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Let K c Hz be a finitely triangulated 2-disk; a map f: K + R2 is called simplexwise linear (SL) 

ifnu is affine linear for each (closed) 2-simplex cr of K. Let L(K) = {SL homeomorphisms K + K 
fixing aK pointwise}, let L(K) denote its closure in the space of all SL maps K + IwÕ. In this 
paper it is proved that if K is strictly convex L(K) is l-connected. 

,AMS(MOS) Subj. Class.: Primary 57N05; 

secondary 57N35 

simplexwise linear near embeddings 

spaces of embeddings 

1. Introduction 

Let K c R* be a triangulated 2-disk. A map f:  K + R* is called simplex linear (SL 

for short) if f[a is an affine linear map for every simplex u E K. Let L(K) be the 

space of maps 

L(K)={f:K+K(f is an SL homeomorphism fixing dK pointwise}. 

Each SL homeomorphism K--f K is determined by its values on interior vertices, 

so that L(K) is naturally identified with an open subset of lRZk, where k is the 

number of interior vertices of K. Consequently, the closure L(K) of L(K) is well 

defined. In this paper, we prove the following theorem. 

Theorem. If K is strictly convex, then L(K) is 1 -connected. 

Remarks. Bing and StarbirdÕs example of a triangulated 2-disk K for which 

L(K) is not connected, [l, Example 4.11 also has the property that L(K) is not 

connected. To see this, note that the image of vertex f (in [ 1, Fig. 4.21) must lie to 
the right of line 1 or the left of line 2 if a map is to be in L(K), and hence L(K) 
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has two components (or sets of components) which are at least distance L) (in Fig. 

1) apart; hence L(K) cannot be connected. Therefore some restriction on K is 

necessary to prove the theorem. 

Interest in the space L(K) arose from the study of L(K) and related spaces in 

[4] and [3] respectively, where essential use was made of L(K). Moreover, now 

that it is known (from [4]) that L(K) is naturally identified with an open ball in 

Rzk if K is convex, it is of interest to see precisely how L(K) sits in Rzk. It is easy 

to find examples which show that L(K) is not convex in general, even if K is 

convex. However, the result of this paper shows that L(K) cannot lie in Rzk in too 

bad a way. Any further restriction found on the topology of L(K) will thus say 

more about how L(K) sits in lR2k. There is some evidence in [2] that in fact L(K) 

is a topological manifold with boundary equal to L(K) - L(K), which would imply 

that L(K) is a closed ball, but this is still unknown. For more information concerning 
simplexwise linear maps, see [4]. 

This paper is a sequel to [2], where a characterization of elements of L(K) was 
given. We will assume familiarity with [4,2,3], and will use definitions and results 

of these papers without restatement; in particular, we assume familiarity with the 

details of the proof of Proposition 7.1 of [2]. For more information concerning SL 

maps in general see [4]. 

The author would like to thank David Henderson for some very helpful dis- 
cussions, and Cornell University for its hospitality when parts of this paper were 
formulated. 

2. Preliminar ies 

K will always denote a triangulated 2-disk in R2 with k interior vertices. 

Def inition. Let R(K) be the space of maps as defined in [2, $11, with the added 
requirement that all maps fix dK pointwise. 
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Remark. Theorem 1.2, and the proof of Proposition 7.1, both in [2], hold with 

L(K), L(K) replacing E(K), E(K), and with the above defined R(K) replacing 

the R(K) in [2]. 

Definition. Let K be as above. An interior vertex u of K is called movable to 

boundary vertex b, if 

(i) u and b, are the endpoints of a l-simplex of K; 

(ii) if a vertex w E link(b,, aK) is the endpoint of a l-simplex of K containing V, 

then (u, b,, w) is a 2-simplex of K. 

Remarks. (1) A vertex Y may be movable to more than one boundary vertex; in 

that case b, will be arbitrarily fixed throughout the proof. 

(2) For any triangulated 2-disk with interior vertices, it is easy to see that there 

is at least one movable vertex in the interior of K. 

Definition. If K is strictly convex, and 21 is movable to b,, we will construct the 

induced triangulated 2-disk (or 2-disks) KL, . . . , Kf (1 up) as follows. Let T be 

the identification space obtained from K by collapsing the l-simplex (0, b,) to a 

point, and collapsing both 2-simplices containing (v, b,) to 1-simplices by linearly 

extending the collapsing of (v, b,). See Fig. 2. Clearly T is topologically a 2-disk. 

The definition of movability insures that T is also triangulated; (using some incor- 

rectly chosen n could result in double edges). It follows from the proof of Theorem 

2.2 in [l] that T can be embedded in R* as a rectilinearly triangulated 2-disk with 

strictly convex boundary. If T has no spanning 1-simplices, call this strictly convex 

embedding K t, and this is the induced disk; if T has spanning 1-simplices, then 

these I-simplices chop up the strictly convex embedding of T into the union of 

smaller strictly convex disks K i, . . . , Kc, and these are the induced disks. See Fig. 
2. 

Definition. For T_J movable to b,, let 

D(~,b,)={f:K+IW~[fisSLandf(v)=f(b,)} 

v = b, 

b 
v 

Fig. 2 
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Lemma 1. For K strictly convex, with v movable to b,, and with induced disks 

Kk,..., K{, then 

L(K)nD(v,b,)=L(K:)x ... xL(Kf), 

(where = denotes homeomorphism). 

Proof . This follows easily from the analog for L(K) of Theorem 1.2 of [2], using 

criterion (6). The second part of the criterion is simply being in R(K), and this 

holding for a map in one of L( K) n D( v, b,) or L( K :) x * . . x L( Kf) clearly implies 

it holds for the other. Similarly for the first part of the criterion, since the simple 

connectivity mentioned in the criterion is preserved when viewed in either space. Cl 

Def inition. Given any unit vector u E sl, let (u) be the line containing u, and let 

rTT, : R*+ (u) be orthogonal projection. Let 17, : R2k + Rk be given by 

In the proof that L(K) is an open ball for K convex, given in [4], crucial use 

wasmadeofthefactsthatforanyf~L(K):n;Õll,(f)nL(K)=n;Ôn,y-)nR(K), 

the set n,Ôn,,(f) n L(K) was convex, and the collection {n;Ôn,(f) n L(K)(~E 
L(k)} decomposed the space 11;Ô17,( L( K)) n L(K) continuously. If we allow f to 

be in L(K), then none of these statements are true. The first fact is seen to be false 

by example in Fig. 4 of [4], with u = (f( v,), f( v,)). The second fact is shown false 

in the following example, and the falsity of the third fact follows from the falsity 

of the second. since the limit of convex sets is convex. 

Ex ample 1. Let K be the triangulation given in Fig. 3 (a), with (d, e) vertical. Let 

u be the unit vector in the y-axis direction. We will definef, g E L(K) by constructing 

them as limits of maps in L(K). Let g be defined by letting the vertices in Fig. 3 

(b) move to the line (d, e), and let f be defined similarly with respect to Fig. 3 (c). 

Assume that f(a) = g(a) = a, that f(c) is very close to f(a) and f(b) is very close 

to f(e), and that g(c) is halfway between g(a) and g(d), with g(b) very close to 

g(c). Consider the straight line homotopy from f to g. This homotopy fixes all 

vertices other than c and d, and moves f(c) and f(d) uniformly in straight lines to 

g(c) and g(d) respectively. By the construction off and g, it is seen that at some 
point in the homotopy, the image of c will cross the image of a while the image of 
d will still be below the image of a, and the map defined at this point of the 
homotopy cannot be in L(K). Since1 g E ZI;Ô17,(f) n L(K), this set is not convex. 

In spite of the above example, we can prove the following: 

Lemma 2 . For anyfEL(K), the sets II,'Il,(f)nL(K) and II;'IIu(f)nL(K)n 
D(v, b,) are contractible. 
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Proof . First, note that II;ÔZIu(f) n R( K) is convex, proved just like the analogous 
part of Lemma 4.3 of [4]. Since intersecting with D(v, b,) is just intersecting with 
a codimension 2 hyperplane in RZk, . it follows that II;ÔII,(f) n R(K) n D( V, b,) is 
also convex. We will prove the lemma by showing that the pair 

(KÕK(f) n R(K), KÕK(f) n R(K) n D(v, 0) 
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strong deformation retracts onto the pair 

(KÕKAS) n UK), KÕK(f) n L(K) n D(u, b,)). 

(Note that L(K) c R(K), so the latter pair is a subset of the former.) The retraction 

will be denoted r. 

Let g E n;Ôfl,(.n n R( K ) be given. Note that criterion (5) of [2, Theorem 1.21 

implies that g E L(K) iff g-Ôg(v) is simply connected for every vertex u of K. For 

any vertex w, let B be a component of g-Ôg(w), and let 6 denote the union of B 

with the bounded components of IX* - B. Clearly i? is simply connected, and 6 = B 

precisely when B is simply connected (recall B is polyhedral). B is called maximal 

if it is not contained in some J? with E # B. For any such g, a simple topological 

degree argument, together with the fact that g E R(K), shows that g(s) is the union 

of finitely many line segments. Moreover, g E II;Ô&,(f) with fe L(K) implies that 

g(g) actually lies in the line r;Ô(g(B)), (noting that g(B) is a point). 

We now define r(g) by specifying its values on interior vertices of K. If u is an 

interior vertex, then there is a unique maximal component B, of some g-Ôg( w) with 

v E & (w is a uniquely determined vertex, possibly v). Of course, it could happen 

that 6, = B, = {v}. Now define r(g)(v) = g( B,). The fact that each g(&) lies in the 

line r;Ô(g(B,)) implies r maps n;ÔnÓ(f) n R(K) into itself. It is easy to check 

that r is actually a retraction 

To see that 

r(K117,(f) n R(K) n D(u, b,)) = KÕK(f) n UK) n D(b, b,), 

simply note that for g E nilflU n R(K) n D( v, b,) we have u E B, = Bb,, since 

b, E aK and g(v) = b,. Finally, since n;ÔflU(f) n R(K) is convex, the straight line 

homotopy from r to the identity shows that r is a strong deformation retraction. ! 

Def inition. Given two SL maps f; g : K + K fixing 8K pointwise, we say that f  and 

g are similarly collapsed if for every 2-simplex S E K, 6 is respectively not-collapsed, 

of type PC, of type EC (with specified isolated vertex) or of type SC (with specified 

middle vertex) with respect to f iff it is the same with respect to g, and if for every 
l-simplex AE K, f(A) is a line segment or a point iff g(A) is. (See [2, 021 for 
definitions.) For any SL map f: K + K*, let 

D(f) = {g : K + K (g is SL, fixes aK pointwise, and 

f and g are similarly collapsed}. 

The sets D(f) are clearly disjoint, and there are only finitely many of them. 

The space L(K) is a semi-algebraic subset of R2k (for a definition of semi-algebraic, 

see [5, ¤l]). This follows from Lemma 4.1 of [4], with each C, of %Õ the singleton 

set {u}; (note that L(K, %) in [4] is not our L(K), whereas E( k, %Ô) with the above 
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% is our L(K)). It now follows from Proposition I of [5] that L(K) is semi-algebraic. 

It can be checked that for each f~ L(K), D(f) is semi-algebraic. Hence, using 

HironakaÕs Triangulation Theorem for systems of semi-algebraic sets (in [5]), we 

obtain the following lemma. 

Lemma 3. There is a jinite triangulation of L(K) such that every set D(f) (with 

f E L(K)) is the union ofjinitely many (open) simplices. 

3. Proof  of  Theorem 

The fact that T,L(K) =0 follows immediately from Theorem 5.1 of [4] and 

Corollary 7.3 of [2]. To prove rlL(K) = 0, we will proceed by induction on the 
number k of interior vertices of K. The result is trival if k = 0, so suppose k 3 1. By 

a remark above, we can pick an interior vertex v of K which is movable to boundary 

vertex b,. Given any map C : SÕ + L(K) representing an element of rr,L(K), we 

will homotop C to a map C : S’ + L(K) which has C(s)(v) = b, for all s E SÕ. By 

Lemma 1 C(SÕ) c L( Kt) x . . . x L(Ki), where Kt, . . . , Kg are the induced disks 

determined by v and b,. Since each KL has less than k interior vertices, the result 

will follow by induction. 

The construction of the homotopy C to 6 uses the parallel track method of 

[3, ¤3]. Applying that method to our situation, we could start with any map in L(K), 

and homotop it by moving the image of v in a straight line until it hits b,; the 

method of [3] says how to move certain other interior vertices, keeping them in 

Ôparallel tracksÕ, so that the homotopy stays in L(K). Since K is strictly convex, no 

boundary vertices need be moved. Unfortunately, there is no canonical way of 

extending this construction to all of L(K); an example follows this proof. However, 

we can extend the construction continuously over small intervals in SÕ, and then 

patch things together. 

More specifically, for any f E L(k), let P, (f)  be the parallel track homotopy of 

[3,¤3] with PO(f) =f, and Pi(f)(v) = b,. G iven any g E L(K), we can find a sequence 

h = {h,} E L(K) with h, + g; we can then define a homotopy P:(g) to be P:(g) = 

lim,,, P,(h,). There are, however, two problems: first, lim,,, P,(h,) may not be 

well defined (if {h,} is poorly chosen); second, even if P:(g) is well defined there 

can be another sequence e = {e,} with e, + g, P:(g) well defined, and yet P:(g) # 

P;(g). It is clear, however, that if P:(g) is well defined, then P:(g) E L(k), P;(g) = g, 
P:(g)(v) = b,, and P:(g) moves v in a straight line to b,, and other vertices in 

straight lines parallel to (g(v), b,). T;, construct the homotopy C to 6, it would 
suffice to find a sequence of maps {C,, : SÕ+ L(K)} such that C, + C, and 

lim,,, Pc( C,(s)) is well defined for all s E SÕ; however, it is not clear how to 
construct such {C,,}. 

If we restrict our attention to some interval (a, b) E SÕ (where we choose some 

orientation of SÕ so that we have well defined intervals), for which C(( a, b)) c D(f) 
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for somefE L(K), then we can find a sequence of maps {C, : (a, b) + L(k)} converg- 

ing to C  1 ( a , b) such that P,( C,,) converges to a well defined, continuous homotopy 
which is denoted P,( C 1 (a, b)). S UC h a sequence of maps can be found as follows. 
By the definition of the sets D(f), all maps in C 1 (a, b) are similarly collapsed. We 

can now apply the pulling apart technique of the proof of Proposition 7.1 of [2] to 

C ) (a, b); this technique gives an explicit method for constructing paths in L(K) 

which converge to any given element of L(K). In particular, it can be seen by this 

explicit construction that since all maps in C( (a, b)) are similarly collapsed, we can 

not only construct our sequence {C,, 1 (a, b)} by this method, but we can do so by 

the same sequence of Ôpulling apartÕ moves for all s E (a, b). (There are many possible 

sequences {C, 1 (a, b)}; any sequence will do as long as all the maps are constructed 

in the same way, for all n and all s E (a, b).) Thus, during the homotopies P,( C,,(s)), 

for s E (a, b), all the vertices other than ~1 which are moved will be moved by the 

images of the same C,,(s)-segment complexes (see [2, $3]), and in the same places 

in these images. It then follows easily that the P,( C, 1 (a, b)) converge to some well 

defined homotopy P,( C I (a, b)) as desired. Moreover, it can be seen that by such 

a choice of {C, [(a, b)}, the limits lim,,, P,(C(s)) and lim,,b P,( C(s)) yield well 

defined homotopies called Pl( C( a)) and Pl( C( b)), and P,( C ( [a, b]) is continuous. 

The homotopy C to C is now constructed as follows. By Lemma 3, and the 

simplicial Approximation Theorem, we can homotop C to a simplicial map C, : S’ + 
L(K) for some triangulation of SÕ, and the triangulation of L(K) as in the lemma. 

Since L(K) is finitely triangulated, SÕ is compact, and the triangulation of L(K) is 

compatible with the sets D(f), it follows that there is a finite set of points a,, . . . , up 
in SÕ (in increasing order with respect to the orientation of SÕ) such that each 

CÕl((ai, ai+,)) is contained in a single set D(f), (where addition is mod p). (Note 

that C([u,, ai+,]) need not be contained in a single D(f).) Next, choose small 

disjoint intervals [UT, at] containing the ui in their interiors. Let CZ: SÕ+ L(K) be 

constantly C,( ui) on [a;, a:], and let it be C, I ( ui, ai+,) on (a:, a:+,) in the obvious 

way; clearly C, is homotopic to C,. By the previous paragraph, we can define a 

homotopy P,(C,l[uÕ, a,,]), with P,(C,(s)) = C,(s) and P,(C,(s))(u) = b, for all 

s E [u+~ ui+Ilv and for all 1 G i up. It remains to define the homotopies 

P,(C,l(u;, at)). Note that P,(C,(u,)) and P,(C,(ut)) are (possibly different) paths 

in the set n;ÔflUC,( ui) n L( K ), where u is a unit vector orthogonal to the l-simplex 
(u, b,); (recall C,(uJ = &(a,) = C,(uÕ)). Both paths end in the set n;ÔII,,(C,(u,)) n 

L( K) n D( u , b,). By Lemma 2 this set is path connected, so we can find a path in 
this set from P,( C,(u;)) to P,( C,(ut)). This path, together with the paths P,(C,(u;)), 

P,(C,(uf)) and C,][u;, at] form a simple closed curve in I I ;‘ l I”(C ~(a i))n  L( K ). 

By Lemma 2 this set is simply connected, and it follows that we can find a family 

of paths, parameterized by [a,, aÕ], from P,(C,(u;)) to P,(C,(uÕ)) such that all 

paths start at C,( ui) and end in fl,Ô17,( Cz(ui)) n L( K ) n D( u, b,). This family of 

paths gives us P,(C,l(uT, at)). Putting all this together, we obtain P,( C,) on all SÕ, 
with P,,( C,) = C, and Pl( C,) = e. This completes the construction of the homotopy 

C to &, and hence r,L(K)=O. 0 
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(a) (b) 

Fig. 4 

Example 2. Let K be as in Fig. 4(a), with o at the origin, a = (-1, ,O), b = (-1, 1) 

and d =(O, -3). Definef:[-1, l]+L(K) as follows: f(s)(v) = u for all s E [-I, I], 

f(s)(a) = (-IsI, 0) for all SE [-1, 11, and 

f(s)(b) = 
1 

(-IsI, -I& for s E [-l,O], 

(--/s//2, -IsIÕ) for s E [0, 11. 

See Fig. 4(b) and (c). 

Note that f(s)~ L(K) for sf0, but that f(O)((a, b, v)) is a point. Now, when 

applying the parallel tracks homotopy P, to j-1 [-1, 0), the image of b at time t = 1 
gets closer and closer to the origin as s+ O-. On the other hand, applying P, to 

fl(O, I], we see that the image of b at f = 1 gets closer and closer to approximately 

half way down the line segment (u, d) as s + O+. Thus, there is no way to define 

PJ(O)(b) in a way that makes P&s) continuous at s = 0. 

Also, note that f  can be approximated arbitrarily closely by maps [ -1, l] + L(K) 

as follows. For any 0 < e < 1, let fc :  [-1, l] + L(K) be defined by fe(s) =f(s) for 

s~[-l,-~]u[~,1],andletf,(s)~[--~,~]bethestraightlinehomotopyfromf(-e) 

to f(~). In this homotopy, all vertices except b are fixed, and the image of b is 

moved in a straight line.) Clearly fE(s) E L(K) for all s E [ -1, 11, and fE is within E 

of J: We can define P&(s) for all s E [-1, 11, but the above argument shows that 

lim,+o Pr f F (s) is not well defined at s = 0. 
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