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SIMPLEXWISE LINEAR NEAR-EMBEDDINGS

OF A 2-DISK INTO R2

BY

ETHAN D. BLOCH1

Abstract. Let K c R2 be a finitely triangulated 2-disk; a map f:K->R2 is called

simplexwise linear (SL) if f\a is affine linear for each (closed) simplex a of K.

Interest in SL maps originated with work of S. S. Cairns and subsequent work of R.

Thorn and N. H. Kuiper. Let E(K ) = {orientation preserving SL embeddings

K -> R2}, L(K) = {SL homeomorphism K -» K fixing dK pointwise}, and E(K),

L(K) denote their respective closures in the space of all SL maps K -» R2 and the

space of all SL maps K -» K fixing 3 K. The main result of this paper is useful

characterizations of maps in L ( K ) and some maps in E ( K ), including the relation

of such maps to SL embeddings into the nonstandard plane.

1. Definitions and statement of results. Let AT be a finite (rectilinear) simplicial

complex in R"; we regard simplices as closed, and will write K when we mean the

topological space \K\ underlying K. Let K' denote the set of (closed) /-simplices of

K, and when K is a manifold let (int K)° and (aK)° denote the interior and

boundary vertices of K, respectively. We will study maps of the following type.

Definition. For K as above, a (continuous) map /: K '-* Rm is called simplexwise

linear, abbreviated SL, if the restriction f\ a of / to each simplex a «= K is an affine

linear map. (Some authors refer to simplexwise linear maps as "linear maps," for

example [BS1 and Hoi].)

From now on let K be a (finitely triangulated) 2-disk in R2. Of primary interest are

the following two spaces of maps.

Definition. E(K) = {orientation preserving SL embeddings K -» R2}, L(K) =

{SL homeomorphisms K -* K fixing dK pointwise}.

Remarks. An SL map is uniquely determined by its values on vertices. If K has

vertices { vx,..., vp}, then the space of all SL maps K -* R2 is identified with R2'' via

the correspondence /«-» (f(vi),...,f(vp)), and E(K) is identified with an open

subset of R2''; if K has k interior vertices, then L(K) is identified with an open

subset of R2/i. We use the norm on R2p = R2 X  • • ■ X R2 given by

||(^,...,^)|=sup{||^|||/ = l,. ..,/>},

-
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so that, for SL maps/, g: K -» R2,

\\f-g\\=sup{\\f(v)-g(v)\\\v<z-K0}.

Since E(K) and L(K) are identified with subsets of Euclidean spaces, their closures

E(K) and L(K) are well defined.

Definition. A map in E(K) is called a near-embedding.

Interest in SL maps, and especially L(K), started with the work of S. S. Cairns [C]

(1944), R. Thorn [T] (1958) and N. H. Kuiper [K] (1965). Various results on L(K)

and E(K) were obtained by C.-W. Ho in [Hoi] (1973) and [Ho2] (1979) and by R.

H. Bing and M. Starbird in [BS1 and BS2] (1978). Consult [BCH and CHHS] for

more detailed expostions of these and related results. Recently, R. Connelly, D. W.

Henderson and the author [BCH] showed that if K is convex, then L(K) is

homeomorphic to R2*. Unlike the previous results, it became necessary in the proof

of this last result to make use of maps in L ( K ) in a crucial way. It therefore became

desirable to find ways of verifying whether a given SL map is in L ( K ) or not, and

to understand the topological nature of the boundary of L(K). The analog of

Theorem 1.2 for L(K) answers the first problem, and the analog of Corollary 7.3

for L(K), together with the study of near-embeddings used to prove Theorem 1.2,

are partial answers to the second. In [H] D. W. Henderson will use some ideas in the

proof of Theorem 1.2 in his study of simplexwise geodesic homeomorphisms of the

2-sphere. The author, in [B], will apply Theorem 1.2 to the study of strictly convex

SL embeddings and near-embeddings K -» R2.

We are also interested in the infinitesimal analog of E(K). Let *R denote the

nonstandard real numbers (as in [D], for example). If 0 is a simplex of K, a map

a -* (*R)2 is called affine linear if the usual definition using barycentric coordinates

holds. Thus, one can discuss SL maps K -» (*R)2. Let °: *R -» R, x -> °x, denote

the "standard" part of a number (where ° is not defined on infinite numbers); for

any SL map/: K -> (*R)2 with f(K) finite, the map °f: K -> R2 is then an SL map

in the usual sense. If «5 = (a, b, c) is a positively oriented 2-simplex and

/: K — (*R)2 is SL, then we write

fl     /(«)'
det(/|o) = det   1     f(b)

\1     /(c).

det(/|«5), which is in *R, can be regarded as twice the signed area of /(<5), and is

independent of the order of the vertices a, b, c as long as the order is compatible

with orientation. (Of course, the same definition holds for SL maps K -» R2 c (*R2).)

Determinants provide the simplest way to define the infinitesimal analog of E(K).

Definition.£(K,(*R)2) = {/:#-» (*R)2|/isSL,/(AT)isfiniteanddet(/|<5) > 0

Vo e K2}.

The following space of maps is convenient to work with and is used throughout

the paper.

Definition. R(K)= {/: K-* R2\f is SL, f\dk is an orientation preserving

embedding, and for any q e f(K) there is at most one a e K2 such that f(a) is a

2-simplex and/"'(«7) n int a # 01.
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Remark. A map being on R(K) simply means that besides the condition on dK,

the images of "noncollapsed" 2-simplices do not intersect in their interiors.

The following lemma (which is proved using a degree argument similarly to [Ho3,

Theorem 3.2 and BCH, Lemma 4.1]), which is useful later on, shows that E(K, (*R)2)

is really the right generalization of E(K) to the nonstandard case and that R(K) is a

reasonable space to work with.

Lemma 1.1. (i) E(K) = {/: K -» R2|/ is SL, f\dK is an orientation preserving

embedding and det(f\8) >0V8&K2},and

(ii) R(K) = {/: K -* R2\f is SL, f\aK is an orientation preserving embedding and

det(/|«)> OVS &K2}.

Remark. From the preceeding lemma it is seen that

E(K)czeJk) czR(K).

In fact, both inclusions may be proper (depending on K, of course); for the first

inclusion this is evident, and for the second this is seen in [BCH, Figure 3.2], which

shows a map in R(K) not in E(K). On the other hand, both E(K) and R(K) are

closed subsets of R2p, containing E(K) in their interiors and with topological

boundaries coinciding in some "nice" parts (see [BCH, §4] for more details).

With the above definitions, we now state the main result of this paper, which is a

characterization of certain near-embeddings. Let e: R(K) -» R+ be defined by

e(f) = \inf{\\f(v) -f(w)\\ \v,we K°,f(v) *f(w)}.

Theorem 1.2. For an SL map f: K -* R2 such that f\oK is an orientation preserving

embedding, the following are equivalent:

(l)/eI(T);
(2) fis a near-topological embedding (i.e. fis the limit of topological embeddings);

(3)/ g R(K) and fis within e(f) of a topological embedding;

(4)/= ° g for some g g E(K, (*R)2);

(5)/ g R(K) andf'xf(v) is simply connected for all v e K°;

(6) for each 1-simplex A G K1 and any xA G int A such that f'lf(xA) Pi K° = 0,

f~1f(xA) is simply connected, and for each 8 g K2 and any xs g int «5 such that

f~lf(xs) n Kl = 0> f~l(x&) is connected.

Remark. (1) In Theorem 1.2 the hypothesis that /| 3ÄT is an embedding does not

seem to be necessary, but makes the proof much easier and is sufficient for the

applications of the theorem in [B and H]; in [B] the very explicit nature of the proof

of the theorem is used.

(2) Condition (3) in Theorem 1.2 states that to verify if a map /is in E(K), one

need not find a sequence of maps in E(K) converging to/, but only a single map in

E(K) sufficiently close to/, if/is known to be in R(K) (which is relatively easy to

verify).

(3) There are simple examples which show that the condition / g R(K) in (5)

cannot be dropped.

(4) If K is strictly convex, the analog of Theorem 1.2 holds for L(K), L(K) and

the appropriate analog of R(K) (of course f\oK is automatically an orientation
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preserving embedding in this case); the proof (which will not be given) is the same as

that of Theorem 1.2, except that one must verify that dK need not be moved during

any step of the proof.

The outline of the paper is as follows: §2 discusses some basic properties of SL

maps; §§3-5 discuss various types of subcomplexes of K which are parts of point or

line inverses; §6 discusses partial orderings of vertices and 1-simplices of K given by

"reasonable" SL maps K -» R2; §7 contains the main technical proof of the paper

and §8 contains the proof of Theorem 1.2.

2. Basic properties of collapsing.

Definition. An SL map /: K -* R2 is called boundary-nice if f\oK is an orienta-

tion preserving embedding and /(int AT) is contained in the interior of the region

bounded by f(oK).

In §§3-6 we will assume all maps are boundary-nice, thus avoiding special cases

involving subcomplexes of K intersecting/(3AT).

The following definition states all possible generic ways in which a 2-simplex can

be mapped affine linearly.

Definition. For an SL map/: K -» R2 and 8 = (a, b,c) g K2, 8 is either:

(1) not collapsed iff(8) is a 2-simplex,

(2) of type PC ("point collapse") if f(8) is a point,

(3) of type EC ("end collapse") if f(a) = f(b) + f(c) for some labeling of the

vertices of 8 (so that/(ô) is a line segment), or

(4) of type SC ("side collapse") if/(<5) is a line segment but is not of type EC (i.e.

not two vertices are mapped to the same point).

Note. If «5 is of type EC or SC, it can be decomposed into level sets (i.e. sets which

are mapped to the same point) which are parallel line segments.

Definition. For an SL map /: K -» R2, A G K1 and x G int A with f~lf(x) n

K° = 0, we call f~lf(x) an edge-point-inverse. (We will write f-edge-point-inverse if

more than one map is involved.)

The following lemma is immediate.

Lemma 2.1. For an SL map f: K -> R2, any edge-point-inverse is the disjoint union

of compact 0- and 1-manifolds ( possibly with boundary).    D

Definition. An SL map /: K -* R2 is called ordered if every edge-point-inverse is

simply connected. Let

OBR(K)= {f g R(K)\f is boundary-nice and ordered).

Remark. If an SL map /: K -* R2 is boundary-nice and ordered, then every

component of an edge-point-inverse is an arc (or a point, which we consider to be a

degenerate arc), with each endpoint lying in the boundary of a (unique) noncol-

lapsed 2-simplex (although it is not a vertex). If/is also in R(K), then for each such

2-simplex y, det(/|y) > 0.

Lemma 2.2. /// g OBR(AT), then all edge-point-inverse are connected.

Proof. Let X be a component of an edge-point-inverse f~lf(x) and let a, ß be the

noncollapsed 2-simplices of K which contain the endpoints of X. f(a)U f(ß)
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contains an open neighborhood of f(X) = f(x). If ¡x were another component of

f'lf(x) with its endpoints in (noncollapsed) y, «5 g K2, it is easy to see that no two

of a, ß, y, 8 are the same. It now follows immediately that having two distinct

commponents of f'xf(x) contradicts the definition of R(K), and thus f~lf(x) is

connected.    D

Lemma 2.3. Let f g OBR(A'). // M c K is a subcomplex which is the closure of an

open 2-disk and f(bd M) is a point or a line segment, then f(M)cz f(bd M) (where

"bd" denotes mod 2 boundary).

Proof. First, assume the lemma has been proved when M is a 2-disk, and we will

deduce the general case. Although arbitrary M need not be a 2-disk, since int M is

an open 2-disk, we can find a polygonal circle S very close to bd M, such that 5

transversally intersects the interiors of all the 1-simplices of M that meet bd M, and

the vertices of S are exactly at such intersections. See Figure 2.1. Let N be the closed

region bounded by S, which is a polygonal 2-disk. Triangulate K U S by adding a

single diagonal 1-simplex to each truncated 2-simplex of K; let K' be this triangula-

tion, so that K' subdivides K and A^ is a subcomplex of K'. Let/: K' -» R2 be the

SL map defined as follows: If v G (K')° is in K°, then let f(v) = f(v); if not, then

iieS and v corresponds to a unique vertex u g (bd M)0 c AT0 (since each vertex of

5 is on a 1-simplex of M which meets bd M and is closer to one of the endpoints of

this 1-simplex if it spans M), so letf(v) = f(u). See Figure 2.1. One can check that

/ G OBR(/T'). K', fand N now satisfy the hypotheses of the lemma with N a 2-disk,

so f(N) c f(dN). However,/(bd M) = f(dN) and all the vertices of M not in N are

in bd M, so that/(Af ) c /(bd M ) follows.

Now suppose M is a 2-disk. First, we note that all 2-simplices of M are collapsed

by /; since f(oM) is a line segment or a point, this fact is trivial for ß g M2 if

f(ß) c f(oM), and for ß g M2 with f(ß) çl f(oM) it follows from a straightfor-

ward degree argument using the fact that/ g R(K). Now, suppose/(M) <t f(oM).

Since M is connected and all 2-simplices of M are collapsed by/, f(M) — /(9m) is

the union of finitely many line segments; let L be such a line segment. Since f(K°)

Figure 2.1
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is a finite number of points, we can pick some y g L such that f~ï(y) n K° = 0.

By hypothesis on /and Lemma 2.2, f~\y) is an arc or a point; consequently, the

endpoints of f'l(y) are in the boundaries of noncollapsed 2-simplices of K.

However, since f~l(y) n dM = 0 (and hence f~\y) c int M) and since all 2-

simplices of M are collapsed, it could not be that f'l(y) intersects a noncollapsed

2-simplex, a contradiction. Hence/(M) c f(aM).   D

3. /-segment complexes. Throughout this section, as well as §§4-6, we will let

/g OBR(ÄT) be fixed.

Definition. 8, y eí2 of types EC and/or SC are f-related if f(y)C\f(8)

contains more than one point (i.e. this intersection is a line segment). We write this

relation y rel «5.

/-relatedness is reflexive and symmetric; let ¡-equivalence be the equivalence

relation generated by /-relatedness; thus y, 8, e, K2 are /-equivalent, written y — «S,

iff there exists a finite sequence ex,...,en g K2 such that

y = £j rel £2 rel ■ • • rel en = 8.

Definition. For y g K2 of type EC or SC, let

Â(y) = {<5|ô G K2 is of type EC or SC, ô ~ y}.

Note. (1) Â(y) = Â(«5) iff y ~ «5.
(2)/(A(5)) is a line segment.

Also, Â(ô) may not be all off-lf(A(8)).

Lemma 3.1. If f e OBR(K), then for any 8 g K2 of type EC or SC, k(8) is a

connected subcomplex of K.

Proof. Â(ô) is the union of (closed) 2-simplices, and it is a subset of a simplicial

complex, so it must be a subcomplex of K.

Suppose Â(8) is not connected. By the definition of/-equivalence, the image of

any one component must intersect the image of some other component in a line

segment; let C and D be such components. Pick y g int(/(C) O f(D)) such that

f~l(y)DK°= 0; f'l(y) must have distinct components in each of C and D,

contradicting Lemma 2.2. Thus A(<5) is connected.   D

Definition. For «5 g AT2 of type EC or SC, let A(S) be the minimal 1-connected

subcomplex of K containing Â(«5). A («5) will be called the f-segment complex of 8.

Lemma 3.2. Let f g OBR(/0 and let 8 g K2 be of type EC or SC. Then:

(i) every 2-simplex in A(«S), not in k(8), is of type PC,

(ii)/(A(«5)) = f(k(8)) is a line segment, and

(hi) A(8) is a 2-disk.

Proof, (i) Since K(8) is a finite, connected subcomplex of K, A(«5) is obtained

from Â(ô) by "plugging up holes". Each hole is a subcomplex of K which is the

closure of an open 2-disk. If H is such a hole, then/(bd H) c /(Â(<5)); /(Â(5)) is a
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line segment and/(bd H) is compact and connected, so/(bd H) is a line segment or

a point. By Lemma 2.3, f(H) c /(bd H), so that every 2-simplex of H is collapsed.

If any 2-simplex ß of H were of type EC or SC, it would be in A(«5) (since

f(ß) c /(bd H) c /(Â(«5))), a contradiction; thus all 2-simplices of H are of type

PC.

(ii) This follows from (i).

(hi) From Lemma 3.1, the minimality condition in the definition of A(S) and (i)

of this lemma, it follows that A(«5) is a 1-connected subcomplex of K which is the

union of 2-simplices. Therefore A («5) is the union of maximal 2-disks, any two of

which meet in at most one common boundary vertex. Each maximal 2-disk must

contain at least one type EC or SC 2-simplex (which is in A (5)), by the minimality

of A(ô). The proof that A(S) is only one such 2-disk is the same as the proof of

connectivity in Lemma 3.1.    D

Definition. Let /and «5 be such that A («5) is a 2-disk. A vertex of'3A(5) which is

mapped by/ to the relative interior of /(A («5)) is called a side vertex of A(5); any

other vertex of 3A(5) is an end vertex of A(ô). Let ex, e2 be the two endpoints of

/( A(<5)). We say A(<5) is simple if it has the following properties:

A(8) is a 2-disk such that 3A(«5) = Ex U Sx U £2 U S2, where £,, S, are (closed)

polygonal arcs,

the £, are possibly single vertices,

the S, contain at least one 1-simplex each,

/(£,) = ei,f(S¡) = f(A(8)), and no subarc of 5, has this property,

£, O S- is a single vertex,

Sx n S2 is empty (if neither £, is a single vertex) or a single vertex (if exactly one

£, is a single vertex) or two vertices (if both £, are single vertices), and

£,, Sx, E2, S2 cover 3A(ô) when it is traversed one time around in clockwise order.

The £, are called ends of A(5) and the 5, sides. See Figure 3.1.

Remark. £, may not be all of f'\e¡) n A(«5), although no 2-simplex in/_1(e,) n

A(6) can intersect £, in a 1-simplex, by the minimality of A(<5).

Lemma 3.3. /// g OBR(K), then

(i) all f-segment complexes are simple, and

(ii) the edge-point-inverses of an f-segment complex are nontrivial arcs with one

endpoint in each of its sides.

Ei f

Figure 3.1
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Proof, (i) Let A(ô) be an /-segment complex; by Lemma 3.2(iii) it is a 2-disk.

Lemma 2.4 implies that f(A(8)) =/(3A(S)). Let Ex,...,En be the maximal, con-

nected subcomplexes of 3A(S) which are mapped to either endpoint of /(A(ô));

since both endpoints are in/(3A(S)), n > 2.

The E, are disjoint, so

3A(<5) = Ex U Sx U £2 U S2 U ■ • • U En U S„   for some n > 2,

where the £, and S- have all the properties stated in the definition of simple

/-segment complexes with the obvious modifications when n > 2. Now, pick any

x g Sx such that f~1f(x)C\K°= 0; then f'lf(x) is an edge-point-inverse which

intersects all the S,. By Lemma 2.2, f~lf(x) must be an arc or a point and it follows

that n < 2. Hence n = 2 and (i) is proved.

(ii) This follows easily from the argument for (i).    D

The following lemma shows that the images of simple /-segment complexes under

/ g R(K) behave very much like the images of 1-simplices under a homeomorphism.

Lemma 3.4. Let /g R(K) be such that all f-segment complexes are simple, (in

particular, if f G 0BR(A:)).

(i) If A, B are either distinct f-segment complexes, or distinct noncollapsed 1-

simplices not in the same f-segment complex, or an f-segment complex and a noncol-

lapsed 1-simplex not contained in it, then int f(A) O int f(B) = 0.

(ii) // A is either an f-segment complex or a noncollapsed 1-simplex and 8 is a

noncollapsed 2-simplex, thenf(A) n int /(<5) = 0.

Remark. Part (i) of the above lemma implies, in particular, that the images of

simple /-segment complexes cannot intersect transversally.

Proof of Lemma 3.4. The lemma follows immediately from the definition of

R ( K ) (which states that distinct, noncollapsed 2-simplices cannot have the interiors

of their images overlap), once the following observation is made: If A is as in the

statement of the lemma, there is a neighborhood of int/(^4) entirely contained in

the images of noncollapsed 2-simplices which intersect the component of A in

Â L){8\8 g K2 is of type PC, f(8) czf(A)},

where Â is either A or, if it exists, the /-segment complex containing A.   D

4. /-side complexes.

Lemma 4.1. Let f g OBR(ä:) and let 8 g K2 be of type EC or SC. Then

/-1(int/(A(ô)))= [A(Ô)-£1-£2]UM1U • • • U Mm,

where the Ej are the ends of A(8), and the Mi are 1-connectedsubcomplexes of K, each

containing at least one side vertex wi of A(8), and contained in

f~1(f(w,))-intA(8).

Definition. The M, in Lemma 4.1 are called the f-side complexes of A(«5).

Remarks. (1) Each /-side complex is only an /-side complex of one /-segment

complex, by Lemma 3.4(i).
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(2) An /-side complex intersects the /-segment complex it is associated with in a

subarc (possibly trivial) of one side of the/-segment complex.

Proof of Lemma 4.1. First, let

M=/-1(int/(A(á)))-intA(<5)

- {int A \A is a noncollapsed side 1-simplex of A(<5)}.

Using Lemma 3.4, it is routine to show that any 1- or 2-simplex of K, which

intersects M in its relative interior, must be mapped to a point. It follows that M is a

subcomplex of K and that each component of M is mapped to a point. Let

Mi,... ,Mm be the components of M. Since each simplex of M is mapped to a point,

so is each M,. No M¡ can contain a point of A(ô) which is not in a side vertex or in a

collapsed side 1-simplex. Suppose some Mj were not simply connected; being a

subcomplex, it would then have a hole H which is a subcomplex of K, is the closure

of an open 2-disk, and is such that H n A/} = bd //./(bd H) c f(Mj), so/(bd H) is

a point. By Lemma 2.3, f(H) c /(bd H), so f(H) is a point, and thus H c M-, a

contradiction. Hence M- is 1-connected (being connected by definition).

We now wish to show that each M¡ intersects A(8), so suppose otherwise for some

A4}. Mj is a finite, full, contractible subcomplex of K, and hence the simplicial

neighborhood N of Mj in K (that is, the union of all (closed) 2-simplices of K which

intersect M-) is a subcomplex of K whose interior is an open 2-disk. Also, no vertex

of bd N can be mapped to /(A/-), by the maximality of A/}, since each vertex of

bd TV is the endpoint of a 1-simplex which intersects A4}. On the other hand, it is easy

to verify that no 2-simplex of K can intersect both A4} and A(5), and yet be in

neither, so that/(bd N) n/(A(<5)) = 0. Thus, f(Mj) c/(A(S)) implies /(Ai}) «Z

/(bd A/), so that /(A/) £ /(bd A/).

Now, since/ g R(K), it follows that all the 2-simplices intersecting A4}, but not in

Mj, are of types EC and SC, or otherwise the interiors of the images of the

uncollapsed ones would intersect the interiors of the images of some uncollapsed

2-simplices intersecting/"lf(A(8)). f(N) is therefore a line segment. Since bd N is

connected, /(bd N) must be a line segment or a point. Lemma 2.3 now implies that

f(N) c /(bd N), contradicting the conclusion of the preceding paragraph. Thus A/.

must intersect A («5).

As mentioned previously, M¡ n A(ô) must be a collapsed, connected subcomplex

of one side of A(«5), or a single side vertex, so in particular M¡ n A(8) must contain

a side vertex w¡. f(M¡) is a point, so M¡ C f~lf(w¡), and by definition Af, n int A(«5)

= 0, so M, c f~lf(w,) - int A(<5). Finally,

M,U ••• U Mm = A/=/-1(int/(A(r3)))-intA(«5)

— {int v4 |yi is a noncollapsed side 1-simplex of A(5)},

so

[A(8)-Ex-E2\ UM,U •••UA/„,= [/-1(int/(A(ô)))-intA(Ô)

- {int A |/I is a noncollapsed side 1-simplex of A(8)}\

u[A(S) -£i - £2]

= /"1(int/(A(Ô))).   D
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5. /-vertex-inverses.

Lemma 5.1. Let /g OBR(AT) and let v g K°. Then

(i) iff(v) g int f(A(8)) for a (unique) f-segment complex A(8), then f~lf(v) n

A(8) is 1-connected, and

(ii) iff(v) <í int F(A(8)) for any f-segment complex A(8), then

f~lO) -U{int A(y)|y G K2 is of type EC or SC)

is a 1-connected subcomplex of K.

Remark. In case (i),/_1/(«v) O A(«5) need not be a subcomplex of A(8), although

it is the union of a subcomplex and line segments than span type EC or SC

2-simplices.

Definition. If v is as in case (i) or (ii) of Lemma 5.1 (it must be as in one of the

cases), then/_1/(i;) n A («5) or

f~lfO) -U(int A(y)|y g K2 is of type EC or SC},

respectively, is the f-vertex-inverse of v, denoted T(v).

Proof of Lemma 5.1. (i) Suppose T(v) is not simply connected; then there is a

polygonal circle C in T(v) such that the interior of the 2-disk D bounded by C is not

entirely contained in T(v). It follows that there must be a 1-simplex A of A(«5) such

that A n int D - T(v) contains a line segment. Pick some x G A n int D - T(v)

such that/_1/(x) nA"°= 0. By Lemma 3.3(h), f~lf(x) must be an arc with each

Figure 5.1
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tip tip

Figure 5.2

of its endpoints in the boundary of a noncollapsed 2-simplex, so that/_1/(x) n C +

0 since int D c int A(«5); it follows that v G f'lf(x), contradicting the choice of x,

and hence T(v) must be simply connected. See Figure 5.1.

To see that T(v) is connected, first note that/(i;) separates f(A(8)), so let A be

one of the components of /(A (8)) — f(v) and let

T = [y g A(S)2|y n T(v) * Oand/(y) n A is a hne segment).

T is not empty. One can choosey G T such that f~lf(y) n K° = 0 and there is no

w g K° with/(w) G/(A(5)) between/(î;) and/(>>). f~lf(y) is an arc by Lemma

3.3(h) and it intersects every 2-simplex in T. Hence T is mod 2 connected along

noncollapsed edges. Since each 2-simplex in T intersects T(v), it follows easily that

T(v) n T is connected. However, every component of T(v) must intersect T (using

the simple connectivity of T(v) and the hypothesis on/), and it follows that r(¡v) is

connected.

(ii) First, note that/-1/(i>) is a 1-connected subcomplex of K by an argument like

that in Lemma 4.1. Now,

W = K - (J {int A(y)|y g AT2 is of type EC or SC)

is a subcomplex, so T(v) = f'lf(v) n W is a subcomplex. T(v) is seen to be

connected by an argument like the proof of Lemma 3.4, and simply connected

similarly to the simple connectivity of/-side complexes (Lemma 4.1).   D

Let /g OBR(AT) and let T(v) be an /-vertex-inverse. Being simply connected,

T(v) is the union of maximal 2-disks (which are subcomplexes of K), 1-simplices,

and line segments that span type EC or SC 2-simplices; in §7 we will use some of the

above types of unionands.
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Definition. A unionand of T(v) as above is called apiece of T(v) if it is either (1)

a 2-disk, (2)a 1-simplex (not in 3A(«5) if we are in case (i) of the definition of T(v)),

or (3) a spanning line segment that contains a vertex (so that it spans a type SC

2-simplex). If P is a piece of T(v), then a tooth of P is a 2-simplex tj (contained in

A(<5) if we are in case (i) of the definition of T(v)) which intersects P in exactly one

1-simplex if P is of type (1) or (2) above, or is spanned by P if P is of type (3) above.

(In the first case tj is of type EC, and in the second case type SC.) The vertices of 17

not in P are called tips of P.

Remarks. (1) Not every unionand of T(v) is a piece of T(v), although every

/-vertex-inverse contains at least one piece.

(2) Each tooth corresponds to a unique piece.

(3) Every piece has at least two tips.

Definition. Given a piece P of r(t>) and two (distinct) tips u, w of P (contained

in teeth tj, y, respectively, which may not be distinct), a pulling path for P, u and w is

a finite polygonal path /: [0,1] -* int P U r\ U y such that:

(i) / is injective,

(ii) 1(0) = u, 1(1) = w and /((0,1)) n 3tj = 0 = /((0,1)) n 3y,

(ni) /((0,1)) contains no vertices, and

(iv) l([0,1]) intersects 1-simplices transversally (and P also if P is a spanning line

segment), at most once each. See Figure 5.2.

Remark. Given two distinct tips of a piece there is always a (not necessarily

unique) pulling path connecting them.

6. Ordering vertices and 1-simplices. Let /gOBR(AT) and let A(<5) be an

/-segment complex. Lemma 3.3(i) says that A(<5) has two sides; choose one to be

called the top side and the other the bottom side. Suppose, without loss of generality,

that the top side is labelled Sx in the decomposition 3A(«5) = Ex U Sx U £2 U S2

going clockwise around 3A(S), as in the definition of simple/-segment complexes.

Of the two directions perpendicular to /(A (8)), let the positive direction be the one

which, if it coincided with the positive j-axis direction, would make/(£2) — f(Ex)

be in the positive x-axis direction. Let the positive half-plane be the component of

R2 — {line containing /(A(ô))} corresponding to the positive direction. Finally,

Lemma 3.3(h) says that every edge-point-inverse in A(«5) has exactly one endpoint in

each side of A («5), and we call these endpoints the top and bottom ones correspond-

ing to which sides they are in.

Remark. If y is a noncollapsed 2-simplex of K which intersects the interior of the

top side of A(«5), then int f(y) is in the positive half-plane.

Let A, B be distinct, noncollapsed 1-simplices of A(8) such that/(^) <~\f(B) is a

line segment. Then for any x ^ f(A) C\f(B) such that/_1(*) is an edge-point-in-

verse,/_1(*) n A and/_1(*) n B are distinct points in the arc/_1(x).

Definition. For A, B and x as above, we say A is above B iîf'1(x) n A is closer

to the top endpoint of f~l(x) than/"'(x) n B; we also say B is below A. That this

definition does not depend on the choice of x is just the initial step in the proof of

Lemma 6.1.
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Note. For A, B g A(8)1 such that/(^4) n/(£) is not a line segment, neither A

nor B is above the other.

Definition. Let A g A(Ô)1 be noncollapsed and let v g A(ô)° be such that

f(v) g int/(^4); we say v is a¿raue A if, for any noncollapsed B g A(S)1 which

intersects the component of v in T(v) - A, B is above.4. It can be checked, as in the

previous definition, that the choice of B does not matter. If v is above A, and A is

above all other 1-simplices of A(8) which v is above, then we say v is immediately

above A.

Note. (1) If A = (w,u) is above B and f(w) e int f(B), then w is aboweB.

(2) For v g A(<5)°, v need not be above any 1-simplex of A(«5); if it is above some

1-simplices, then there is a unique 1-simplex which it is immediately above (by

Lemma 6.1).

Lemma 6.1. Let f g OBR(/C ) and let A(8) be an f-segment complex with chosen top

side. If A0,... ,An are distinct, noncollapsed 1-simplices of A(8) such that Ai is above

Ai + X for 0 </'<« — 1, then An is not above A0. In particular, there cannot exist two

distinct 1-simplices each above the other.

Proof. The proof is by induction on n, where we assume n > 1. For n = 1,

suppose the lemma is false, i.e. Ax is above A0. Since A0 is above Ax by hypothesis,

there is an edge-point-inverse À which intersects the interiors of A0 and Ax so that

À n A0 is closer to the top endpoint of X. Since Ax is above A0, there is also an

edge-point-inverse ju intersecting the interiors of A0 and Ax, so that ju n Ax is closer

to the top endpoint of ¡x. Note that ¡x and X cannot intersect and that neither can

intersect A0 or Ax more than once (or once nontransversally). Hence ¡x cannot

intersect A0 before it intersects Ax (coming from the top). Using X, Ax has a "top"

side and a "bottom" side, and ¡x intersects Ax either from top to bottom or

vice-versa. The bottom-to-top case is pictured in Figure 6.1. Label points a, b, c and

d as in the figure. In the bottom-to-top case, it is seen that for ¡x to intersect the

bottom side of A(<5) (which it must do), ¡u must intersect (in a point below c) the

circle which is the union of X from a tob, Ax from b to c, fx from c to d, and the top

side of A(5) from d to a. However, such an intersection cannot happen, so the

Figure 6.1
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bottom-to-top case is impossible. A similar contradiction is obtained in the top-to-

bottom case, and the lemma holds for « = 1.

Now suppose that n > 2 and the inductive hypothesis holds for all cases with

fewer than n + 1 1-simplices. For each 0 </'<« — 1, let A, be an edge-point-

inverse which intersects the interiors of A¡ and Ai+X so that X, C\ A ¡ is closer to the

top endpoint of A,. Define X to be the spanning arc of A(8) which is the union of A0

from its top to X0 n Ax, Ax between A0 n Ax and Xx n Ax, Xx from Xx n Ax to

Xx n A2, A2 between Xx n A2 and A2 n A2,... ,An_x between X„_2 n An_x and

\„_] n v4n_!, and \M_! from Xn_x n v4„_j to its bottom. See Figure 6.2. Suppose

the lemma is false, so that there exists an edge-point-inverse ¡x which intersects the

interiors of A0 and An so that \xC\ An is closer to the top endpoint of ¡x. If ju

intersected some A¡, 1 < i < n — 1, before it intersected An, then A¡ would be above

A0, contradicting the inductive hypothesis for A0,...,A¡; if ju intersected such A¡

after intersecting An, then An would be above A¡, contradicting the inductive

hypothesis for A¡,... ,An. Hence ¡x n A,■ = 0 for 1 < i < « — 1. As before, ¡x n A,

= 0 for all i, and hence fx Ci X = 0. The same analysis as for « = 1, when applied

to A0, An, X and \x, shows \x cannot exist, and the lemma is proved.    D

The following lemma is straightforward.

Lemma 6.2. Let y = (a, b, c) be a type EC or SC 2-simplex in A(8), with (a, c)

above (a, b). If g: y -» R2 is an affine linear map with g(a) = f(a), g(b) = f(b) and

g(c) in the positive half-plane, then det(g|y) > 0. // T: R2 -* R2 is any orientation

preserving affine linear map, then det(T° g\y) > 0.   D

Figure 6.2
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7. Pulling apart collapses. The main technical result of this paper, from which

Theorem 1.2 will be deduced, is the following proposition.

Proposition 7.1. Let /g OBR(AT) and p > 0 be given. Then there is a finite

polygonal path ft: [0,1]-» OBR(/C) of length less than p such that f0=f and

fx e E(K).

Corollary 7.2. Iff<=R(K) is oriented, thenf' g E(K).

Proof. If /is boundary-nice, then the corollary follows immediately from Proposi-

tion 7.1. If / is not boundary-nice, then by adding an appropriately triangulated

collar to the outside of K and suitably extending/to the collar by an embedding, we

can reduce this case to the boundary-nice case.   D

Corollary 7.3. 7//g £(A") is infective on oK, then there is a finite polygonal path

in E(K) of arbitrarily short length from f to a point in E(K).

Proof. This follows immediately from Proposition 7.1, the implication (1) => (6)

in Theorem 1.2 (which does not require Proposition 7.1), and the collaring argument

in the proof of Corollary 7.2.    D

Proof of Proposition 7.1. Let S(f) be the number of 2-simplices collapsed by/;

the proof is by induction of S(f). If S(f) = 0, it follows from Lemma 1.1 that

/ g E(K), and there is nothing to prove. Now assume S(f) > 0. We will proceed by

constructing a homotopy/: [0,1] -» OBR(AT) such that/0 =/, S(fx) < S(f), and

the homotopy is a straight line of length less than l/2p. Induction will then

complete the proof. To define the homotopy we will find a collection of vertices,

denoted V(f), such that f(V(f)) is a point, and then move the image of V(f)

slightly, keeping it a point; other vertices may have their images moved as well, in

order to insure that all maps are oriented and in R(K). The length of the homotopy

may have to be much less than l/2p.

Since / is boundary-nice, it is easy to see that not all collapsed 2-simplices are of

type PC, and hence there is at least one (nonempty) /-segment complex. By Lemma

3.3(i) all/-segment complexes are simple. We consider two cases.

Case 1. Some f-segment complex has a side vertex. Let A(ô) be an /-segment

complex with side vertex v. Then r(iv) = f'lf(v) H A(«S) is 1-connected by Lemma

5.1(i). Note that T(v) n int A(8) # 0 ; it follows that T(v) must have some piece P

which contains v (and is not, by definition, a single side 1-simplex in 3A(<5)).

Moreover, we can pick tips z, w of P such that f(z) and f(w) lie in distinct

components of /( A(«5)) - f(v). Let / be a pulling path for P, z, w. l([0,1]) separates

T(v) into two connected subsets, and let V(f) be the vertices of the subset

containing v (and hence f~lf(v) D 3A(ô)). We will define/ by specifying its action

on vertices; in particular,/ will move the image of V(f) by starting at f(V(f)) and

then making a straight line (shorter than l/2p) into the positive half-plane, at any

chosen angle with f(A(8)). (Here the choice of angle is irrelevant, but in an

application of this proof in [B] it will be necessary to note that any particular angle

will work.) See Figure 7.1.
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We need to determine which other vertices of K need to have their images moved,

and how to move them, so that/ will be oriented and in R(K) (boundary-nice is no

problem if / moves all vertices by small enough amounts). Only vertices in

/_1/(int A(5)) will be moved. We will first discuss the vertices of A(8); we will use

the ideas of the previous section to give an ordering to these vertices, thus allowing

an inductive definition of/|A(«5)°. Let the side of A(<5) containing v be chosen as

the top side.

Definition. A noncollapsed 1-simplex A of A(<5) is called movable if there is a

chain A = A0, Ax,...,An of noncollapsed 1-simplices of A(<5) such that A, is above

Ax+,Tor 0 ^ / < n - 1, and An intersects V(f) (necessarily in a single endpoint). A

vertex v g A («S) is movable if it is above some movable 1-simplex (and hence is

immediately above a unique one).

It is easy to see that if A is movable, then/(F(/)) <£ int/(.4), using Lemma 6.1;

hence the set of all movable 1-simplices is^R U J(L, where

J(R = { A g A(8) \A is movable and intf(A)

is in the right-hand component of / ( A ( <5 ) ) - f(V(f))},

and similarly for J(L using left instead of right. Correspondingly, the set of all

movable vertices is fR U "TL, where v g -fR iff it is above something in J(R, and

similarly for ~fL. It follows from Lemma 6.1 that we can order the members otJ(R,

writing them Ax,... ,Ar in order, so that A¡ is not above Aj for all/ > /'. The members

otJ(L can be similarly ordered, writing them Bx,.. ,,B¡ in order. Note that nothing

in A(S)1 - J(R is above anything inJ(R, and similarly for^L.

f(A(6))

f(V(f))

Ihomotopy

Figure 7.1
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Definition. For u g A(«5)°, define N(v) by

0      ifv <z-V(f);

i        if v g if~R and v is immediately above A¡, or

u & yL and ü is immediately above /?,;

-1     otherwise.

Remark. If u g A(«5) has N(v) > 0 and u is immediately above A = (a, b), then

N(a),N(b) < N(v).

We now define /,(u) for v g A(ô)°, inductively on N(v). If A/(u) = -1, let

f,0) = foO) for all t g [0,1]. If A/(<v) = 0, then v g V(f), and /,(i>) has been

specified already. Now suppose that N(v)> 0 and /(w) has been defined for all

w g A(«5)° such that N(w) < N(v). By the definition of N(v), v is immediately

above AN(v) = (a, b). N(a), N(b) < N(v) by the previous remark, so/ is defined on
A

"■N(vY

We define /( v) to be the intersection of the line segment /(AN(v)) (which is not

collapsed if we move V(f) by a very small amount) and the line / which contains

f(v) and is parallel to {ft(v(f)), f0(V(f))). Note that since V(f) is moved in a

straight line by /, / does not depend on t, and also that the required intersection

exists if V(f) is moved by a very small amount.

For any vertex v in /_1(int/(A(«5))) - A(8), v is in an /-side complex which

contains at least one side vertex w of A(8); all such side vertices are mapped by/to

the same point and / moves them in the same way, so we let f,(v) = fi(w). This

completes the definition of/ on all vertices of/_1(int/(A(«5)Y); / fixes all other

vertices, and we have defined a continuous map/: [0,1] -» {SL maps K -» R2}.

It is evident from the definition of / that the teeth used to define the pulling path

for T(v) are not collapsed by/ for t g (0, l], but since they are collapsed by/0 = /,

S(f,) < S(f)fovt g (0,1]. (Clearly nothing new is collapsed during the homotopy if

/ moves vertices by small enough amounts.) Also, since/is boundary-nice, it is clear

that if / is a small enough homotopy, then it is boundary-nice for all t. Hence, to

finish the proof of Case 1, it remains to be seen that/ is oriented and in R(K) for

all/.

To show/ g R(K), it suffices, by Lemma 3.1, to show that det(/|y) > 0 for all

y g AT2. It is evident that for y G A(ô)2, det(/|y) = det(/|y) > 0 for a small

enough homotopy; hence we need only examine y g A(<5)2. There are a number of

cases. If y is one of the teeth used to define the pulling path, then it can be checked

that det(/|y) > 0 for t g(0,1], using the way in which the images of vertices in

V(f) are moved and Lemma 6.2. If y is a type PC 2-simplex (with respect to/)

contained in T(v), then the definition of/ implies that y is either of type PC or EC

with respect to/ (t g (0, l]), so that det(/|y) = 0. Now, if B g A (S)1 is mapped by

/to a point other than/(F(/)), it is seen that/,(i?) is a point for all t. Therefore, if y

is either a type PC 2-simplex not in T(v), or a type EC 2-simplex which is not one of

the teeth of T(v) used above (both with respect to/), then y remains of the same

type with respect to /, and hence det(/|y) = 0. Finally, suppose y is of type SC

(with respect to /), so that y = (a, b, c) with f(a) G int/((¿>, c». If a is above

N(v) =
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(b, c) then it is clearly immediately above, and thus f,(a) g int fi((b, c» for all t

(by the definition of/), so det(/|y) = 0. The only remaining case is when a is not

above (b, c); the desired result in this case will follow from the following Claim and

Lemma 6.2. First some definitions:

Fix t g(0,1]. Let us assume that f(A(8)) is in the x-axis, f(V(f)) is the origin,

and the positive half-plane is the standard upper half-plane. The line segment

(f,(V)(f),fo(v(f))) maY make anY an8le in (°. "O with/(A(<5)), but we will

assume for convenience that the angle is tt/2, since the obvious modifications of our

arguments will work for any angle. Let mx: R2 -> R be projection onto the x-axis.

Note that for movable A, B g A(<5)\ if the line segments ft(A) and f,(B) do not

intersect in their interiors and if trx(f,(A)) n irx(ft(B)) is a line segment, then either

for all p G int[irx(f,(A)) n trx(ft(B))], trxl(p) n ft(A) has larger ^-coordinate than

"n~l(p) n/,(/?), or, for all such/?, the opposite inequality of y-coordinates holds; in

the first case we say/(^l) is Euclideanly-above f,(B), and vice-versa in the second.

See Figure 7.2.

In this paragraph and in the following claim, we will discuss some properties of

the images (under/) of the movable 1-simplices. All such 1-simplices are either in

J( R or Jt L (but not both), so we will only discuss MR, since J( L is exactly the same.

Let eR be the right endpoint of /(A(ô)), let TR be the triangle with vertices

{eR,f(V(f)), f,(V(f ))},and\et

i
D, = tr - U {trapezoid between/,^*) and/(A(8))}

for 1 < i < r, whexeJtR = {Ax,... ,Ar} as before. See Figure 7.3.

f(A(6»

Figure 7.2
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Claim. For all 1 < / < r,

(i)f,(Ak) and f,(Aj) do not intersect transversally in their interiors for k, j < i,

(ii) D¡ is convex, and

(hi) if f,(Ak) is Euclideanly-above/(/I7) for distinct k, j < i, then Ak is above A}

(so thatÂ: >/).

Demonstration. We will proceed by induction on i. The case /' = 1 is trivial, since it

is easy to see (from the definition of them's) thatft(Ax) joins/,(F(/)) to a point in

(f(v(f)),eR). Now suppose the claim holds for i - 1; we will first check that both

endpoints oif,(A¡) are in aD¡_x - (f,(V(f)), eR). Let b be an endpoint of A¡; it is

clear from the definition of the A ¡'s that b is immediately above some Am, m < i;

hence/(ft) G TR — D¡_x. Suppose

f,(b) err D¡_x = TR-D,_x-(aD, - (f,(V(f)), eR));

either/, (ft) G (f,(V(f)), f(v(f))) or not. In the latter case, it is seen that/(ft) must

be Euclideanly-below (in the obvious sense) some ft(Ak) (k < i) which intersects

oDj_l. See Figure 7.4. ft is immediately above some Aq ( =£ Ak), where f(Aq) must be

Euclideanly-below f,(Ak). However, (hi) applied to / — 1 implies that Ak is above

Aq, and since ft is above Ak it follows that ft could not have been immediately above

A , a contradiction. The other case is that/(ft) G (ft(V(f)), f(v(f))); since we are

assuming that/(ft) G oD¡, it is easy to see that/(ft) g f(v(f)), so that ft g [f'lf(v)

n A (5)] — V(f). Since V(f) contains boundary vertices on the top side of A («5), it

follows that Ax (which intersects V(f)) must be above A,. In that case, however,

some subset of A¡, A¡_x,...,AX (containing A¡ and ^4,) contradicts Lemma 6.1. Thus

we have seen that/(ft) £ TR - D¡_x, so

/,(*) e *D,^-U,(V(f)),f(V(f))).

(i) and (ii) now follow for i using (i) and (ii) for i — 1, together with the above

observation, and (hi) similary follows for /' using (i), (ii), (hi) for /' - 1. This proves

the claim, and hence/ g R(K) for all t.

ft(V(f))

Figure 7.3
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To see that / is oriented, there are three types of noncollapsed 1-simplices (with

respect to/) for which we need to examine edge-point-inverses. If a (noncollapsed)

1-simplex is not in A («5), then any/-edge-point-inverse with respect to an interior

point is the same as the corresponding /-edge-point-inverse, which is an arc. If

A g A(S)1 is not collapsed by either/ or/, then it is seen by the construction of/

that any /-edge-point-inverse with respect to an interior point of A is a submanifold

of the corresponding /-edge-point-inverse, and hence is also an arc. Finally, if

A g A(8)x is collapsed by/but not by/, then A is in the piece of T(v) that is pulled

apart; it is easy to see from the definition of a pulling path that the /-edge-point-in-

verses of interior points of A are also arcs (see Figure 5.1), and this completes the

proof of Case 1.

Case 2. No f-segment complex has a side vertex. As before, there must be a

nontrivial /-segment complex; call it A(«5). By Lemma 3.3(i), A(5) is simple,

3A(<5) = Ex U Sx U £2 U 52 for appropriately defined £,, S¡, and in the present case

each S, is a single (noncollapsed) 1-simplex. It follows that at least one of the £, is

not a single vertex; suppose it is Ex. Let e be a vertex of Ex. Since no /-segment

complex has side vertices, Lemma 4.1 implies that e satisfies hypothesis (ii) of

Lemma 5.1 and T(e) is defined appropriately. We will pull apart T(e) just like T(v)

in Case 1, the only difference being that here we need to find a piece of T(e) which

has two teeth in different /-segment complexes; once we find such teeth, the

construction of / and the proof that it works as desired are exactly analogous to

Case 1. We find the teeth as follows.

Ex c T(e), so some teeth of T(e) must lie in A(5); we want to find some tooth of

T(e) not contained in A(ô). Note, first of all, that no 1-simplex of T(e) is in 3AT, so

every 1-simplex in T(e) is an edge of two 2-simplices in K. Consider the pieces

Rx,... ,R of T(e) which intersect Ex. If some R¡ is a 1-simplex, then this 1-simplex

is the edge of one tooth y in A(ô) and another tooth tj not in A(«5) (for if both y and

f  (v(f))

f(V(f))

Figure 7.4
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T) were in A(8), then R¡ c Ex could not be in 3A(«S)). If no Ä, is a 1-simplex, then

they are all (nontrivial) 2-disks. If all the teeth of all the R¡ are in A(«S), then dR¡ is a

polygonal circle contained in A(ô) for all i. However, A(8) is a simply connected

subcomplex of A", so that each R¡ must be contained in A(8), a contradiction to the

definition of r(<?). Thus we can find some teeth y, ij of T(e) belonging to some R¡,

with y in A(8), and tj not in A(«5). This completes the proof of the proposition.    D

8. Proof of Theorem 1.2. (6) => (1). The first part of (6) is exactly the same as

saying/is oriented, and the second part is/ g R(K), so (1) follows from Corollary

7.2.

(1) => (2) => (3). These implications are trivial.

(2) => (5). Clearly (2) implies that/ G R(K); as in the proof of (3) => (6) below, it

follows from (2) that/_1/(x) is simply connected for any x g A", so in particular (5)

holds.

(5) => (6). / g R(K) implies the second part of (6); to see that the first part holds

assume otherwise, i.e. there is some A g A'1 with a point x g int A such that

f~lf(x) n K° = 0 and f'lf(x) is not simply connected. By Lemma 2.1, f~lf(x)

must contain a component which is a polygonal circle C. C intersects some

noncollapsed 1-simplices (but no collapsed ones), all of which must lie in the same

/-segment complex. Let Vbe the set of vertices of these 1-simplices which are outside

of C, and let v g V be such that f(v) is no farther from f(x) than f(w) for any

w g V. It is easy to check that f~lf(v) contains a polygonal circle 5 which is

concentric with C, outside of it. Since/(C) ¥= f(S),f~xf(v) is not simply connected,

a contradiction, so the first part of (6) holds.

(3) => (6). We only need to show that/is ordered, so suppose not; let ^4 g A"1 be

such that there is a point x g int A withflf(x) Pi K° = 0 and f~lf(x) not simply

connected. Let v and S be as in the proof of (5) => (6), and let u be any vertex inside

the region bounded by 5 (such u must exist). Now, any topological embedding

g: K —> R2 will have the property that g(u) is in the interior of the region bounded

by g(S); hence, since f(S) is a point, it is seen that / is at least as far as

i\\f(S) ~/(M)ll > E(f) from anY topological embedding k -» R2, a contradiction,

so /is ordered.

(4) => (6). Since det(g|<5) > 0 in *R for all 5 g k2, det(°g|<5) > 0 in R; hence

/ = °g g R(K), which is the second part of (6). Now suppose the first part of (6)

does not hold. Let u and 5 be as in the proof of (3) => (6), noting that \\f(S) - f(u)\\

> 0 (in R). Since g is infinitesimally close to/pointwise, it follows that

°(l|g(S)-g(«)||)>0   (inR);

this contradicts the fact that g is in £(A", (*R)2) and g(S) is an infinitesimally small

circle, by applying the Transfer Principle of nonstandard analysis (see [D, p. 28]) to

the analogous contradiction in the real case.

(6) => (4). By the proof of Corollary 7.2 we may assume/is boundary-nice, so that

/g OBR(AT). We then construct the homotopy as in the proof of Proposition 7.1,

but we only move V(f) by an infinitesimally small (but nonzero) amount. Because
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£(AT, (*R)2) is defined in terms of determinants, the proof of Proposition 7.1 also

works infinitesimally, yielding the desired g g £(A", (*R)2) at the end of the

homotopy.    D
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