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ABSTRACT. The classical Poincaré-Hopf Theorem for smooth surfaces states
that the sum of the indices of the zeros of a smooth vector field with isolated
zeros on a compact smooth surface equals the Euler characteristic of the surface.
We give a simple analog of the Poincaré-Hopf Theorem for orientable finite sim-
plicial surfaces, where the vector fields are given via triangular tiles with a single
arrow on each; in our version of the theorem, the index of such a discrete vec-
tor field is computed at every vertex of the simplicial surface. Our approach is
inspired by the well-known analog of the Gauss-Bonnet Theorem for polyhedral
surfaces.

1. INTRODUCTION

A well-studied polyhedral analog of a well-known theorem for smooth surfaces
is the Gauss-Bonnet Theorem for polyhedral surfaces, which goes back at least
as far as Descartes (see [Fed82]), and which is described very clearly in [Ban67,
Ban70, DO11], among many others; this result has been generalized in various
ways, for example in [CMS84, Blo98]. In the present note, we give a polyhedral
analog of a different well-known theorem, the Poincaré-Hopf Theorem for smooth
surfaces, which states that the sum of the indices of the zeros of a smooth vector
field with isolated zeros on a compact smooth surface equals the Euler characteris-
tic of the surface. Original references for the Poincaré-Hopf Theorem for smooth
surfaces (and manifolds) are [Poi85, Hop26], and modern references may can be
found, for example, in [Mil65, Spi99]. There are various generalizations of the
Poincaré-Hopf Theorem, including, among others, [Mor29, Pug68, Sch91, Sea08],
and there are discrete versions on graphs such as [Kni12], but there does not appear
to be a simple geometric analog of the Poincaré-Hopf Theorem for simplicial sur-
faces in the spirit of the polyhedral Gauss-Bonnet Theorem, which is based upon
elementary calculations using angles; we give such an analog here in the orientable
case.

The proof of our version of the Poincaré-Hopf Theorem, which is Theorem 14, is
as simple as, and very similar to, the proof the polyhedral Gauss-Bonnet Theorem,
though our result also involves more preliminary definitions and lemmas than poly-
hedral Gauss-Bonnet, and leads to two additional theorems, with lengthier proofs,
which have no analogs for polyhedral curvature.
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In our approach, polyhedral vector fields are given via triangular tiles with a
single arrow on each. We compute the index of such a discrete vector field at
every vertex of the simplicial surface and add all these indices, analogously to
the polyhedral Gauss-Bonnet Theorem, where the curvature is computed at every
vertex, and these curvatures are then added up.

Our discrete analogs of vector fields, and the definition of the index at each
vertex, are defined in Section 2; our analog of the continuity of a vector field is in
Section 3; our Poincaré-Hopf Theorem is in Section 4; we provide a much simpler
way to compute the index of a vertex in Section 5; and in Section 6 we have two
longer proofs.

We conclude this introduction with some assumptions and notation. Throughout
this note we will restrict our attention to finite simplicial surfaces that are embedded
in Euclidean space; different embeddings of combinatorially equivalent simplicial
complexes will be considered as different simplicial complexes. Further, we will
assume that all triangles in all simplicial surfaces are acute, and we will refer to
such simplicial surfaces as acute simplicial surfaces.

Let K be a simplicial surface. If v is a vertex of K, we let star(v,K) denote the
star of v in K, and if σ is a triangle of K that has v as a vertex, we let α(v,σ) denote
the angle at v in the triangle σ .

2. SIMPLEXWISE VECTOR FIELDS

In our polyhedral analog of a vector field on an acute simplicial surface in Rn,
rather than having a tangent vector at each point on the surface (which is not dis-
crete, and has the problem of the lack of tangent planes at the vertices), we have
one arrow for each triangle, where only certain triangles with arrows are allowed
to meet in an edge.

Definition 1. Let K be an acute simplicial surface in Rn.
(1) Let σ be an acute triangle in K. A simplex-arrow for σ is an arrow in σ

that has endpoints on the boundary of σ such each endpoint of the arrow is
either the midpoint of an edge of σ or a vertex of σ , and the two endpoints
are not contained in a single (closed) edge of σ .

(2) A simplexwise vector field φ on K is an assignment of a simplex-arrow to
each triangles in K, such that for every edge e of K, one of the following
two conditions hold:

(i) the simplex-arrow in one of the triangles containing e ends at the mid-
point of e, and the simplex-arrow in the other triangle containing e
starts at the midpoint of e;

(ii) neither of the simplex-arrows in the triangles containing e start or end
at the midpoint of e, and the projections of both of these simplex-
arrows onto the line containing the edge e are in the same direction.

4
Remark 2.

(1) Up to linear transformation, including reflection, there are three types of
triangles with simplex-arrows, as seen in Figure 1.
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FIGURE 1.

(2) Up to linear transformation of each triangle, including reflection of both,
there are 11 ways that two triangles with simplex-arrows in a simplexwise
vector field can meet in an edge, as seen in Figure 2. ♦

source sink

FIGURE 2.

Definition 3. The 11 pairs of adjacent triangles with simplex-arrows in Figure 2,
up to linear transformation of each triangle, including reflection of both, are called
the allowable adjacencies for a simplexwise vector field. The last two allowable
adjacencies seen in the figure are called a source and a sink, respectively; the other
(unnamed) allowable adjacencies are called simple allowable adjacencies. 4

See Figure 3 for examples of acute simplicial surfaces in R3 with simplexwise
vector fields. The examples in Figure 3 are analogs of the smooth vector fields in
Figure 4.

(ii)(i)
FIGURE 3.

(ii)(i)
FIGURE 4.

We define the arrows in terms of their endpoints in the triangle, rather than
simply associating to each triangle in Rn a vector in R2, because we will move
our triangles via rotations and reflections, and we want the arrows to move with
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the triangles. The endpoints of the arrows are limited to vertices or midpoints of
edges because it is used in one proof, and there is no loss in that assumption. Only
certain types of triangles with simplex-arrows can meet in an edge is because that
works well with the definition of continuity of simplexwise vector fields given in
Section 3.

For our version of the Poincaré-Hopf Theorem, rather than computing the index
at the zeros of a vector field, as in the smooth case, we will compute the index of
a simplexwise vector field at each vertex of the acute simplicial surface. We start
with some notation.

Definition 4. Suppose that two acute triangles with simplex-arrows in Rn intersect
in a common edge e, and let v be one of the vertices of e. Suppose further that the
two triangles are given a coherent orientation. We can think of the two triangles
as being in R2, placed so that the orientation of the triangles matches the coun-
terclockwise orientation of R2. Let σ−v,e and σ+

v,e be the triangle containing e that
is clockwise and counterclockwise from e, respectively, as seen from the vertex
v. Let α−v,e and α+

v,e be the angles α(v,σ−v,e) and α(v,σ+
v,e), respectively. Let m−v,e

and m+
v,e denote the simplex-arrows of the triangles σ−v,e and σ+

v,e, respectively. See
Figure 5 for the various triangles and angles, and one possible example of the two
simplex-arrows. 4

FIGURE 5.

In the following definition, which measures how the arrows change direction
across an edge containing a vertex, and also in the subsequent definition of the
index of a vertex, we need to choose an orientation for the star of the vertex; we
will discuss the dependence upon the choice of orientation in Section 3.

Definition 5. Let K be an acute simplicial surface in Rn with a simplexwise vector
field φ . Let v be a vertex of K, and let e be an edge of K that has v as a vertex.
Choose an orientation for star(v,K).

The edge e is in the two triangles denoted σ−v,e and σ+
v,e. We can think of σ−v,e

and σ+
v,e as being in R2, placed so that the orientation of the triangles matches the

counterclockwise orientation of R2. Let R
α
−
v,e
(m−v,e) denote the simplex-arrow of the

triangle with simplex-arrow that is the result of applying to the triangle σ−v,e and its
simplex-arrow the rotation of the plane counterclockwise around v by angle α−v,e.

(1) The pair v and e is admissible with respect to the chosen orientation of
star(v,K) if the vectors representing R

α
−
v,e
(m−v,e) and m+

v,e are not negative
multiples of each other.
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(2) If the pair v and e is admissible with respect to the chosen orientation of
star(v,K), the vertex-edge turn of e at v, denoted βv,e, is the smaller an-
gle from the vector representing m+

v,e to the vector representing R
α
−
v,e
(m−v,e),

where the angle is taken as positive if it is counterclockwise and as nega-
tive if it is clockwise; if the pair v and e is not admissible with respect to
the chosen orientation of star(v,K), then βv,e is not defined. 4

In Figures 6 (i) we see two triangles with simplex-arrows, and in Part (ii) of
the figure we see the triangle σ−v,e and its simplex-arrow rotated counterclockwise
around vertex v by angle α−v,e, where, as will be done throughout, the original tri-
angles and simplex-arrows are shown solid with red arrows, and rotated triangles
and simplex-arrows are shown dashed with green arrows. We see in Part (ii) of the
figure that the edge of σ−v,e that contains v and is not e will, as a result of the coun-
terclockwise rotation around vertex v by angle α−v,e, end up on top of e. Because the
vectors representing R

α
−
v,e
(m−v,e) and m+

v,e are not negative multiples of each other, as
seen in Part (ii) of the figure, the pair v and e is admissible, and hence the vertex-
edge turn βv,e is defined. In Part (iii) of the figure we see the arrows m+

v,e and
R

α
−
v,e
(m−v,e) translated so that they start at the same point, and we see βv,e, which in

this example is positive.

(ii) (iii)(i)

FIGURE 6.

In Figures 7 (i) we see a pair v and e that is not admissible, because, as seen
in Part (ii) of the figure, the vectors representing R

α
−
v,e
(m−v,e) and m+

v,e are negative
multiples of each other; hence the vertex-edge turn βv,e is not defined.

(ii)(i)

FIGURE 7.

The following definition is the global version of admissibility.



6 ETHAN D. BLOCH

Definition 6. Let K be an acute simplicial surface in Rn with a simplexwise vector
field φ . The simplexwise vector field φ is admissible if for every vertex v of K,
and every edge e of K that has v as a vertex, the pair v and e is admissible with
respect to each of the two choices of orientation of star(v,K). 4

We now define the index of a vertex with respect to a simplexwise vector field.

Definition 7. Let K be an acute simplicial surface with a simplexwise vector field
φ , and let v be a vertex of K. Suppose that φ is admissible. Choose an orientation
for star(v,K). The index of v with respect to the simplexwise vector field, denoted
indv(φ), is defined by

indv(φ) = 1− 1
2π

∑
e3v

βv,e, (1)

where the summation is over all the edges e of K that have v as a vertex. 4

For example, we use Equation (1) to compute the index of any of the vertices on
the equator of the simplicial surface in Figure 3 (i), denoted v, where we choose the
orientation for star(v,K) obtained by looking at the simplicial surface from outside
of it. We see in Figure 8 the result of taking each of the four edges containing v,
starting at the edge above v and going counterclockwise, and flattening out the two
triangles that contains the edge. Using the fact that all the triangles in this example
are equilateral, it is straightforward to see that the four vertex-edge turns are 2π

3 , π

3 ,
2π

3 and π

3 , and hence indv(φ) = 1− 1
2π

(2π

3 + π

3 +
2π

3 + π

3

)
= 0.

(ii)(i) (iii) (iv)

FIGURE 8.

The following lemma shows, as expected, that the index is always an integer.

Lemma 8. Let K be an acute simplicial surface with a simplexwise vector field φ ,
and let v be a vertex of K. Suppose that φ is admissible. Choose an orientation for
star(v,K). Then indv(φ) is an integer.

Proof. Let {e1,e2, . . . ,en} be the edges of K that have v as a vertex, in counter-
clockwise order. Let i ∈ {1,2, . . . ,n}. We use the abbreviations σi, mi, αi and βi to
denote σ+

v,ei
, m+

v,ei
, α+

v,ei
and βv,ei , respectively, as seen in the triangle on the left in

Figure 9 (i). Let ri be a vector starting at v in the direction of ei, and let εi denote
the counterclockwise angle from ri to the vector representing mi; the angle εi is
also seen in Part (i) of the figure.

In the three parts of Figure 9 we see how to compute the vertex-edge turn βi,
where in Part (i) of the figure we see the original two triangles with simplex-arrows,
and in Part (ii) of the figure we see the triangle σi−1 and its simplex-arrow rotated
counterclockwise around vertex v by angle αi−1. Observe that when the triangle
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(ii) (iii)(i)

FIGURE 9.

σi−1 is rotated, the bottom edge of this triangle is rotated so that it lands on the edge
ei, which means that the clockwise angle from ri to the vector Rαi−1(mi−1) equals
the angle εi−1. In Part (iii) of the figure we see the arrows mi, Rαi−1(mi−1) and ri
translated so that they start at the same point, and we see εi−1, εi and βi, where, as
always, subtraction is mod n.

By definition, we know that βi is the smaller angle (possibly clockwise or coun-
terclockwise) from mi to Rαi−1(mi−1). We can find a formula for βi in terms of εi−1
and εi, as follows. There are three case to consider, as seen in the three parts of
Figure 10, the first of which is from Figure 9.

(ii) (iii)(i)

FIGURE 10.

First, suppose that the smaller angle from mi to Rαi−1(mi−1) does not contain a
vector that is parallel to ri, as in Figure 10 (i). We see that βi = εi−1− εi.

Second, suppose that the smaller angle from mi to Rαi−1(mi−1) is counterclock-
wise and contains a vector that is parallel to ri, as in Figure 10 (ii). We see that
βi = 2π− (εi− εi−1) = εi−1− εi +2π .

Third, suppose that the smaller angle from mi to Rαi−1(mi−1) is clockwise and
contains a vector that is parallel to ri, as in Figure 10 (iii). We see that −βi =
2π− (εi−1− εi), and so βi = εi−1− εi−2π .

Putting the three cases together, we see that βi = εi−1− εi +wi, where wi is one
of 0, 2π or −2π .

Finally, we compute

∑
e3v

βv,e =
n

∑
i=1

βi =
n

∑
i=1

[εi−1− εi +wi] =
n

∑
i=1

εi−1−
n

∑
i=1

εi +
n

∑
i=1

wi =
n

∑
i=1

wi.

It follows that ∑e3v βv,e is a multiple of 2π , which implies indv(φ) is an integer. �
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3. CONTINUOUS ACUTE SIMPLICIAL SURFACE WITH SIMPLEXWISE VECTOR
FIELD

Just as the Poincaré-Hopf Theorem in the smooth case requires smooth, and
hence continuous, vector fields, so too in the present context we require a ver-
sion of continuity for simplexwise vector fields. Examples show that without an
assumption of continuity, our Poincaré-Hopf Theorem does not hold and our defi-
nition of the index of a vertex is not independent of the choice of orientation of the
star.

The definition of a simplexwise vector field, which restricts which types of tri-
angles with simplex-arrows can meet in an edge, is motivated by the idea of conti-
nuity, but it does not suffice for our proofs. Another intuitive idea of the continuity
of a simplexwise vector field is that if the two triangles intersecting in the edge are
placed in R2, then the angle between the simplex-arrows in the two triangles (with
no rotation) should be less than π

2 , and that would suffice for some proofs, but it
excludes an example we will need in the proof of Theorem 16, and which we will
see shortly in Figure 11. As such, we will use a broader definition of continuity
that is less intuitive, but which allows us to prove what we need.

Given that the index of a vertex is based upon the idea of a vertex-edge turn,
defined in Definition 5 and which occurs at edges, it turns out that the notion of
continuity that is useful to us here also occurs at the edges of the acute simplicial
surface; a simplexwise vector field is continuous if it is continuous at every edge of
K. For the following definition, observe that if e is an edge of an acute simplicial
surface K with simplexwise vector field, and if the vertices of e are v and w, then
m−w,e = m+

v,e and m+
w,e = m−v,e; for clarity, however, we will write these simplex-

arrows both ways, as appropriate.

Definition 9. Let K be an acute simplicial surface with a simplexwise vector field
φ . Let e be an edge of K. The simplexwise vector field φ is continuous at e if the
following condition holds. Suppose that the two triangles containing e are given
a coherent orientation. We can think of the two triangles as being in R2, placed
so that the orientation of the triangles matches the counterclockwise orientation of
R2. Let v and w be the vertices of e. The simplexwise vector field φ is defined to
be continuous at e if the vectors in R2 representing each of the following four sets
of three simplex-arrows is contained in an open half-plane (not necessary the same
open half-plane for all the sets of three vectors):

(a) m−v,e, m+
v,e and R

α
−
v,e
(m−v,e);

(b) m−w,e, m+
w,e and R

α
−
w,e
(m−w,e);

(c) m−v,e, m+
v,e and R−α

+
v,e
(m+

v,e);
(d) m−w,e, m+

w,e and R−α
+
w,e
(m+

w,e).
The simplexwise vector field φ is continuous if it is continuous at every edge of
K. 4

In Figure 11, we see that the smaller angle between the two vectors representing
m−v,e, and m+

v,e is greater than π

2 , and yet the simplexwise vector field is nonetheless
continuous at the edge e because the vectors representing m−v,e, and m+

v,e, together
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with any one of R
α
−
v,e
(m−v,e), R

α
−
w,e
(m−w,e), R−α

+
v,e
(m+

v,e) or R−α
+
w,e
(m+

w,e), are contained
in an open half-plane, which is the criterion for continuity at e; for visual ease, the
various vectors have been translated so that they start at the origin, and have all
been normalized to be unit vectors. Note that it is not required for continuity that
the vectors representing m−v,e, and m+

v,e and all four of the rotated simplex-arrows
are simultaneously in an open half-plane.

FIGURE 11.

In Figure 12 we see an edge e at which a simplexwise vector field is not con-
tinuous, where the various vectors have been translated and normalized as in the
previous example. In this figure, we see, for example, that the vectors representing
m−v,e, and m+

v,e and R
α
−
v,e
(m−v,e) are not contained in an open half-plane, so that the

simplexwise vector field is not continuous at e.

FIGURE 12.

The first part of the following remark is true because all triangles under consid-
eration are acute, so the rotations used in the definition of continuity are always by
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less than π

2 , and the second part is true because when two vectors lie in an open
half plane in R2, they cannot be negative multiples of each other.

Remark 10. Let K be an acute simplicial surface with a simplexwise vector field
φ .

(1) Let e be an edge of K. Suppose that the two triangles containing e are given
a coherent orientation. We can think of the two triangles as being in R2,
placed so that the orientation of the triangles matches the counterclockwise
orientation of R2. Let v a vertex of e. If the smaller angle between the two
vectors in R2 representing the arrows m−v,e and m+

v,e is less than or equal to
π

2 , then the simplexwise vector field φ is continuous at e. This condition is
not if and only if, as seen in the example given in Figure 11.

(2) If φ is continuous, then φ is admissible. ♦

We saw in the example given in Figure 12 that a simplexwise vector field need
not be continuous at every edge, in spite of the restricted way in which triangles
with simplex-arrows are allowed to meet in an edge in a simplexwise vector field.
We now see that in fact most ways that two triangles with simplex-arrows can meet
in an edge is continuous at that edge. Recall, as stated in Remark 2 (2), there are
11 allowable adjacencies up to linear transformation of each triangle, including
reflection of both, of which two are a source and a sink, and the remaining ones of
which are called simple allowable adjacencies. The following theorem says that a
simplexwise vector field is always continuous in all cases other than sources and
sinks; the proof of the theorem is in Section 6.

Theorem 11. Let K be an acute simplicial surface with a simplexwise vector field
φ , and let e be an edge of K. If the pair of triangles of K containing e is a simple
allowable adjacency, then φ is continuous at e.

We stress that verifying that the simple allowable adjacencies are all continuous
relies upon the fact that for every triangle with a simplex-arrow, the endpoint of the
arrow is either the midpoint of an edge or a vertex, but cannot be anywhere else in
an edge. Examples show that the analogs of the simple allowable adjacencies, but
allowing one of the simplex-arrows to have one endpoint that is in the interior of
an edge but not at the midpoint, are not necessarily continuous.

In contrast to simple allowable adjacencies, a source or a sink might or might not
be continuous at the common edge. For example, the simplexwise vector field seen
in Figure 12, which is a source, is not continuous at e, as noted in the discussion of
that figure; reversing the simplex-arrows in the two triangles would give a similar
example that is a sink. On the other hand, as the reader can verify, a source and a
sink where both triangles are equilateral are both continuous at the common edge.

Given that sources and sinks do not behave as nicely as the simple allowable
adjacencies, it might be thought that sources and sinks should not be allowed in
simplexwise vector fields, but, unfortunately, that is not possible if we want to be
able to use simplexwise vector fields to create discrete analogs of smooth vector
fields. For example, the simplexwise vector field in Figure 3 (i) is a discrete analog
of the smooth vector field in Figure 4 (i), and in this simplexwise vector field the
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two triangles containing every edge in the upper hemisphere form a source, and in
the lower hemisphere they form a sink.

Though sources and sinks do not behave as nicely as the simple allowable adja-
cencies, we cannot disallow sources and sinks in simplexwise vector fields, because
we want to be able to use simplexwise vector fields to create discrete analogs of
smooth vector fields. For example, the simplexwise vector field in Figure 3 (i) is a
discrete analog of the smooth vector field in Figure 4 (i), and in this simplexwise
vector field the two triangles containing each edge in the upper hemisphere form a
source, and in the lower hemisphere they form a sink.

4. POINCARÉ-HOPF THEOREM

We start with a lemma about vertex-edge turns.

Lemma 12. Let K be an acute simplicial surface with a simplexwise vector field
φ . Suppose that φ is continuous. Let e be an edge of K, and let v and w be the
vertices of e. Choose a coherent orientations for star(v,K) and star(w,K). Let βv,e
and βw,e denote the vertex-edge turns computed using the chosen orientation, and
let β̂v,e denote the vertex-edge turn computed using the reverse orientation.

(1) βv,e +βw,e = α
−
v,e +α

−
w,e.

(2) β̂v,e−βv,e = α
+
v,e−α

−
v,e.

Proof. We can think of the two triangles containing e as being in R2, placed so
that the orientation of the triangles matches the counterclockwise orientation of
R2. See Figure 5 for the various angles, and one possible example of the two
simplex-arrows.

Because φ is continuous, we know that there is an open half-plane in R2 that
contains the vectors representing the arrows m−v,e, m+

v,e and R
α
−
v,e
(m−v,e). There are

then three possibilities for where m+
v,e is located in the plane in relation to m−v,e and

R
α
−
v,e
(m−v,e), as seen in Figure 13; there appears to one more possible location of m+

v,e
that is missing from the figure, but that case is not allowed because of continuity.

(ii) (iii)(i)

FIGURE 13.

Let γv be the smaller angle from m+
v,e to m−v,e, where, as usual, the angle is positive

or negative depending upon whether it is counterclockwise or clockwise. In all
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three parts of Figure 13, we see that βv,e = α−v,e + γv, where we use the fact that βv,e
and γv can each be positive, negative or zero.

For Part (1) of this lemma, we observe that the same reasoning as above shows
that βw,e = α−w,e + γw, where γw is the smaller angle from m+

w,e to m−w,e. Observing
that m+

w,e = m−v,e and m−w,e = m+
v,e, we see that γw =−γv. It then follows that

βv,e +βw,e = (α−v,e + γv)+(α−w,e + γw) = α
−
v,e +α

−
w,e.

For Part (2) of this lemma, let k be the line that bounds an open half-plane in
R2 containing the vectors representing the arrows m−v,e, m+

v,e and R
α
−
v,e
(m−v,e); in the

example seen in Figures 5 and 14, we can choose the line k to be the line containing
the edge e, though that will not always be the case. Let T be the reflection of R2 in
the line k. In Figure 14 we see the result of reflecting the two triangles in Figure 5
using the reflection T , where the reflected triangles, angles and arrows are denoted
σ̂−v,e, σ̂+

v,e, α̂−v,e, α̂+
v,e, m̂−v,e and m̂+

v,e. We observe that α̂−v,e = α+
v,e, and α̂+

v,e = α−v,e, and
m̂−v,e = T (m+

v,e) and m̂+
v,e = T (m−v,e).

FIGURE 14.

The same reasoning as above shows that β̂v,e = α̂−v,e + γ̂v, where γ̂v is the smaller
angle from m̂+

v,e to m̂−v,e. Because m̂+
v,e = T (m−v,e) and m̂−v,e = T (m+

v,e), and because
the reflection T preserves angles but reverses orientation, we deduce that γ̂v is the
negative of the smaller angle from m−v,e to m+

v,e, so that that γ̂v is the smaller angle
from m+

v,e to m−v,e, which means γ̂v = γv. It then follows that

β̂v,e−βv,e = (α̂−v,e + γ̂v)− (α−v,e + γv) = α̂
−
v,e−α

−
v,e = α

+
v,e−α

−
v,e. �

We now resolve the question of the choice of orientation for the star of a vertex
when computing the index in the case of a continuous simplexwise vector field.

Lemma 13. Let K be an acute simplicial surface with a simplexwise vector field
φ , and let v be a vertex of K. Suppose that φ is continuous. The index indv(φ) is
independent of the choice of orientation for star(v,K).

Proof. Choose an orientation for star(v,K). Let indv(φ) denote the index of v com-
puted using the chosen orientation, and let îndv(φ) denote the index of v computed
using the reverse orientation.

Let {e1,e2, . . . ,en} be the edges of K that have v as a vertex, in counterclockwise
order. Let i∈ {1,2, . . . ,n}. We let βv,ei denote the vertex-edge turn computed using
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the chosen orientation, and let β̂v,ei denote the vertex-edge turn computed using the
reverse orientation. By Lemma 12 (2), we know that β̂v,ei = βv,ei +α+

v,ei
−α−v,ei

. It
follows that

∑
e3v

β̂v,e =
n

∑
i=1

β̂v,ei

=
n

∑
i=1

[
βv,ei +α

+
v,ei
−α

−
v,ei

]
=

n

∑
i=1

βv,ei +
n

∑
i=1

α
+
v,ei
−

n

∑
i=1

α
−
v,ei

=
n

∑
i=1

βv,ei +
n

∑
i=1

α
+
v,ei
−

n

∑
i=1

α
+
v,ei−1

= ∑
e3v

βv,e,

where subtraction is mod n. We conclude that îndv(φ) = indv(φ). �

Finally, we have our version of the Poincaré-Hopf Theorem. As is standard,
we let V , E and F denote the number of vertices, edges and faces of a simplicial
surface K, and we let χ(K) denote the Euler characteristic of K.

Theorem 14. Let K be an acute simplicial surface with a simplexwise vector field
φ . Suppose that K is orientable and φ is continuous. Then

∑
v∈K

indv(φ) = χ(K),

where the summation is over all the vertices v of K.

Proof. Choose an orientation for K, which induces coherent orientations of the
stars of all the vertices of K. We compute

∑
v∈K

indv(φ) = ∑
v∈K

[
1− 1

2π
∑
e3v

βv,e

]

=V − 1
2π

∑
v∈K

∑
e3v

βv,e

=V − 1
2π

∑
e∈K

∑
v∈e

βv,e

=V − 1
2π

∑
e∈K

∑
v∈e

α
−
v,e,

where the last equality holds by Lemma 12 (1).
Next, we observe that every angle in every triangle in K is the angle α−v,e for

precisely one vertex v and one edge e that has v as a vertex. Using the additional
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fact that the sum of the angles in a triangle is π , it follows that

∑
v∈K

indv(φ) =V − 1
2π

∑
e∈K

∑
v∈e

α
−
v,e

=V − 1
2π

∑
v∈K

∑
σ3v

α(v,σ)

=V − 1
2π

∑
σ∈K

∑
v∈σ

α(v,σ)

=V − 1
2π

∑
σ∈K

π

=V − 1
2

F.

Finally, we note that in a simplicial surface it is always the case that 3F = 2E,
because every triangle has three edges, and every edge is in two triangles. Hence

∑
v∈K

indv(φ) =V − 1
2

F =V − 3
2

F +F =V −E +F = χ(K). �

We note that the above proof does not work in the non-orientable case.

5. SIMPLIFIED METHOD FOR COMPUTING THE INDEX OF A VERTEX

Our one remaining issue is that is difficult to compute the index at a vertex by
hand, because it involves measuring various angles in triangles, and rotating vari-
ous vectors in the plane, all involving angles that are not always simple multiples
of π . We now see a way of simplifying this type of calculations to the point where
it can be done easily by hand, where the idea is that we can use equilateral triangles
to compute the index of a vertex, even when the triangles in the acute simplicial
surface are not equilateral.

To compute the index of a vertex v, we observe that given an orientation for
star(v,K), whereas there are only three types of triangles with simplex-arrows up
to linear transformation, including reflection, as seen in Figure 1, if we consider
triangles with simplex-arrows from the perspective of the vertex v, there are 12
different types, as seen in Figure 15.

FIGURE 15.

Similarly, whereas there are only 11 ways that two triangles with simplex-arrows
can meet in an edge up to linear transformation of each triangle, including reflec-
tion of both, as seen in Figure 2, if we consider such triangles from the perspective
of the vertex v, there are 36 different ways two such triangles can meet in an edge,
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as seen in Figure 16. The ordered pair associated with each pair of triangles con-
sists of the numbers (from Figure 15) of the two triangles in clockwise order, and
the additional number listed for each pair of triangles is the vertex-edge turn βv,e
computed using equilateral triangles (the use of which will become apparent soon).

up source up sink

down sourcedown sink

FIGURE 16.

Definition 15. Let K be an acute simplicial surface with a simplexwise vector field
φ , and let v be a vertex of K. Choose an orientation for star(v,K).

(1) Let σ be a triangle with simplex-arrow of K that has v as a vertex. The tile
number of σ at v is the number corresponding to the equivalent triangle
with simplex-arrow using an equilateral triangle, with matching orienta-
tion, given in the chart in Figure 15.

(2) Let σ1, . . . ,σp be the triangles with simplex-arrows of K that have v as a
vertex, listed in clockwise order corresponding to the orientation of star(v,K).
The clockwise tile list around v is the list [a1,a2, . . . ,ap], determined up to
cyclic permutation, of the tile numbers of σ1, . . . ,σp, starting at any choice
of a triangle with simplex-arrow.

(3) Among the configurations in Figure 16, the two sources (5,5) and (1,9) are
called an up-source and a down-source, respectively, and the two sinks
(7,3) and (11,11) are called an up-sink and a down-sink, respectively.

4
The following theorem gives a very easy way to compute the index at a vertex

of a continuous simplexwise vector field without measuring angles in triangles and
between vectors. The proof of the theorem is in Section 6.

Theorem 16. Let K be an acute simplicial surface with a simplexwise vector field
φ , and let v be a vertex of K. Suppose that φ is continuous. Choose an orientation
for star(v,K). Let [a1,a2, . . . ,ap] be the clockwise tile list around v. The index of
v is determined by the clockwise tile list [a1,a2, . . . ,ap] alone, where Equation 1
is used with vertex-edge turns computed using the chart in Figure 16, as if all the
triangles in star(v,K) were equilateral.
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We use Theorem 16 to compute the index any of the vertices, denoted v, on the
equator of the acute simplicial surface with simplexwise vector field in Figure 3 (ii),
which does not have equilateral triangles. In Figure 17 we see a flattened version
of star(v,K), which has clockwise tile list is [0,10,6,4]. This list gives rise to
four pairs of adjacent tiles, again in clockwise order, which are (0,10), (10,6),
(6,4) and (4,0). Using the chart in Figure 16, we obtain, respectively, the vertex-
edge turns π

3 , 2π

3 , π

3 and 2π

3 , and using Equation (1), we compute indv(φ) = 1−
1

2π

(
π

3 +
2π

3 + π

3 +
2π

3

)
= 0.

FIGURE 17.

6. PROOFS OF TWO THEOREMS

Proof of Theorem 11. Suppose that the pair of triangles of K containing e is a sim-
ple allowable adjacency. To show that φ is continuous at e is a matter of checking
each of the nine cases shown in Figure 2, though at present we need to consider
all possible acute triangles, not only the equilateral triangles seen in the figure. We
will consider two of these nine cases, leaving to the reader the other cases, which
are similar.

Without loss of generality, we assume that the vertices of the edge e are v=(0,0)
and w = (0,1). The third vertices of the triangles to the left and right of e are
denoted a and b, respectively. Because all triangles under consideration are acute,
then a and b each has y-coordinate strictly between 0 and 1, and both points are
outside the circle of radius 1

2 centered at the midpoint of edge e; see Figure 18,
which shows two possibilities for a, but labels only one possible m+

v,e to avoid
clutter.

FIGURE 18.
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The first case we consider is on the left of the bottom row of Figure 2, and is
also seen in Figure 18. We observe that by the definition of triangles with simplex-
arrows, the endpoints of m−v,e are both at midpoints of edges, which means that the
vector representing m−v,e is in the direction of the positive y-axis. By looking at
the extreme cases for m+

v,e, which occurs on the one hand when a has y-coordinate
close to 1 and x-coordinate very far in the negative direction, and on the other hand
when a has both x-coordinate and y-coordinate close to 0, we see that the vector
representing m+

v,e can be any vector ending in the interior of the first quadrant. As
such, we see that the smaller angle between the vectors in representing m−v,e and
m+

v,e is less than π

2 , and it follows from Remark 10 (1) that the simplexwise vector
field φ is continuous at e.

The other three cases in the bottom row of Figure 2 other than the source and
the sink are similar to the above case, and we omit the details.

The second case we consider is in the middle of the top row of Figure 2, and is
also seen in each of the parts of Figure 19, where to avoid clutter the dashed lines
and circle in Figure 18 are not show here, but the same restrictions on a and b still
apply. By looking at extreme cases (which are not shown in Figure 19), we see
that the vector representing m−v,e can be any vector ending in the interior of the third
quadrant, and the vector representing m+

v,e can be any vector ending in the interior
of the second quadrant. The smaller angle between the two vectors representing
m−v,e and m+

v,e is not necessarily less than π

2 , and so we cannot use Remark 10 (1)
in this case. Rather, we consider each of the other four vectors involved in the
four parts of the definition of continuity, as seen in the four parts of Figure 19. In
each part of this figure we see one of the other four vectors shown dashed; to avoid
clutter, the simplex-arrows m−v,e and m+

v,e are not labeled, but, as usual, are shown
solid.

(ii) (iii) (iv)(i)

FIGURE 19.

First, as seen in Figure 19 (i), the vector representing R
α
−
v,e
(m−v,e) is in the di-

rection of the negative y-axis. It follows that the vectors representing all three of
m−v,e, m+

v,e and R
α
−
v,e
(m−v,e) are in an open half-plane bounded by a line obtained by

rotating the y-axis about the origin counterclockwise very slightly.
Second, as seen in Figure 19 (ii), the vector representing R

α
−
w,e
(m−w,e) can be

any vector ending in the interior of the third quadrant. It follows that the vectors
representing all three of m−v,e, m+

v,e and R
α
−
w,e
(m−w,e) are in the open half-plane to the

left of the y-axis.
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Third, as seen in Figure 19 (iii), the vector representing R−α
+
v,e
(m+

v,e) is in the
direction of the positive y-axis. It follows that the vectors representing all three of
m−v,e, m+

v,e and R−α
+
v,e
(m+

v,e) are in an open half-plane bounded by a line obtained by
rotating the y-axis about the origin clockwise very slightly.

Fourth, as seen in Figure 19 (iv), the vector representing R−α
+
w,e
(m+

w,e) can be
any vector ending in the interior of the second quadrant. It follows that the vectors
representing all three of m−v,e, m+

v,e and R−α
+
w,e
(m+

w,e) are in the open half-plane to the
left of the y-axis.

The other four cases in the top row of Figure 2 are similar to the above case, and
we omit the details. �

Prior to the proof of Theorem 16, we have the following remark about a median
in a triangle; Part (1) of the remark can be verified using Calculus, and Part (2)
follows from Part (1).

Remark 17. Let σ be a triangle with vertices a, b and v, and with median from
b to the opposing edge, and let δ be the angle between this median and the edge
with vertices b and v, as seen in Figure 20. Let α be the angle at v, and let ra and
rb denote the lengths of the edges from v to each of a and b, respectively. Suppose
that α < π

2 .
(1) If ra = rb, then the largest possible value of δ is π

6 , which occurs only when
α = π

3 .
(2) If ra < rb, then δ < π

6 .
♦

FIGURE 20.

Proof of Theorem 16. The proof starts by taking star(v,K), cutting along the edges
containing the vertex, and then flatten out the star into the plane, so that the chosen
orientation of star(v,K) corresponds to the orientation of R2, where we recognize
that there might be gaps or overlaps among the triangles with simplex-arrows after
flattening, and that the order of the triangles might not be preserved; we call this
flattened star B, where we continue to use v to denote the common vertex of B.
The key observation is that for each edge e in star(v,K) that contains v, we can
determine if the pair v and e is admissible, and if yes we can compute βv,e, using
the triangles in B rather than the triangles in star(v,K), where the difference is
that in B, we rotate triangles around v by whatever angle is needed so that the
edge on the counterclockwise side of one triangle lines up with the edge of the
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counterclockwise side of the other triangle, and we then proceed exactly as before.
It follows that we can compute the index of v using B rather than star(v,K), where
the clockwise tile list around v in B is the same as the clockwise tile list around v
in star(v,K), which is [a1,a2, . . . ,ap].

We observe that B consists of an ordered list σ1, . . . ,σp of acute triangles with
simplex-arrows in the plane, where (1) all the triangles in the list intersect in the
vertex v, and (2) for each i ∈ {1, . . . , p}, the edge containing v on the clockwise
side of σi has the same length as the edge containing v on the counterclockwise
side of σi+1 , where addition is mod p. We call any such configuration of triangles
in plane a broken fan with simplex-arrows. See Figure 21 for an example of a
broken fan with simplex-arrows.

FIGURE 21.

Because φ is continuous, then by Remark 10 (2) we know that φ is admissible,
and it follows that the broken fan with simplex-arrows B is also admissible, in the
sense that it is admissible at every edge that contains v.

Let A denote the space of all admissible broken fans with simplex-arrows in
R2 with p triangles and with clockwise tile list [a1,a2, . . . ,ap]. We observe that the
function that takes each broken fan with simplex-arrows in A and assigns its index
at v is a continuous function. Because this function has integer values, it follows
that it is constant on each component of A . Hence, the theorem will be proved
if we can continuously deform the original broken fan with simplex-arrows B into
another broken fan with simplex-arrows E that that has all equilateral triangles,
where the deformation stays in A .

We now assume without loss of generality that the common vertex v of the
broken fan with simplex-arrows B is at the origin. Let W be the set of all the
vertices of all the triangles of B, excluding v. We will deform B by moving the
vertices in W , and keeping v fixed at the origin. The details of the deformation,
which has two parts, will be given below, where our work consists of showing that
the triangles in B are always acute and that B is always admissible throughout the
deformation.

For the first part of the deformation, let C1,C2, . . . ,Cm be the partition of W into
those subsets of vertices that are equidistant to the origin, where the vertices in C1
are tied for being the farthest from the origin among all the vertices in W , all the
vertices in C2 are tied for being the second farthest from the origin among all the
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vertices in W , and so on. For each i ∈ {1, . . . ,m}, all the vertices in Ci are on a
circle centered at the origin.

The first part of the deformation is done in steps, where for the first step, we
move all the vertices in C1 uniformly towards the origin, stopping when these ver-
tices are in C2; all the vertices in W other than those in C1 do not move during this
step. We claim that throughout this step of the first part of the deformation, all
triangles remain acute, and admissibility is preserved.

For acuteness, let a and b be vertices in W that together with v form a triangle
in B. There are three cases to consider. First, suppose that a,b ∈C1, in which case
this triangle stays similar to itself throughout this step of the deformation, and so
acuteness is preserved. Second, suppose that a,b /∈C1, in which case this triangle is
unchanged throughout this step of the deformation, and so acuteness is preserved.
Third, suppose that a ∈C1 and b /∈C1; reversing the roles of a and b is similar, and
we omit that case. There are now two subcases, depending upon whether b ∈ C2
or not, where if not then b is closer to the origin than C2, by the definition of C2;
see the two parts of Figure 22. We consider the first subcase; the second subcase
is similar, and we omit the details. We know that at the start of this step of the
deformation the point b is closer to the origin than a, and hence, the angle at a is
smaller than the angle at b. At the end of this step of the deformation the point
a will be in C2, and so a stays farther from the origin than b except at the end
of the deformation, at which point a and b are equidistant from the orgin, and so
throughout this step of the deformation, the angle at b gets smaller, and the angle
at a gets larger, where the angle at a stays less than the angle at b except at the end
of the deformation, at which point the angles at a and b will be equal. Given that
the angles at a and b were originally less than π

2 , it follows that that will still be the
case throughout this step, so that acuteness is preserved.

(ii)(i)
FIGURE 22.

To show that admissibility is preserved, recall that by Theorem 11, we know the
32 simple allowable adjacencies in Figure 16 are always continuous, because the
triangles stay acute throughout this step, and hence they are admissible throughout
this step as well. Moreover, it can be verified that a down-sink and an up-source
are also always admissible (though not always continuous), using the same type
of argument used in the proof of Theorem 11; we omit the details. By contrast,
a down-source and an up-sink are not in general always admissible (as can be
seen from a variation of Figure 12), but we now show that in the present context
admissibility is preserved for any down-source; up-sinks are similar, and here too
we omit the details.
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Suppose that for some i∈ {1, . . . , p}, the triangles σi−1 and σi of B form a down-
source, as seen in Figure 23; let angles δ

−
i , δ

+
i and αi−1 be as seen in the figure.

To show that admissibility is preserved for this edge throughout this step of the
first part of the deformation, we need to verify that Rαi−1(mi−1) and mi are not
negative multiples of each other throughout this step of the deformation. Because
φ is continuous, we know that for the initial broken fan with simplex-arrows B,
the three vectors representing mi−1, mi and Rαi−1(mi−1) are contained in an open
half-plane. It follows that at the start of this step of the deformation, we have
δ
−
i +δ

+
i +αi−1 < π . To verify that admissibility is preserved throughout this step,

it will suffice to verify that δ
−
i +δ

+
i +αi−1 < π holds throughout this step.

FIGURE 23.

Clearly αi−1 does not change throughout this step of the deformation. There
are now six cases to consider. First, suppose that a,b,c ∈ C1, in which case both
triangles stay similar to themselves throughout this step of the deformation, and so
δ
−
i and δ

+
i are unchanged. Second, suppose that a,b,c /∈C1. Then throughout this

step of the deformation, in which case both triangles are unchanged, and so are δ
−
i

and δ
+
i .

Third, suppose that a,b∈C1 and c /∈C1, seen in Figure 24 (i); reversing the roles
of a and c is similar, and we omit that case. When a and b are moved closer to the
origin, we see that the triangle containing these two vertices stays similar to itself,
and so δ

+
i is unchanged. By Remark 17 (1), we know that δ

+
i ≤

π

6 throughout. At
the same time, it is clear that δ

−
i increases, but by Remark 17 (1) and (2) we see that

δ
−
i ≤

π

6 throughout this step of the deformation. Given that αi−1 <
π

2 , it follows that
throughout this step of the deformation, we have δ

−
i +δ

+
i +αi−1 <

π

6 +
π

6 +
π

2 < π .

(ii)(i) (iii) (iv)
FIGURE 24.

Fourth, suppose that a,c ∈C1 and b /∈C1, as in Figure 24 (ii). In this case, when
a and c are moved closer to the origin, It is clear that both δ

+
i and δ

−
i decrease

throughout this step of the deformation, and hence so does δ
−
i +δ

+
i +αi−1; because
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δ
−
i +δ

+
i +αi−1 < π at the start of this step of the deformation, the inequality holds

throughout.
Fifth, suppose that a ∈C1 and b,c /∈C1, as in Figure 24 (iii), or that the roles of

a and c are reversed. This case is similar to the fourth case, and we omit the details.
Sixth, suppose that b∈C1 and a,c /∈C1, as in Figure 24 (iv). This case is similar

to the third case, and we omit the details.
For the second step of the first part of the deformation, we move all the vertices

in C2 (including those formerly in C1) uniformly towards the origin, stopping when
these vertices are in C3; all the vertices in W other than those in C2 do not move
during this step. The same argument used in the first step shows that in this step
too acuteness and admissibility are preserved. We then move all the vertices in C3
uniformly to C4, and so on, until all the vertices are in the circle Cm.

For the second part of the deformation, we take each triangle, which is now
isosceles, and we move its vertices other than v, staying on the circle Cm, so that
if the angle at v is larger than π

3 , then the vertices should be moved closer to each
other until the angle at v equals π

3 , and if the angle at v is smaller than π

3 , then
the vertices should be moved farther apart from each other until the angle at v
equals π

3 . Clearly acuteness is preserved throughout this part of the deformation.
By Remark 17 (1), we know that δ

+
i ≤

π

6 and δ
−
i ≤

π

6 throughout this part of
the deformation. Given that αi−1 <

π

2 throughout this part of the deformation, it
follows that δ

−
i +δ

+
i +αi−1 <

π

6 +
π

6 +
π

2 < π throughout. �
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