathbb{N}} |a_n|
\]

Thus an \(\ell^\infty \) sequence is the same as a bounded sequence. Note that if \(p \in [1, \infty) \), then any \(\ell^p \) sequence must be \(\ell^\infty \), since any \(\ell^p \) sequence must converge to zero.

Exercises

For the following exercises, let \((X, \mu)\) be a measure space.

1. Let \(f : [0, \infty) \to \mathbb{R} \) be the function \(f(x) = e^{-x} \). For what values of \(p \) is \(f \) an \(L^p \) function?

2. Let \(f : (0, \infty) \to \mathbb{R} \) be the function
\[
f(x) = \begin{cases}
x^{-1/3} & 0 < x < 1, \\
x^{-1/2} & 1 \leq x < \infty.
\end{cases}
\]
For what values of \(p \) is \(f \) an \(L^p \) function?

3. Let \(f : [0, 1] \to [0, \infty] \) be the function \(f(x) = -\log x \), with \(f(0) = \infty \).

 (a) Show that \(f \) is \(L^1 \).

 (b) Show that \(f \) is \(L^p \) for all \(p \in [1, \infty) \). (Hint: Substitute \(u = 1/x \).)
4. For what values of p is
\[\left\{ \frac{1}{(n^2 + 1)^{1/3}} \right\} \]
an ℓ^p sequence?

5. For what values of p is
\[\left\{ \frac{1}{\sqrt{n} \log n} \right\} \]
an ℓ^p sequence?

6. Prove that every L^p Cauchy sequence has a subsequence of bounded L^p-variation.

7. Prove the L^p completeness theorem (Theorem [6]).

8. If f and g are measurable functions on X, prove that $\|f + g\|_\infty \leq \|f\|_\infty + \|g\|_\infty$.

9. If f is an L^1 function on X and g is an L^∞ function on X, prove that fg is Lebesgue integrable and $|\langle f, g \rangle| \leq \|f\|_1 \|g\|_\infty$.

10. Let $\{f_n\}$ be a sequence of measurable functions on X, and let f be a measurable function on X. Prove that $f_n \to f$ in L^∞ if and only if $f_n \to f$ uniformly almost everywhere.

11. If $0 < \mu(X) < \infty$ and f is a measurable function on X, prove that
\[\|f\|_p < \mu(X)^{1/p} \|f\|_\infty \]
for all $p \in [1, \infty)$.

12. Prove that every L^∞ Cauchy sequence of measurable functions converges uniformly almost everywhere.