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Abstract. In a 1967 paper, Banchoff stated that a certain type of polyhedral curvature,
that applies to all finite polyhedra, was zero at all vertices of an odd-dimensional polyhedral
manifold; one then obtains an elementary proof that odd-dimensional manifolds have zero
Euler characteristic. In a previous paper, the author defined a different approach to curvature
for arbitrary simplicial complexes, based upon a direct generalization of the angle defect.
The generalized angle defect is not zero at the simplices of every odd-dimensional manifold.
In this paper we use a sequence based upon the Bernoulli numbers to define a variant of the
angle defect for finite simplicial complexes that still satisfies a Gauss–Bonnet-type theorem,
but is also zero at any simplex of an odd-dimensional simplicial complex K (of dimension
at least 3), such that χ(link(ηi , K )) = 2 for all i-simplices ηi of K , where i is an even
integer such that 0 ≤ i ≤ n − 1. As a corollary, an elementary proof is given that any such
simplicial complex has Euler characteristic zero.

1. Introduction

For a triangulated polyhedral surface M2, the usual notion of curvature at a vertex v is the
classical angle defect dv = 2π −

∑

αi , where the αi are the angles of the triangles con-
taining v. This curvature function, which goes back at least as far as Descartes (see [F]),
satisfies all the standard properties one would expect a curvature function on polyhedra
to satisfy. For example, the angle defect is invariant under local polyhedral isometries
(that is, functions that preserve the lengths of edges); it is locally defined; it is zero at a
vertex that has a flat star; it is invariant under subdivision; and it satisfies the polyhedral
Gauss–Bonnet theorem, which says

∑

v dv = 2πχ(M2), where the summation is over
all the vertices of M2, and χ(M2) is the Euler characteristic of M2.

There are two approaches to generalizing the classical angle defect to arbitrary (finite)
polyhedra in all dimensions. One method, which we refer to as standard curvature, has
been studied extensively from a differential geometric point of view. See, among others,
[Ba1], [W], [Bu], [C], [CMS], and [Z]. This approach to generalizing the angle defect,
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which is based on exterior angles, is simple to define, and its convergence properties have
been well studied. In standard curvature all the curvature is concentrated at the vertices,
as is the case for the classical angle defect of polyhedral surfaces. Another approach,
called simply the angle defect (also known as the angle deficiency), has been studied in
the case of convex polytopes by a number of combinatorialists, for example, [Sh2] and
[Gr2]; more generally, for the wider study of angle sums in convex polytopes and beyond,
see, for example, [Gr1, Chapter 14], [Sh1], [PS], [Mc1], and [Ch1]. In [GS] a Gauss–
Bonnet-type theorem (also referred to as Descartes’ theorem) is proved for the angle
defect in polytopes with underlying spaces that are manifolds. In contrast to standard
curvature, which is concentrated at vertices, the angle defect for convex polytopes is
found at each simplex of codimension at least 2 (it can be defined for all simplices, but
the angle defect at a codimension 0 or 1 simplex will always be zero). One treatment of
curvature of polyhedra that has some of the advantages of all the approaches cited above
is in [Ba3], which uses curvature functions based on critical points (similarly to [Ba1]),
but this time using projection maps Rn → Rm , which leads to curvature functions that
both generalize standard curvature and are related to the Grassmann angles of [Gr2]; in
this approach the curvature is located at all simplices, not just at vertices, and an angle
defect type formula for curvature is obtained using projection maps Rn → Rn−1.

In [Bl1] we extended the notion of angle defect to arbitrary simplicial complexes, not
just manifolds, by using a simple toplogical decomposition of each simplicial complex.
In order to compare our approach with standard curvature, we originally concentrated
our curvature at the vertices, and called it stratified curvature, see Section 3 of [Bl1] for
details. In Section 4 of [Bl1] we took the variant approach most directly comparable to
the combinatorial authors listed above, in that we kept the pure angle defects defined
for each simplex of codimension at least 2 without artificially concentrating them at the
vertices. In Section 4 of [Bl1] we referred to this approach by the unfortunate name
“modified stratified curvature,” which really misses the point that in this approach we
are really still working with a pure angle defect. Hence, in the present paper, we use the
better name “generalized angle defect”; we used this better name in [Bl2].

A detailed comparison of standard curvature with both stratified curvature and the
generalized angle defect may be found in Section 4 of [Bl1]. We mention here, however,
that all these approaches satisfy some of the basic properties that one would expect of
curvature, such as being locally defined, invariant under local isometries, and satisfying a
Gauss–Bonnet-type theorem (though the Gauss–Bonnet theorem for stratified curvature
and the generalized angle defect uses a modified Euler characteristic rather than the
standard Euler characteristic, as discussed in Section 2 of [Bl1]). In [Bl2] we showed
that the generalized angle defect has a Morse theoretic interpretation very similar to
(though not quite as simple as) the Morse theoretic approach to standard curvature found
in [Ba1]–[Ba3]. Hence, on most counts, it is fair to say that the generalized angle defect
behaves as nicely as standard curvature.

There is one place, however, where the generalized angle defect falls short of standard
curvature. In Section 5 of [Ba1], Banchoff stated that for an odd-dimensional polyhe-
dral manifold, the standard curvature is zero at every vertex. (The proof of the main
step of this theorem is not given in the paper; according to a private communication,
the author knew that the result would be superseded by [Ba3], and hence omitted the
details. The proof is not difficult, and it proceeds by induction on the dimension of the
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manifold.) It then follows from the Gauss–Bonnet theorem for standard curvature that
every odd-dimensional polyhedral manifold has Euler characteristic zero (a well-known
fact, but Banchoff’s method yields a completely elementary proof, without using al-
gebraic topology). By contrast, as we will see in Section 3, there are odd-dimensional
compact simplicial manifolds for which neither stratified curvature nor the generalized
angle defect is identically zero. The purpose of the present paper is to define a variant
on the generalized angle defect called ascending stratified curvature where ascending
stratified curvature satisifies most of the nice properties of the generalized angle defect,
and yet also has the additional property that it is identically zero for any odd-dimensional
simplicial complex K (of dimension at least 3) such that χ(link(ηi , K )) = 2 for all i-
simplices ηi of K , where i is an even integer such that 0 ≤ i ≤ n − 1.

As a corollary to our approach, we deduce that if K is an odd-dimensional simplicial
complex (of dimension at least 3) such that χ(link(ηi , K )) = 2 for all i-simplices
ηi of K , where i is an even integer such that 0 ≤ i ≤ n − 1, then K has Euler
characteristic zero (see Corollary 3.7 below). This result has interesting antecedents,
involving a theorem that was independently re-discovered (at least) twice. As mentioned
above, in [Ba1] Banchoff gave an elementary proof that any odd-dimensional polyhedral
manifold has Euler characteristic zero. In his later paper [Ba3], Banchoff gave a very
efficient proof of the fact that any odd-dimensional Euler space has Euler characteristic
zero, where an n-dimensional Euler space is an n-dimensional simplicial complex K
such that χ(link(ηi , K )) = χ(Sn−i−1) = 1 + (−1)n−i−1 for all i-simplices ηi of K ,
where i is any integer such that 0 ≤ i ≤ n. (In [Ba3] a slightly different formulation
for the definition of Euler space is given, though these two definitions are equivalent in
the case of simplicial complexes.) Given that any manifold is an Euler space, but not
vice versa, the result in [Ba3] is stronger than the result in [Ba1]. This same result about
the Euler characteristic of odd-dimensional Euler spaces was independently re-proved
in [CY2, Corollary 2.5] and [MR], neither of which refers to [Ba3], nor to each other.
The paper [CY2] proves the result about odd-dimensional Euler spaces as a corollary
to some results relating to the Dehn–Sommerville equations, whereas [MR] is a short
note dedicated solely to a proof of this theorem. In all three of [Ba3], [CY2], and [MR]
the proofs appear to use the full definition of Euler space, and they cannot drop the
requirement on the links of odd-dimensional simplices as we do in Corollary 3.7. (In
a private communication, the second-named author of [MR] said that they had in fact
used their method to prove the equivalent of our Corollary 3.7 in dimensions 3 and 5,
but were not able to prove it in general using their methods.) Euler spaces, which are
also called Eulerian manifolds and Euler complexes, arise in a number of contexts; they
were introduced in [Kl] in relation to the study of linear equations of f -vectors (see
[CY1] and [CY2] for further discussion of this topic), and they also arise in the study of
combinatorial characteristic classes, starting with [Su] which stressed the role of mod 2
Euler spaces (see also [HT], among many others, for more on this topic).

The outline of this paper is as follows. For the sake of completeness, we start off in
Section 2 with a very brief review of the needed definitions and theorems from [Bl1],
leaving all the details to that paper. We give our new definitions and statements of results
in Section 3, and then give proofs in Section 4.

Throughout this paper we restrict our attention to simplicial complexes, rather than
more general polyhedra. We make the following assumptions, which we use throughout
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this paper without stating: All simplicial complexes are finite, and are embedded in
Euclidean space (which we will not name when it is not necessary); all manifolds are
compact and without boundary. We assume that all simplicial complexes have dimension
at least 2, both because angle sums are trivial in dimension 1, and to avoid special cases.

2. Review of the Generalized Angle Defect

We give here a very brief review of those definitions and statements of results from [Bl1]
that we will be using, leaving proofs and examples to the original paper.

Throughout this section, let K be an n-dimensional simplicial complex. Whereas
in [Bl1] we allow for a certain class of non-embedded simplicial complexes, here for
convenience we look only at actual simplicial complexes in Euclidean space. If η and σ

are simplices in K , we write η ≺ σ to indicate that η is a face of σ . As usual, we let |K |
denote the underlying space of K .

For convenience (though not necessity), we adopt the convention that all angles are
normalized so that the volume of the unit (n − 1)-sphere in (n − 1)-measure is one in
all dimensions. For any n-simplex σ n in Euclidean space, and any i-face ηi of σ n , let
α(ηi , σ n) denote the solid angle in σ n along ηi , where by normalization such an angle
is always a number in the interval [0, 1].

Remark 2.1. Let σ n be an n-simplex. Observe that α(ηn−1, σ n) = 1
2 for any (n − 1)-

face ηn−1 of σ n , and that α(σ n, σ n) = 1.

Definition. For each non-negative integer i , let Ti denote the open cone on i points;
alternately, Ti is the space obtained by gluing together i copies of the half open interval
[0, 1) at the point {0} in each. We take T0 to be a single point. See Fig. 1. Let Pn,i denote
the space Pn,i = Ti × Rn−1. If ∗ denotes the cone point of Ti , we call {∗} × Rn−1 ⊆ Pn,i

the apex set of Ti . See Fig. 2.

Observe that Pn,i is not homeomorphic to Pn, j when i (= j .
We now need to think of simplices as open (and hence disjoint).

Definition. Let K be an n-dimensional simplicial complex. For each non-negative
integer r such that r (= 2, we define the subset Cn

r (K ) of |K | by

Cn
r (K ) = {x ∈ |K | | x has neighborhood homeomorphic to Pn,r ,

where the homeomorphism takes x to the apex set of Pn,r }.

T0                    T1                               T2                                   T3

Fig. 1



The Angle Defect for Odd-Dimensional Simplicial Manifolds 315

Fig. 2

Define

Cn
2 (K ) = |K | −

⋃

r (=2

Cn
r (K ).

Remark 2.2. (1) Let K be an n-dimensional simplicial complex. The sets Cn
r (K ) are

well defined, since each x ∈ |K | can have a neighborhood homeomorphic to Pn,r (where
the homeomorphism takes x to the apex set of Pn,r ) for at most one number r . Moreover,
the sets Cn

r (K ) are well defined up to homeomorphism of |K |.
(2) Because K is a finite simplicial complex, there is some positive integer P such

that Cn
r (K ) = ∅ for all r > P .

(3) The sets Cn
r (K ) are disjoint, and cover |K |. For each r (= 2, the set Cn

r (K ) is
an (n − 1)-manifold. Moreover, each set Cn

r (K ) is the union of (open) simplices of K ,
since all points in any simplex of K have homeomorphic neighborhoods in |K | (if the
neighborhoods are taken small enough). If σ ∈ K , then σ ⊆ Cn

r (K ) for some unique
integer r .

Definition. Let K be an n-dimensional simplicial complex. For each simplex σ ∈ K ,
we define the number Tn(σ ) by Tn(σ ) = r/2, where σ ∈ Cn

r (K ) for some unique
integer r .

Remark 2.3. Let K be an n-dimensional simplicial complex. If ηn−1 is an (n − 1)-
simplex of K , then Tn(η

n−1) equals one half the number of n-simplices of K that have
ηn−1 as a face. If σ n is an n-simplex of K , then Tn(σ

n) = 1.

The following definition was originally given in Section 4 of [Bl1], though here we
use the better name given below (and also used in [Bl2], as discussed in Section 1). In
contrast to standard curvature, which in all dimensions is concentrated at the vertices
(see [Ba1] and [CMS] for example), our approach has curvature at all simplices (though
the non-zero curvature is always at simplices of codimension at least 2), similarly to
the combinatorial approach (see [Sh2] and [Gr2] for example), as well as the geometric
approach of [Ba3].

Definition. Let K be an n-dimensional simplicial complex, and let ηi be an i-simplex
of K , where 0 ≤ i ≤ n. The generalized angle defect at ηi is the number D̃n(η

i ) defined
by

D̃n(η
i ) = Tn(η

i ) −
∑

σ n+ηi

α(ηi , σ n), (1)

where the summation is over all n-simplices σ n which have ηi as a face.



316 E. D. Bloch

Remark 2.4. Using (1), together with Remarks 2.1 and 2.3, it is seen that D̃n(η
i ) = 0

if i = n − 1 or i = n.

In Section 3 of [Bl1] we gave the following variant definition of curvature of simplicial
complexes; this definition concentrates all curvature at the vertices, which is somewhat
unnatural, but was used to facilitate a comparison with the definition of curvature found
in [Ba1].

Definition. Let K be an n-dimensional simplicial complex, and let v be a vertex of K .
The stratified curvature at v is the number D̃n(η

i ) defined by

Dn(v, K ) =
n−2
∑

i=0

(−1)i

i + 1

∑

ηi ,v

D̃n(η
i ). (2)

In [Bl1] we proved Gauss–Bonnet-type theorems for both generalized angle defect
and stratified curvature, though rather than using the standard Euler characteristic, we
used the following variant of the Euler characteristic. We use this new characteristic in
the present paper as well.

Definition. Let K be an n-dimensional simplicial complex in Rm . The number χ s(K )

is defined by

χ s(K ) =
∑

η∈K

Tn(η)(−1)dim η. (3)

The above definition is a particular case of the weighted Euler characteristics discussed
in [Ch2] and [CY1]. In the notation of those two papers, the symbol χ s(K ) would be
written χ(K , T ), but we do not need this latter notation, because we never use a different
weight on the simplices.

Remark 2.5. As discussed in Section 2 of [Bl1], we know that χ s(K ) is a homeomor-
phism invariant of |K |, though not a homotopy-type invariant.

3. Statement of Results

We start by showing that there are odd-dimensional compact simplicial manifolds for
which neither stratified curvature nor the generalized angle defect is identically zero.
We make use of convex polytopes in our discussion. For general information on convex
polytopes, see [Gr1]. As usual, if Q is a simplicial complex, we let fi (Q) denote the
number of i-simplices of Q.

To see that the generalized angle defect is not identically zero for odd-dimensional
simplicial manifolds is simple. Let K be the boundary of any n-dimensional convex
polytope in Rn with n an even integer such that n ≥ 4. Hence K is an (n−1)-dimensional
simplicial sphere. Let ηi be an i-simplex of K with 0 ≤ i ≤ n −2. Then by Theorem (3)
of [Sh2], we know that D̃7(η

i ) > 0. Hence the generalized angle defect is certainly not
zero for all simplices of all odd-dimensional combinatorial manifolds.
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We now turn to stratified curvature, where we need a slightly more complicated
counterexample. (The simplest counterexample we found is seven-dimensional; it can
be verified that there cannot be a three-dimensional counterexample, but the author does
not know whether a five-dimensional counterexample could exist, though one cannot be
constructed by our method.)

Example 3.1. Take a triangle in the plane, and let Q be the cone of the cone of the
suspension of the triangle . Then Q is a five-dimensional convex polytope in R5. Let L be
the boundary of Q, so that L is a four-dimensional simplicial sphere. It is straightforward
to see that f0(L) = 7, f1(L) = 20, f2(L) = 29, f3(L) = 22, and f4(L) = 8. Triangulate
Q by putting a vertex v in the interior of Q, and then joining v to L .

Next, let M be the boundary of an eight-dimensional simplicial convex polytope in
R8, so that M is a seven-dimensional simplicial sphere; it does not matter what simplicial
convex polytope is used. Let η5 be some 5-simplex in M . As mentioned above, we know
that D̃7(η

5) > 0. We subdivide M as follows. First, put a copy of the triangulation of Q
in the interior of η5. Then add further simplices to M , without subdividing Q, so that we
obtain a simplicial complex, denoted M ′.

Suppose that αi is an i-simplex of M ′. Then αi is contained in a unique r -simplex
ζ r of M , where i ≤ r ≤ 7 (recall that we are thinking of simplices as open, and hence
disjoint). It is seen that T7(α

i ) = T7(ζ
r ) and D̃7(α

i ) = D̃7(ζ
r ), where the left-hand side

of each of these equations is with respect to M ′, and the right-hand side is with respect
to M .

Let ωi be a simplex in M ′ that has v as a vertex. If ωi is contained in η5 (and hence
it is contained in Q), then D̃7(ω

i ) = D̃7(η
5). If ωi is not contained in η5, then it is

contained in one of the six- or seven-dimensional simplices of M that have η5 as a face.
By Remark 2.4, it follows that D̃7(ω

i ) = 0. Now, using (2), and keeping track of the
simplices of Q that contain v by looking at link(v, Q) = L , we see that

D7(v, M ′) = D̃7(η
5) − 1

2 f0(L)D̃7(η
5) + 1

3 f1(L)D̃7(η
5) − 1

4 f2(L)D̃7(η
5)

+ 1
5 f3(L)D̃7(η

5) − 1
6 f4(L)D̃7(η

5)

= − 1
60 D̃7(η

5) (= 0.

Hence we have an example of an odd-dimensional simplicial manifold with non-zero
standard curvature at one of its vertices. (We note that this example is a combinatorial
manifold, using the fact that all simplicial convex polytopes, and all subdivisions of
simplicial convex polytopes, are combinatorial manifolds; this follows from standard
results about combinatorial manifolds, as found in Section I.5 of [H], for example).

Our goal is to reformulate the notion of curvature for simplicial complexes in terms
of the generalized angle defect, with the aim of remedying the above problem; that is, we
want a notion of curvature based on the generalized angle defect, but which is identically
zero at every simplex of odd-dimensional simplicial manifolds, and also satisfies the
nice properties of the generalized angle defect, such as a Gauss–Bonnet-type theorem.
Certainly, the most natural way to look at the generalized angle defect is simply to use
D̃n(τ

p) as defined for each simplex τ p in a simplicial complex. In stratified curvature,
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we concentrated the D̃n(τ
p) at the vertices via (2), to obtain Dn(v, K ). Concentrating the

curvature of a simplicial complex at the vertices is not useful for our present purposes, but
it raises the question of whether there is some other way of redistributing the generalized
angle defects in such a way that the other desired properties of simplicial curvature
still hold (for example, locally defined, invariant under local isometries, and a Gauss–
Bonnet-type theorem), and yet the property that the curvature is zero at all simplices in
odd-dimensional simplicial manifolds also holds.

What does it mean for curvature to be locally defined in a simplicial complex? In
the smooth case, for comparison, the fact that curvature is locally defined means that it
can be calculated on an arbitrarily small neighborhood of each point. In the simplicial
case, a number associated to each simplex is local if it can be defined using only the
star of each simplex. In particular, let K be an n-dimensional simplicial complex, and
let τ p be a p-simplex of K . Anything that can be computed in star(τ p, K ) can be
considered to be locally defined at τ p. For example, clearly D̃n(τ

p) is locally defined
at τ p. However, if ηi has τ p as a face (so that ηi ∈ star(τ p, K )), then star(ηi , K ) is
contained in star(τ p, K ), and hence D̃n(η

i ) is also locally defined at τ p. Therefore, we
see that any number produced out of D̃n(τ

p) and all the D̃n(η
i ) for ηi that have τ p as a

face is locally defined at τ p. Of course, a number produced out of an arbitrarily chosen
combination of generalized angle defects will not necessarily behave nicely as one would
expect of a curvature function. There is, we will see, one method of combining these
generalized angle defects that has the desired properties.

To define the desired curvature, we will need the following definition, which uses the
Bernoulli numbers. (See, for example, Sections 6.5 and 7.6 of [GKP] for more on the
Bernoulli numbers.) As usual, we let Bk denotes the kth Bernoulli number.

Definition. For each non-negative integer n, let an be the number defined by

an = 4Bn+2(2n+2 − 1)

n + 2
. (4)

We refer to the sequence a0, a1, a2, . . . as the angle defect sequence.

The first 18 numbers in the angle defect sequence are

1, 0, −1
2
, 0, 1, 0, −17

4
, 0, 31, 0, −691

2
, 0, 5461, 0, −929569

8
, 0, 3202291, 0.

The definition of the angle defect sequence appears in the literature, though there does
not appear to be a name for this sequence, and hence we use the name we have given. The
non-zero numerators of the angle defect sequence can be found in the wonderful website
[Sl]. See p. 508 of [Kn] for an older printed reference to the angle defect sequence, and
see p. 95 of [RW] for a recent appearance, in relation to numbers of simplices and angle
defects of simplicial complexes.

The following lemma gives some properties of the angle defect sequence that we will
use later; the proof of the lemma is given in Section 4.
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Lemma 3.2.

(1) For every odd integer n, we have an = 0.
(2) The angle defect sequence satisfies the recursion relation a0 = 1, and

an +
n−1
∑

i=0

ai

2

(

n + 1
i + 1

)

= 1 (5)

for all positive integers n.

We can now give the definition of our new type of curvature.

Definition. Let a0, a1, a2, . . . be the angle defect sequence. Let K be an n-dimensional
simplicial complex, and let τ p be a p-simplex of K . The ascending stratified curvature
at τ p is the number Da

n (τ p) defined by

Da
n (τ p) = ap D̃n(τ

p) + ap

2

n
∑

i=p+1

(−1)i−p
∑

ηi +τ p

D̃n(η
i ). (6)

Remark 3.3. (1) Using Remark 2.4, it is seen that Da
n (τ p) = 0 if p = n − 1 or p = n.

Moreover, when 0 ≤ p ≤ n − 2, we have

Da
n (τ p) = ap D̃n(τ

p) + ap

2

n−2
∑

i=p+1

(−1)i−p
∑

ηi +τ p

D̃n(η
i ). (7)

(2) Because ap = 0 for all odd p (by Lemma 3.2(1)), it follows that Da
n (τ p) = 0

for all odd p. Hence, the ascending stratified curvature is concentrated at the even-
dimensional simplices. (We could have defined ascending stratified curvature only for
even-dimensional simplices; however, it is more convenient to define the curvature are
we did, including the odd-dimensional simplices.)

It is straightforward to check that ascending stratified curvature reduces to the classical
angle defect when K is a simplicial surface.

Our goal is to show that ascending stratified curvature is nicely behaved. Clearly
it is locally defined, and invariant under local isometries. Our three main theorems,
which we now state, say that ascending stratified curvature satisfies a Gauss–Bonnet-
type theorem (using χ s(K )), that it is identically zero for odd-dimensional compact
simplicial manifolds, and that it is somewhat invariant under subdivision (to be clarified
below). The proofs of these results are given in Section 4. Our first theorem is the
following.

Theorem 3.4. Let K be an n-dimensional simplicial complex, where n ≥ 2. Then
∑

τ p∈K

(−1)p Da
n (τ p) = χ s(K ). (8)
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The following theorem gives a general condition that guarantees that ascending strat-
ified curvature will be identically zero in the odd-dimensional case.

Theorem 3.5. Let K be an n-dimensional simplicial complex, where n is an odd integer
such that n ≥ 3. Suppose that χ(link(ηi , K )) = 2 for all i -simplices ηi of K , where i is
an even integer such that 0 ≤ i ≤ n − 1. Then Da

n (τ ) = 0 for every simplex τ of K .

The following corollary is deduced immediately from Theorem 3.5, using the fact
that the links of simplices in homology manifolds have the appropriate homology groups
(and hence Euler characteristic); see Theorem 63.2 of [Mu] for more details. Recall that
we are assuming that all simplicial complexes are finite, and all manifolds are compact
and without boundary.

Corollary 3.6. Let K be a simplicial homology n-manifold, where n is an odd integer
such that n ≥ 3. Then Da

n (τ ) = 0 for every simplex τ of K .

The following result is another simple corollary to Theorem 3.5.

Corollary 3.7. Let K be an n-dimensional simplicial complex, where n is an odd
integer such that n ≥ 3. Suppose that χ(link(ηi , K )) = 2 for all i -simplices ηi of K ,
where i is an even integer such that 0 ≤ i ≤ n − 1. Then χ(K ) = 0.

Proof. Combining Theorems 3.5 and 3.4, it follows that χ s(K ) = 0. The condition on
the links of even-dimensional simplices implies that every (n − 1)-simplex of K is the
face of precisely two n-simplices. It follows from Remark 2.3 that Tn(τ

p) = 1 for all
p-simplices τ p of K , where p = n − 1 or p = n. Moreover, by using Lemma 4.1(i),
stated and proved below, it follows that Tn(τ

p) = 1 for all p-simplices τ p of K , where
0 ≤ p ≤ n − 2. It now follows from (3) that χ s(K ) = χ(K ).

Corollary 3.7 immediately implies the following standard result, which is usually
proved by algebraic topology, though our method yields a completely elementary proof
of this fact.

Corollary 3.8. Let K be a triangulated homology n-manifold, where n is an odd integer
such that n ≥ 3. Then χ(K ) = 0.

The one remaining property of ascending stratified curvature we wish to examine
is invariance under subdivision. Let K be an n-dimensional simplicial complex, where
n ≥ 2, and let L be a subdivision of K . Suppose that τ s is an s-simplex of L . Then
τ s is contained in a unique s-simplex ζ p of K , where s ≤ p ≤ n (recall that we
are thinking of simplices as open, and hence disjoint). To say that ascending stratified
curvature is invariant under subdivision would, in its nicest form, mean precisely that
Da

n (τ p) = Da
n (ζ r ), where the left-hand side of this equation is with respect to L , and the

right-hand side is with respect to K . Because of the use of the angle defect sequence in
the definition of ascending stratified curvature, we do not quite have this simple equation,
but we have a slightly modified version of it instead, as stated in the following theorem.
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Theorem 3.9. Let K be an n-dimensional simplicial complex, where n ≥ 2, and let L
be a subdivision of K . Let τ s be an s-simplex of L that is contained in a p-simplex ζ p

of K . Then

ap Da
n (τ s) = as Da

n (ζ p). (9)

When s = p, then

Da
n (τ p) = Da

n (ζ p). (10)

For comparison, we note that both standard curvature and the generalized angle defect
are invariant under subdivision (as stated in Section 4 of [Bl1]), with no need for the
modification introduced in (9).

Finally, we note that the angle defect sequence a0, a1, a2, . . . used in the definition of
ascending stratified curvature is crucial. Although in principle one could define analogs
of ascending stratified curvature by using different sequences a0, a1, a2, . . . in (6), such
curvature functions would not satisfy all our properties. A look at the proofs (given
below) of Theorems 3.4, 3.5, and 3.9 shows that whereas Theorem 3.9 would still
hold with any sequence a0, a1, a2, . . . in (6), Theorem 3.4 holds only if the sequence
satisfies the recursive definition of the angle defect sequence given in Lemma 3.2(2), and
Theorem 3.5 holds because an = 0 for all odd n (proved in Lemma 3.2(1)). The author
finds it somewhat remarkable that there is a sequence that simultaneously satisfies both
these needed properties.

The appearance of the Bernoulli numbers in connection with angle sums and the
angle defect might appear surprising, but in fact such connections can be found in the
literature, for example, [P], [Gu], and especially [RW]. This latter paper makes use of the
sequence we called the angle defect sequence in relation to angle sums and angle defects
in even-dimensional manifolds, and, in particular, (3.4) of [RW] gives a result similar
in spirit to our Theorem 3.4, though only for even-dimensional manifolds. However,
the method of [RW] does not yield a curvature function that satisfies the analog of our
Theorem 3.5. The Bernoulli numbers also appear elsewhere in topology, as in Appendix B
of [MS].

4. Proofs

We start with a proof of Lemma 3.2.

Proof of Lemma 3.2. (1) This follows immediately from the fact that Bn = 0 for all
odd integers n such that n ≥ 3 (see Section 6.5 of [GKP]).

(2) The fact that a0 = 1 follows from the fact that B2 = 1
6 . To verify (5), we will

need the following three formulas involving the Bernoulli numbers and the Bernoulli
polynomials (denoted Bk(x)), the first two from Section 6.5 of [GKP], and the third from
p. 805 of [AS]. For each non-negative integer n, we have

n
∑

i=0

(

n
i

)

Bi = Bn, (11)
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n
∑

i=0

(

n
i

)

Bi hn−i = Bn(h), (12)

Bn(
1
2 ) = −(1 − 21−n)Bn. (13)

By substituting h = 1
2 into (12), and then using (13) and doing some rearranging, we

obtain
n

∑

i=0

(

n
i

)

Bi 2i = Bn(2 − 2n). (14)

Next, substituting the definition of the an , given in (4), into the left-hand side of (5), and
then using (11) and (14), the fact that B0 = 1 and B1 = − 1

2 , and a standard identity
involving binomial coefficients, it is a straightforward computation to show that (5)
holds. We leave the details to the reader.

We now prove our three theorems, starting with Theorem 3.4.

Proof of Theorem 3.4. We compute
∑

τ p∈K

(−1)p Da
n (τ p)

=
n−2
∑

p=0

∑

τ p∈K

(−1)p Da
n (τ p)

(using the fact that Da
n (τ p) = 0 when p = n − 1 or p = n)

=
n−2
∑

p=0

∑

τ p∈K

(−1)p

{

ap D̃n(τ
p) + ap

2

n−2
∑

i=p+1

(−1)i−p
∑

ηi +τ p

D̃n(η
i )

}

(using (7))

=
n−2
∑

p=0

∑

τ p∈K

(−1)pap D̃n(τ
p) +

n−2
∑

p=0

∑

τ p∈K

n−2
∑

i=p+1

∑

ηi +τ p

(−1)i ap

2
D̃n(η

i )

=
n−2
∑

p=0

∑

τ p∈K

(−1)pap D̃n(τ
p) +

n−2
∑

p=0

n−2
∑

i=p+1

∑

ηi ∈K

∑

τ p≺ηi

(−1)i ap

2
D̃n(η

i )

=
n−2
∑

p=0

∑

τ p∈K

(−1)pap D̃n(τ
p) +

n−2
∑

p=0

n−2
∑

i=p+1

∑

ηi ∈K

(−1)i ap

2

(

i + 1
p + 1

)

D̃n(η
i )

=
n−2
∑

i=0

∑

ηi ∈K

(−1)i ai D̃n(η
i ) +

n−2
∑

i=1

∑

ηi ∈K

i−1
∑

p=0

(

i + 1
p + 1

)

(−1)i ap

2
D̃n(η

i )

=
∑

η0∈K

(−1)0a0 D̃n(η
0) +

n−2
∑

i=1

∑

ηi ∈K

(−1)i

{

ai +
i−1
∑

p=0

(

i + 1
p + 1

)

ap

2

}

D̃n(η
i )
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=
∑

η0∈K

(−1)0 1 · D̃n(η
0) +

n−2
∑

i=1

∑

ηi ∈K

(−1)i 1 · D̃n(η
i )

(using Lemma 3.2(2))

=
n−2
∑

i=0

(−1)i
∑

ηi ∈K

{

Tn(η
i ) −

∑

σ n+ηi

α(ηi , σ n)

}

(using (1))

= χ s(K ) (using the computation given in p. 387 of [Bl1]).

We now turn to the proof of Theorem 3.5, starting with two lemmas.

Lemma 4.1. Let K be an n-dimensional simplicial complex, where n ≥ 2. Suppose
that each (n − 1)-simplex of K is the face of precisely two n-simplices. Let τ p be a p-
simplex of K with 0 ≤ p ≤ n − 2. Then

(i) Tn(τ
p) = 1;

(ii) 2 fn−p−2(link(τ p, K )) = (n − p) fn−p−1(link(τ p, K )).

Proof. (i) We use the discussion in Section 2. Recall that we are thinking of simplices
as open (and hence disjoint). Using Remark 2.2(3), we know that τ p is entirely contained
in one of the sets Cn

r (K ). Suppose r (= 2. By the same remark, we know that Cn
r (K ) is

an (n − 1)-manifold, and it is the union of simplices of K . Therefore it must contain at
least one (n − 1)-simplex ηn−1. By the definition of the set Cn

r (K ), it follows that ηn−1

must be the face of precisely r n-simplices of K . Because r (= 2, we have a contradiction
to the hypothesis of the lemma. Hence we conclude that r = 2, and hence Tn(τ

p) = 1,
using the definition of Tn(τ

p).
(ii) Let ζ n−p−1 be an (n − p − 1)-simplex of link(τ p, K ). We know that ζ n−p−1 has

n − p (n − p − 1)-faces, and these faces are all in link(τ p, K ). We claim that every
(n − p − 2)-simplex of link(τ p, K ) is the face of precisely two (n − p − 1)-simplices of
link(τ p, K ). The desired result follows immediately from this claim. To prove the claim,
let ηn−p−2 be an (n − p − 2)-simplex of link(τ p, K ). Then τ p ∗ ηn−p−2 is an (n − 1)-
simplex of K . It is seen that for every (n − p − 1)-simplex αn−p−1 of link(τ p, K ) that
has ηn−p−2 as a face, we obtain the n-simplex τ p ∗ αn−p−1 of K that has τ p ∗ ηn−p−2 as
a face. Conversely, for every n-simplex βn of K that has τ p ∗ ηn−p−2 as a face, we can
write βn as τ p ∗ γ n−p−1, where γ n−p−1 is an (n − p − 1)-simplex of link(τ p, K ) that
has ηn−p−2 as a face. Hence the number of (n − p − 1)-simplices of link(τ p, K ) that
have ηn−p−2 as a face equals the number of n-simplices of K that have τ p ∗ ηn−p−2 as a
face. By hypothesis the latter number is two, and hence there are also two (n − p − 1)-
simplices of link(τ p, K ) that have ηn−p−2 as a face.

Lemma 4.2. Let n be an odd integer such that n ≥ 3. Let σ n be an n-simplex in
Euclidean space, and let τ p be a p-face of σ n , where p is an even integer such that
0 ≤ p ≤ n − 2. Then

α(τ p, σ n) − 1
2

n−2
∑

i=p+1

(−1)i+1
∑

σ n+ηi +τ p

α(ηi , σ n) = 1
2

− n − p
4

, (15)

where the inner summation is over all i -simplices ηi of σ n that have τ p as a face.
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Proof. First, we show that (15) is equivalent to the equation
n

∑

i=p+1

(−1)i−p+1
∑

σ n+ηi +τ p

α(ηi , σ n) = 2α(τ p, σ n). (16)

To see the equivalence, observe that by definition we have α(σ n, σ n) = 1, and that
α(ηn−1, σ n) = 1

2 for every (n − 1)-face ηn−1 of σ n . It can be verified that there are
precisely n − p (n − 1)-faces of σ n that contain τ p. Then, using the fact that n is odd
and p is even, we have

(−1)(n−1)−p+1
∑

σ n+ηn−1+τ p

α(ηi , σ n) = −n − p
2

(17)

and

(−1)n−p+1
∑

σ n+ηn+τ p

α(ηn, σ n) = 1. (18)

Substituting (17) and (18) into (16), and doing some rearranging, yields (15).
Next, we need to verify that (16) holds. This equation follows from standard results

concerning angle sums in convex polytopes and convex cones, and we sketch the proof.
We cite [Mc2] for some basic notation and results, though these results are found in
many other sources as well; see [Gr1] for more background about convex polytopes.

Withough loss of generality, we can translate σ n so that some point in τ p is taken to
the origin (recall that we are thinking of simplices as open). Because all the angles under
consideration are in σ n , we can restrict our attention to the the affine span of σ n , which
we identify with Rn .

Let Q be the polyhedral cone with apex at the origin generated by σ n . The set of
apices of the cone Q, denoted T , is the affine span of τ p. Clearly T is a p-dimensional
linear subspace T of Rn The faces of Q correspond precisely to those faces of σ n that
have τ p as a face; for each face ηi of σ n that has τ p as a face, we denote its corresponding
face in Q by η̂i . Moreover, we have α(η̂i , Q) = α(ηi , σ n) for every appropriate ηi .

Next, let P = Q∩T ⊥, where T ⊥ is the (n− p)-dimensional linear subspace of Rn that
is perpendicular to T . Then P is an (n − p)-dimensional polyhedral cone, with one apex,
namely the origin. Moreover, it is seen that Q = P × T ⊥. The faces of P correspond to
the faces of Q; more precisely, for each i-face η̂i of Q, there is a corresponding (i − p)-
face η̄i of P , where η̄i = η̂i ∩ T ⊥ and η̂i = η̄i × T ⊥. Then, using Lemma 2 from [Mc1],
and the fact that our angles are normalized, it is seen that for each face ηi of σ n that
has τ p as a face, we have α(η̄i , P) = α(η̂i , Q); hence α(η̄i , P) = α(ηi , σ n). Therefore,
making use of the fact that p is even, we see that in order to show (16), it suffices to
show

n−p
∑

i=1

(−1)i+1
∑

η̄i ≺P

α(η̄i , P) = 2α(0, P). (19)

However, (19) is precisely the restatement for polyhedral cones of Sommerville’s theorem
concerning the angle sums and volume of convex spherical polytopes, and hence (19)
is true. See p. 157 of [So] for the original statement of Sommerville’s theorem, and see
p. 174 of [Mc2] for the restatement of this theorem for polyhedral cones (note that n − p
is odd, which is needed to deduce (19) from Sommerville’s theorem).
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We are now ready for the proof of Theorem 3.5.

Proof of Theorem 3.5. Let τ p be a p-simplex of K . If p = n − 1 or p = n, then
Da

n (τ p) = 0 by Remark 3.3. Now assume that 0 ≤ p ≤ n − 2. If p is odd, then
Da

n (τ p) = 0 by Lemma 3.2(1) combined with the definition of Da
n (τ p). From now on

assume that p is even. We observe that the hypothesis on the links of even-dimensional
simplices implies that every (n−1)-simplex of K is the face of precisely two n-simplices.
Hence we can apply Lemma 4.1 to K .

We compute

1
ap

Da
n (τ p) = D̃n(τ

p) + 1
2

n−2
∑

i=p+1

(−1)i−p
∑

ηi +τ p

D̃n(η
i )

=
[

Tn(τ
p) −

∑

σ n+τ p

α(τ p, σ n)

]

+ 1
2

n−2
∑

i=p+1

(−1)i
∑

ηi +τ p

[

Tn(η
i ) −

∑

σ n+ηi

α(ηi , σ n)

]

= 1 + 1
2

n−2
∑

i=p+1

(−1)i
∑

ηi +τ p

1

−
∑

σ n+τ p

α(τ p, σ n) − 1
2

n−2
∑

i=p+1

(−1)i
∑

ηi +τ p

∑

σ n+ηi

α(ηi , σ n)

(using Lemma 4.1(i), and doing some rearranging)

= 1 − 1
2

n−p−3
∑

k=0

∑

ωk∈link(τ p,K )

(−1)k

−
∑

σ n+τ p

α(τ p, σ n) − 1
2

∑

σ n+τ p

n−2
∑

i=p+1

(−1)i
∑

σ n+ηi +τ p

α(ηi , σ n)

= 1 − 1
2

n−p−1
∑

k=0

∑

ωk∈link(τ p,K )

(−1)k + 1
2

∑

ωn−p−2∈link(τ p,K )

(−1)n−p−2

+ 1
2

∑

ωn−p−1∈link(τ p,K )

(−1)n−p−1

−
∑

σ n+τ p

{

α(τ p, σ n) − 1
2

n−2
∑

i=p+1

(−1)i+1
∑

σ n+ηi +τ p

α(ηi , σ n)

}

= 1 − 1
2χ(link(τ p, K )) − 1

2 fn−p−2(link(τ p, K ))

+ 1
2 fn−p−1(link(τ p, K )) −

∑

σ n+τ p

{

1
2

− n − p
4

}

(using the fact that n − p − 2 is odd, and (15))



326 E. D. Bloch

= 1 − 1
2 · 2 − 1

2
n − p

2
fn−p−1(link(τ p, K ))

+ 1
2 fn−p−1(link(τ p, K )) − fn−p−1(link(τ p, K ))

(

1
2

− n − p
4

)

(using the hypothesis of the theorem, and Lemma 4.1(ii))

= 0,

where the equality before the last uses the fact that fn−p−1(link(τ p, K )) equals the
number of n-simplices of K that have τ p as a face.

Finally, we have the proof of Theorem 3.9.

Proof of Theorem 3.9. To prove (9), we first observe that if either s or p is odd, then
it follows from Remark 3.3(2) that both sides of (9) are zero, and so the equation holds.
From now on, assume that both s and p are even. Clearly s ≤ p.

We start with the following preliminary. Suppose that αr is an r -simplex of K that
has ζ p as a face, where p + 1 ≤ r ≤ n − 2. We then claim that

r
∑

i=s+1

∑

ηi ∈L
ηi ⊆αr

ηi +τ s

(−1)i−s = (−1)r−s . (20)

To see why (20) holds, we first observe that
⋃

ηi ∈L
ηi ⊆αr

ηi +τ s

ηi = |star(τ s, L)| ∩ αr , (21)

where, as always, we are thinking of simplices as open. Let T = {ωk ∈ link(τ s, L) |
ωk ⊆ αr }. Observe that |T | is an open (r − s − 1)-disk. We now have

r
∑

i=s+1

∑

ηi ∈L
ηi ⊆αr

ηi +τ s

(−1)i−s−1 =
r−s−1
∑

k=0

∑

ωk∈T

(−1)k =
r−s−1
∑

k=0

(−1)k fk(T ). (22)

We note that the sum
∑r−s−1

k=0 (−1)k fk(T ) is not necessarily equal to χ(T ), because T
is not a simplicial complex. However, we note that T , the closure of T , is a simplicial
complex (in particular, it is an (r − s −1)-disk). Hence, using the discussion in Section 2
of [Bl1], it is seen that

r−s−1
∑

k=0

(−1)k fk(T ) = (−1)r−s−1. (23)

If we combine (22) and (23), and multiply through by −1, we deduce (20).
One more preliminary observation. Suppose that νi is an i-simplex of L that is

contained in a (unique) r -simplex µr of K . We observe that Tn(ν
i ) = Tn(µ

r ) and
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D̃n(ν
i ) = D̃n(µ

r ), where the left-hand side of each of these equations is with respect to
L , and the right-hand side is with respect to K (in general, if we write “D̃n(η

i ),” that is
with respect to the simplicial complex of which ηi is a simplex, which is always clear
from context).

We can now demonstrate (9), by computing

ap Da
n (τ s) = apas D̃n(τ

s) + ap
as

2

n−2
∑

i=s+1

(−1)i−s
∑

ηi ∈L
ηi +τ s

D̃n(η
i )

= apas D̃n(ζ
p) + apas

2

∑

ηi ∈L
s+1≤i≤n−2

ηi +τ s

(−1)i−s D̃n(η
i )

= apas D̃n(ζ
p) + apas

2

∑

αr ∈K
p+1≤r≤n
αr +ζ p

∑

ηi ∈L
ηi ⊆αr

s+1≤i≤min{r,n−2}
ηi +τ s

(−1)i−s D̃n(α
r )

= apas D̃n(ζ
p) + apas

2

n
∑

r=p+1

∑

αr ∈K
αr +ζ p

D̃n(α
r )

r
∑

i=s+1

∑

ηi ∈L
ηi ⊆αr

ηi +τ s

(−1)i−s

(because D̃n(α
r ) = 0 for r = n − 1 or r = n)

= asap D̃n(ζ
p) + as

ap

2

n−2
∑

r=p+1

∑

αr ∈K
αr +ζ p

D̃n(α
r )(−1)r−p

(using (20), and the fact that both s and p are even)

= as Da
n (ζ p).

Finally, to deduce (10), assume s = p. There are two cases to consider. When
as = ap = 0, then both sides of (10) are zero by definition. When as = ap (= 0, then
(10) follows from (9).
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