Jim Belk Bard College
Home | Research | Teaching | Schedule | Talks | Senior Projects | Writing | Code


My primary research area is geometric group theory, the study of topological and geometric properties of infinite discrete groups, as well as the actions of infinite discrete groups on topological and geometric spaces. See Jon McCammond's geometric group theory page for an overview of the geometric group theory research community.

My research focuses primarily on the Thompson groups \(F\), \(T\), and \(V\) and their relatives, including groups of synchronous and asynchronous automata such as the Grigorchuk group and iterated monodromy groups. I am most interested in connections between these groups and other areas of mathematics, including automata and formal languages, dynamical systems, and fractal geometry.

Publications & Preprints

Here is a complete list of my papers and preprints. My collaborators include Francesco Matucci, Collin Bleak, Bradley Forrest, Brita Nucinkis, Conchita Martínez-Pérez, Matt Zaremsky, Stefan Witzel, Marco Varisco, Robert McGrail, Nabil Hossain, Sarah Koch, Kai-Uwe Bux, and my Ph.D. advisor Kenneth Brown.

Click on the   icon to download the corresponding manuscript.

Hyperbolic Dynamics and Centralizers in the Brin-Thompson Group \(\boldsymbol{2V}\) (with C. Martínez-Pérez, F. Matucci, and B. Nucinkis).
Manuscript in Preparation.
Embedding Right-Angled Artin Groups into Brin-Thompson Groups  (with C. Bleak and F. Matucci).
Preprint (2016). arXiv:1602.08635.
Rearrangement Groups of Fractals  (with B. Forrest).
Preprint (2016). arXiv:1510.03133.
Some Undecidability Results for Asynchronous Transducers and the Brin-Thompson Group \(\boldsymbol{2V}\)   (with C. Bleak).
To appear in Transactions of the American Mathematical Society, arXiv:1405.0982.
Röver's Simple Group is of Type \(\boldsymbol{F_\infty}\)   (with F. Matucci).
Publicacions Matemàtiques 60.2 (2016), 501–552. doi:10.5565/PUBLMAT_60216_07.
The Word Problem for Finitely Presented Quandles is Undecidable  (with R. McGrail).
In Logic, Language, Information, and Computation, pp. 1–13. Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-47709-0_1.
A Thompson Group for the Basilica   (with B. Forrest)
Groups, Geometry, and Dynamics 9.4 (2015): 975–1000. doi:10.4171/GGD/333.
Implementation of a Solution to the Conjugacy Problem in Thompson's Group \(\boldsymbol{F}\)   (with N. Hossain, F. Matucci, and R. McGrail)
ACM Communications in Computer Algebra 47.3/4 (2014): 120–121. doi:10.1145/2576802.2576823.
CSPs and Connectedness: P/NP Dichotomy for Idempotent, Right Quasigroups   (with B. Fish, S. Garber, R. McGrail, and J. Wood)
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 16th International Symposium on, pp. 367–374. IEEE, 2014. doi:10.1109/SYNASC.2014.56.
Conjugacy and Dynamics in Thompson's Groups   (with F. Matucci)
Geometriae Dedicata 169.1 (2014): 239–261. doi:10.1007/s10711-013-9853-2.
Deciding Conjugacy in Thompson's Group F in Linear Time   (with N. Hossain, F. Matucci, and R. McGrail)
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 15th International Symposium on. IEEE, 2013. doi:10.1109/SYNASC.2013.19.
Iterated Monodromy for a Two-Dimensional Map   (with S. Koch)
In the Tradition of Ahlfors–Bers, V, 1–12, Contemp. Math., 510, AMS 2010. doi:10.1090/conm/510.
Thompson's Group \(\boldsymbol{F}\) is Maximally Nonconvex   (with K. Bux).
Geometric methods in group theory, 131–146, Contemp. Math., 372, AMS 2005. doi:10.1090/conm/372/06880
Forest Diagrams for Elements of Thompson's Group \(\boldsymbol{F}\)   (with K. Brown).
Internat. J. Algebra Comput. 15 (2005), no. 5–6, 815–850. doi:10.1142/S021819670500261X
Thompson's group \(\boldsymbol{F}\)   (Ph.D. thesis, Cornell University, supervised by K. Brown), arXiv:0708.3609.