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1. Social Choice Method
A social choice method (also known as social choice function) is a procedure that takes
as input the preferences among the candidates expressed by the voters, and gives as output
either a single winning candidate, or tied winning candidates, or a statement that there is
no winner.

2. Plurality Voting
Suppose an election has more than two candidates. Every voter votes for one candidate. The
method of Plurality Voting is that the candidate with the most votes wins the election.

3. Single Runoff Voting with Two Ballots
Suppose an election has more than two candidates. Every voter votes for one candidate. The
method of Single Runoff Voting is that if a candidate has more than 50% of the votes, that
candidate wins; if no candidate has more than 50% of the votes, then there is a runoff vote
between the two candidates with the highest numbers of votes in the first round.

4. Single Runoff Voting with One Ballot
Suppose an election has more than two candidates. Every voter ranks the candidates without
ties. The method of Single Runoff Voting is that if a candidate has more than 50% of the
first place rankings, that candidate wins; if no candidate has more than 50% of the first place
rankings, then all the candidates except the two with the largest number of the first place
rankings are dropped from the rankings, and the candidate who has more than 50% of the
first place rankings among the remaining two candidates is the winner.

5. Instant Runoff Voting
Suppose an election has more than two candidates. Every voter ranks the candidates without
ties. The method of Instant Runoff Voting (also called the Hare System, among other
names) is that if a candidate has more than 50% of the first place rankings, that candidate
wins; if no candidate has more than 50% of the first place rankings, then the candidate with
the least number of the first place rankings is dropped from the rankings, and the process
is repeated, as many times as needed, until a candidate has more than 50% of the first place
rankings among the remaining candidates, and that candidate is the winner.
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6. Borda Count Voting
Suppose an election has more than two candidates. Suppose that there are n candidates.
Every voter ranks the candidates without ties. The method of Borda Count Voting is that
each candidate receives n point for each first place ranking, and n−1 points for each second
place ranking, and so forth, concluding with 1 point for each last place ranking, and the
candidate with the highest total number of points wins the election.

7. Sequential Pairwise Voting with Fixed Agenda
Suppose an election has more than two candidates. Every voter ranks the candidates without
ties. The method of Sequential Pairwise Voting with Fixed Agenda is as follows. First,
the candidates are listed in some order (called an “agenda”). Next, the first two candidates
in the given order are compared, where the winner is the candidate who is ranked higher
than the other candidate on a majority of the ballots. Next, the winner among the first two
candidates is the compared with the third candidate in the given order, and the process is
repeated until the last candidate is compared with the winner of the previous comparisons,
and the final winner wins the election.

8. Condorcet Voting
Suppose an election has more than two candidates. Every voter ranks the candidates without
ties. The method of Condorcet Voting is that every pair of candidates are compared, where
the winner is the candidate who is ranked higher than the other candidate on a majority of
the ballots, and if a candidate defeats everyone else, that candidate wins the election; if no
candidate defeats everyone else, then there is no winner.

9. Copeland Voting
Suppose an election has more than two candidates. Every voter ranks the candidates without
ties. The method of Copeland Voting is that every pair of candidates are compared, where
the winner is the candidate who is ranked higher than the other candidate on a majority of
the ballots, and in every pairwise comparison, the candidate who defeats the other receives
1 point, and tied candidates receive 1

2
point each, and the candidate with the highest total

number of points wins the election.

10. Dictatorship
Suppose an election has more than two candidates, and that one voter is chosen as the
“dictator.” Every voter ranks the candidates without ties. The method of Dictatorship is
that the candidate with the highest ranking on the dictator’s ballot wins the election.
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11. Majority Criterion
A social choice method in which the voters rank the candidates without ties satisfies the
Majority Criterion, abbreviated MAJ, if the following holds: if candidate A receives a
majority of first place votes, then A is the winner.

12. Always a Winner Criterion
A social choice method in which the voters rank the candidates without ties satisfies the
Always aWinner Criterion, abbreviated AAW, if the following holds: the method always
produces a winner or a group of candidates tied for winner.

13. Condorcet Winner
Suppose an election has more than two candidates. Every voter ranks the candidates without
ties. ACondorcet winner is a candidate who, when compared with every other candidates,
is ranked higher than the other candidate on a majority of the ballots.

14. Condorcet Winner Criterion
A social choice method in which the voters rank the candidates without ties satisfies the
Condorcet Winner Criterion, abbreviated CWC, if the following holds: if candidate A is
a Condorcet winner, then A is the winner by the social choice method.

15. Monotonicity Criterion
A social choice method in which the voters rank the candidates without ties satisfies the
Monotonicity Criterion, abbreviated MON, if the following holds: if candidate A is the
winner (or tied for winner), and if one or more voters changes her ballot by exchanging A
with the candidate she previously ranked just above A, then A would still be the winner (or
tied for winner).

16. Pareto Criterion
A social choice method in which the voters rank the candidates without ties satisfies the
Pareto Criterion, abbreviated PAR, if the following holds: if all voters rank candidate A
higher than candidate B, then candidate B is not the winner (or tied for winner).
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17. Independence of Irrelevant Alternatives Criterion
A social choice method in which the voters rank the candidates without ties satisfies the In-
dependence of Irrelevant Alternatives Criterion, abbreviated IIA, if the following holds:
if candidate A is the winner (or tied for winner) and candidate B is not the winner (or tied
for winner), and if one or more voters changes her ballot but does not change which of A or
B is ranked higher than the other, then B would still not be the winner (or tied for winner).

18. Simple Impossibility Theorem
There is no social welfare method for three or more candidates in which the voters rank
the candidates without ties, and that satisfies Always a Winner Criterion, Independence of
Irrelevant Alternatives Criterion and Condorcet Winner Criterion.

19. Social Welfare Method
A social welfare method (also known as social welfare function) is a procedure that takes
as input the preferences among the candidates expressed by the voters, and gives as output
a ranking of the candidates, perhaps with ties.

20. Pareto Criterion for Social Welfare Methods
A social welfare method in which the voters rank the candidates without ties satisfies the
Pareto Criterion for Social Welfare Methods (also called Unanimity Criterion), abbre-
viated PARSWM, if the following holds: if all voters rank candidate A higher than candi-
date B, then candidate A is ranked higher than candidate B in the social welfare ranking.

21. Arrow’s Impossibility Theorem
There is no social choice method for three or more candidates in which the voters rank
the candidates without ties, and that satisfies Pareto Criterion for Social Welfare Methods,
Independence of Irrelevant Alternatives Criterion and Monotonicity Criterion, other than
dictatorship.

22. Approval Voting
Suppose an election has two or more candidates. Every voter votes for as many candidates
as she wants. The method of Approval Voting is that each candidate receives 1 point for
each vote, and the candidate with the highest total number of points wins the election.
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23. Range Voting
Suppose an election has two or more candidates. Every voter gives each candidate some
number of points within a preset range of possible scores. The method of Range Voting is
that the candidate with the highest total number of points wins the election.

24. Intensity of Independence of Irrelevant Alternatives Criterion
A social choice method in which the voters give each candidate some number of points
within a preset range of possible scores satisfies the Intensity of Independence of Irrel-
evant Alternatives Criterion, abbreviated IIIA, if the following holds: if candidate A is
the winner (or tied for winner) and candidate B is not the winner (or tied for winner), and
if one or more voters changes her ballot but does not change her intensity of preference for
A over B, then B would still not be the winner (or tied for winner).

25. Non-Manipulable Criterion
A social choicemethod in which the voters rank the candidates without ties satisfies theNon
Manipulable Criterion, abbreviated NM, if the following holds: there is no voter who can
change her ranking of the candidates from her sincere ranking to an insincere ranking and
by doing so cause there to be a winner who is higher ranked on her sincere ranking than
occurred when she voted sincerely.

26. Gibbard-Satterthwaite Theorem
There is no social choice method for three or more candidates in which the voters rank the
candidates without ties, and that satisfies Pareto Criterion and Non-Manipulable Criterion,
other than dictatorship.

27. Standard Quota
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively. The total population is P = P1 +
⋯ + Pn.

1. The standard quota for state Sk, denoted Qk, is
Pk
P
H .

2. The rounded-down-standard-quota for stateSk, denotedDk, is the result of rounding
Qk down to the nearest whole number.

3. The standard quota remainder for state Sk, denoted Rk, is Qk −Dk.
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28. Hamilton’s Method
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively.

Hamilton’s Method allocates the representatives in the following steps.

1. For each state, find its standard quota, rounded-down-standard-quota and standard
quota remainder.

2. Allocate representatives according to the rounded-down-standard-quotas.

3. Add up the representatives allocated in the previous step, and find the remaining num-
ber of representatives.

4. Allocate the remaining representatives by giving one representative at a time, starting
with the state with the largest standard quota remainder, then the state with the sec-
ond largest standard quota remainder, etc., until all the remaining representatives are
allocated.

29. Standard Divisor
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively. The total population is P = P1 +
⋯ + Pn.

1. The standard divisor for these states, denoted T , is P
H
.

2. The standard quota for state Sk equals
Pk
T
.

30. Rounding
Let x be a number. Let n be a whole number such that n ≤ x ≤ n + 1.

1. The number x rounded down is n.

2. The number x rounded up is n + 1.

3. The number x rounded (also called standardly rounded) is n if x ≤ n + 1
2
, and is

n + 1 if n + 1
2
< x.

6



31. Jefferson’s Method
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively.

Jefferson’s Method allocates the representatives in the following steps.

1. Find the standard divisor, denoted T .

2. For each state Sk, find its standard quota, which equals Pk
T
, and its rounded-down-

standard-quota, which is the whole number that is the result of doing rounding down
to the standard quota.

3. Allocate representatives according to the rounded-down-standard-quotas.

4. Add up the representatives allocated using the rounded-down-standard-quotas. If the
number of representatives allocated using the rounded-down-standard-quotas equals
H , the allocation is complete.

5. If the number of representatives allocated using the rounded-down-standard-quotas
does not equalH , choose a modified divisor, denoted T̂ , which is different from the
standard divisor. For each state Sk, find its modified quota, which equals Pk

T̂
, and its

rounded-down-modified-quota, which is the whole number that is the result of doing
rounding down to the modified quota.

6. Allocate representatives according to the rounded-down-modified-quotas.

7. Add up the representatives allocated using the rounded-down-modified-quotas. If the
number of representatives allocated using the rounded-down-modified-quotas equals
H , the allocation is complete.

8. If the number of representatives allocated using the rounded-down-modified-quotas
does not equalH , choose a new modified divisor, and try again, and keep trying until
a modified divisor is found so that the number of representatives allocated using the
rounded-down-modified-quotas equalsH
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32. Adams’ Method
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively.

Adams’ Method allocates the representatives in the following steps.

1. Find the standard divisor, denoted T .

2. For each stateSk, find its standard quota, which equals
Pk
T
, and its rounded-up-standard-

quota, which is the whole number that is the result of doing rounding up to the stan-
dard quota.

3. Allocate representatives according to the rounded-up-standard-quotas.

4. Add up the representatives allocated using the rounded-up-standard-quotas. If the
number of representatives allocated using the rounded-up-standard-quotas equalsH ,
the allocation is complete.

5. If the number of representatives allocated using the rounded-up-standard-quotas does
not equalH , choose a modified divisor, denoted T̂ , which is different from the stan-
dard divisor. For each state Sk, find its modified quota, which equals Pk

T̂
, and its

rounded-up-modified-quota, which is the whole number that is the result of doing
rounding up to the modified quota.

6. Allocate representatives according to the rounded-up-modified-quotas.

7. Add up the representatives allocated using the rounded-up-modified-quotas. If the
number of representatives allocated using the rounded-up-modified-quotas equalsH ,
the allocation is complete.

8. If the number of representatives allocated using the rounded-up-modified-quotas does
not equal H , choose a new modified divisor, and try again, and keep trying until a
modified divisor is found so that the number of representatives allocated using the
rounded-up-modified-quotas equalsH
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33. Webster’s Method
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively.

Webster’s Method allocates the representatives in the following steps.

1. Find the standard divisor, denoted T .

2. For each state Sk, find its standard quota, which equals
Pk
T
, and its standardly-rounded-

standard-quota, which is the whole number that is the result of doing standard round-
ing to the standard quota.

3. Allocate representatives according to the standardly-rounded-standard-quotas.

4. Add up the representatives allocated using the standardly-rounded-standard-quotas.
If the number of representatives allocated using the standardly-rounded-standard-
quotas equalsH , the allocation is complete.

5. If the number of representatives allocated using the standardly-rounded-standard-
quotas does not equal H , choose a modified divisor, denoted T̂ , which is different
from the standard divisor. For each state Sk, find its modified quota, which equals
Pk
T̂
, and its standardly-rounded-modified-quota, which is the whole number that is the

result of doing standard rounding to the modified quota.

6. Allocate representatives according to the standardly-rounded-modified-quotas.

7. Add up the representatives allocated using the standardly-rounded-modified-quotas.
If the number of representatives allocated using the standardly-rounded-modified-
quotas equalsH , the allocation is complete.

8. If the number of representatives allocated using the standardly-rounded-modified-
quotas does not equal H , choose a new modified divisor, and try again, and keep
trying until a modified divisor is found so that the number of representatives allo-
cated using the standardly-rounded-modified-quotas equalsH

34. Geometric Mean Rounding
1. Let a and b be two non-negative whole numbers. The geometric mean of a and b is

√

ab.

2. Let x be a number. Let n be a whole number such that n ≤ x ≤ n + 1. The number x
geometric mean rounded is n if x is less than or equal to the geometric mean of n
and n + 1, and is n + 1 if x is greater than the geometric mean of n and n + 1.
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35. Huntington-Hill Method
Suppose an apportionment has n states, denotedS1,… , Sn, andH representatives. Suppose
that the states have populations P1,… , Pn, respectively.

The Huntington-Hill Method allocates the representatives in the following steps.

1. Find the standard divisor, denoted T .

2. For each state Sk, find its standard quota, which equals Pk
T
, and its geometric-mean-

rounded-standard-quota, which is the whole number that is the result of doing geo-
metric mean rounding to the standard quota.

3. Allocate representatives according to the geometric-mean-rounded-standard-quotas.

4. Add up the representatives allocated using the geometric-mean-rounded-standard-
quotas. If the number of representatives allocated using the geometric-mean-
rounded-standard-quotas equalsH , the allocation is complete.

5. If the number of representatives allocated using the geometric-mean-rounded-
standard-quotas does not equal H , choose a modified divisor, denoted T̂ , which is
different from the standard divisor. For each state Sk, find its modified quota, which
equals Pk

T̂
, and its geometric-mean-rounded-modified-quota, which is the whole num-

ber that is the result of doing geometric mean rounding to the modified quota.

6. Allocate representatives according to the geometric-mean-rounded-modified-quotas.

7. Add up the representatives allocated using the geometric-mean-rounded-modified-
quotas. If the number of representatives allocated using the geometric-mean-
rounded-modified-quotas equalsH , the allocation is complete.

8. If the number of representatives allocated using the geometric-mean-rounded-
modified-quotas does not equal H , choose a new modified divisor, and try again,
and keep trying until a modified divisor is found so that the number of representa-
tives allocated using the geometric-mean-rounded-modified-quotas equalsH

36. Quota Criterion
An apportionment method satisfies the Quota Criterion, abbreviated QUO, if the follow-
ing holds: the number of representatives allocated to each state is either its rounded-down-
standard-quota or its rounded-up-standard-quota.

37. House Monotonicity Criterion
An apportionment method satisfies the House Monotone Criterion, abbreviated HMON,
if the following holds: if the number of representatives is increased, no state loses repre-
sentatives.
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38. Population Criterion
An apportionment method satisfies the Population Criterion, abbreviated POP, if the fol-
lowing holds: if the population of stateA increases and the population of state B decreases,
then it cannot happen that A loses representatives and B gains representatives or stays the
same.

39. One Version of Balinski-Young Theorem
An apportionment method that satisfies House Monotone Criterion and Population Crite-
rion will not satisfy Quota Criterion, and an apportionment method that satisfies Quota
Criterion will not satisfy House Monotone Criterion and Population Criterion.

40. Shortest Splitline Method
Suppose a state is to be divided into n districts.

The Shortest Splitline Method divides the state in the following steps.

1. Suppose n is even. For the first step, divide the state into two parts by finding the
shortest straight line that separates the state into two parts with equal population.
Each of these two parts will subsequently be divided up into n

2
districts.

2. Suppose n is odd. Let d be the result of rounding down n
2
, and let u be the result of

rounding up n
2
. For the first step, divide the state into two parts by finding the shortest

straight line that separates the state into two parts with populations in proportion
d∶u. Each of these two parts will subsequently be divided up into d and u districts,
respectively.

3. For the next step, take each of the two parts created above, and divide each of them
into two districts, using the same methods as above depending upon whether each
part has to be divided into an even or odd number of districts.

4. Continue until each part represents one district.
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1. Graphs
1. A graph G is a collection of objects, called vertices (singular: vertex), together with

another collection of objects, called edges, such that each edge connects two vertices
(which are not necessarily different).

2. A loop in a graph is an edge of the graph that has both endpoint the same.

3. The collection vertices of the graph G is denoted V (G).

4. The collection edges of the graph G is denoted E(G).

2. Graph Definitions
Let G be a graph.

1. Let v and w be vertices of G. The vertices v and w are adjacent is there is an edge
containing them.

2. Let v be a vertex of G. The degree of the vertex v, denoted deg(v), is the number of
edges that contain v. If a loop contains v, it is counted twice in the degree.

3. A graph H is a subgraph of G if all the vertices of H are vertices of G and all the
edges ofH are edges of G.

3. Other Types of Graphs
1. A directed graph G is a collection of objects, called vertices (singular: vertex), to-

gether with another collection of objects, called directed edges, such that each di-
rected edge starts at a vertex and ends at a vertex (which is not necessarily different
from the starting vertex).

2. Aweighted graphG is a graph (undirected) such that every edge is assigned a number,
called the weight of the edge.

4. Directed Graph Definitions
Let G be a directed graph.

1. Let v be a vertex of G. The in-degree of the vertex v, denoted degin(v), is the number
of directed edges that contain v as the end point.

2. Let v be a vertex ofG. The out-degree of the vertex v, denoted degout(v), is the number
of directed edges that contain v as the starting point.
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5. Total Weight
Let G be a weighted graph. Let H be a subgraph of G. The total weight of H is the sum
of the weights of the edges ofH .

6. Paths and Circuits
Let G be a graph.

1. A path in the graph G is an alternating sequence

v0, e0, v1, e1, v2,… , vk−1, ek−1, vk

of vertices and edges of G, which begins and ends with vertices, such that the two
vertices of each edge of the sequence are the vertices in the sequence before and after
the edge.

2. A circuit in the graph G is a path that starts and ends at the same vertex.

7. Components
Let G be a graph.

1. The graph G is connected if for every two vertices x and y, there is a path in G that
starts at x and ends at y.

2. A component of the graph G is a subgraph of G that is connected, and is that is not
contained in a larger subgraph of G that is connected.

8. Euler Paths and Circuits
Let G be a graph.

1. An Euler path in the graph G is a path in the graph that includes each edge of the
graph exactly once.

2. An Euler circuit in the graph G is a circuit in the graph that includes each edge of the
graph exactly once.
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9. Euler Paths Theorem
Let G be a graph.

1. The graph G has an Euler circuit if and only if every vertex of G has even degree; an
Euler circuit can start and end at any vertex of G.

2. The graph G has an Euler path that is not a circuit if and only if two vertices of G have
odd degree and all other vertices have even degree; an Euler past must start at one of
the vertices of odd degree and end at the other vertex of odd degree.

10. Vertex Coloring
LetG be a graph. A vertex coloring (also called a coloring) of the graphG is an assignment
of colors (often written as numbers) to the vertices of G such that adjacent vertices are
assigned different colors.

11. Chromatic Number
Let G be a graph.

1. Let k be a positive integer. A k-coloring of the graphG is a coloring ofG with exactly
k colors.

2. The chromatic number of the graph G, denoted �(G), is the smallest whole number
k such that G has a k-coloring.

12. Welsh and Powell Algorithm
Let G be a graph. This algorithm, called the Welsh and Powell Algorithm, finds a vertex
coloring of the graph; this vertex coloring might not have the smallest possible number of
colors.

1. Make a list of all the vertices of the graph G such that the degrees of the vertices are
in decreasing or equal order.

2. Color the first vertex on the list with color number 1.

3. Color the second vertex on the list with color number 1 if possible, and with color
number 2 otherwise.

4. Continue coloring one vertex at a time in the list, where each vertex is colored with
the same color as the previous vertex if possible, and with a new color otherwise.

5. Repeat the above procedure until all the vertices are colored.
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13. Cycle and Tree
Let G be a graph.

1. A cycle in the graph G is a circuit with no repeated vertices other than the starting and
ending vertex.

2. The graph G is a tree if it is connected and it does not have any cycles.

14. Spanning Trees
LetG be a graph. A spanning tree of the graphG is subgraph that is a tree and that contains
all the vertices of G.

15. Spanning Tree Theorem
Let G be a graph. If G is connected, then it has a spanning tree.

16. Minimum Spanning Trees
Let G be a weighted graph. Suppose that G is connected. A minimum spanning tree of
the graph G is a spanning tree of G that has the smallest total weight of any spanning tree
of G.

17. Prim’s Algorithm
Let G be a weighted graph. Suppose that G is connected. This algorithm, called Prim’s
Algorithm, finds a minimum spanning tree of the graph.

1. Choose an edge of G that has the smallest weight among all the edges of G; if there is
more than one such edge, choose one. Mark the chosen edge and its vertices.

2. Choose an edge of G that has the smallest weight among all the unmarked edges of G
that have one vertex marked and one vertex unmarked; if there is more than one such
edge, choose one. Mark the chosen edge and its vertices.

3. Repeat the above procedure until all the vertices are marked.
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18. Domination
Let G be a graph.

1. A dominating set of the graph G is a collection W of vertices of G such that every
vertex in G is either inW or is adjacent to a vertex inW .

2. The domination number of the graph G, denoted 
(G), is the smallest whole number
k such that G has a dominating set with k vertices.

19. Summation Notation
1. Let x1, x2, x3,… , xn be a collection of n numbers. Then the summation

x1 + x2 + x3 +⋯ + xn

is represented in summation notation by

n
∑

i=1
xi.

The number i in the above summation notation is the index of the summation.

2. The index in a summation notation does not need to start at the value 1; it can start and
end at any numbers. The step size in summation notation is always 1.

3. If it is clear from the context what the possible values of the index are, the notation

n
∑

i=1
xi

can be abbreviated as
∑

xi.

If it is clear from the context what the possible values x1, x2, x3,… , xn are, the nota-
tion

n
∑

i=1
xi

can be abbreviated even further as
∑

x.
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20. Average Value
Let x1, x2, x3,… , xn be a collection of n numbers. The average value of x1, x2, x3,… , xn
is x1 + x2 + x3 +⋯ + xn

n
,

which can also be written
1
n
(x1 + x2 + x3 +⋯ + xn).

Using summation notation, the average value can be written as any of
∑n

i=1 xi
n

and 1
n

n
∑

i=1
xi and

∑

xi
n

and 1
n
∑

xiand
∑

x
n

and 1
n
∑

x.

21. Handshake Theorem
LetG be a graph. Suppose thatG hasN vertices andL edges. Let v1,… , vN be the vertices
of G, and let k1,… , kN denote the degrees of the vertices, respectively. Then

N
∑

i=1
ki = 2L.

22. Vertices with Odd Degree
Let G be a graph. Then G has an even number of vertices with odd degree.

23. Average Degree
Let G be a graph. Suppose that G has N vertices. Let v1,… , vN be the vertices of G, and
let k1,… , kN denote the degrees of the vertices, respectively. The average degree of G,
denoted k̄ (and also ⟨k⟩), is defined by

k̄ = 1
N

N
∑

i=1
ki.

24. Shortest Path
Let G be a graph, and let v and w be vertices of G. A shortest path from v to w is a path
from v to w that has the fewest edges among all paths from v to w.
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25. Edge Distance
LetG be a graph, and let v andw be vertices ofG. The edge distance (also called distance)
from v to w is the number of edges of a shortest path from v to w.

26. Breadth-First Search Algorithm
Let G be a graph. Suppose that G is connected. Let A be a vertex of G. This algorithm,
called Breadth-First Search Algorithm (abbreviated BFS), finds the edge distance from
A to every other vertex of G.

The algorithm starts with the vertices of the graph unlabeled. The label on each vertex
at the end of the algorithm is the edge distance from A to that vertex.

1. Label A with value 0.

2. For each vertex that is adjacent to A, label it with value 1.

3. For each vertex that is unlabeled and is adjacent to a vertex labeled 1, label it with
value 2.

4. For each vertex that is unlabeled and is adjacent to a vertex labeled 2, label it with
value 3.

5. Continue the above process until all vertices are labeled.

6. The numerical label of each vertex is the edge distance from A to that vertex.
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27. Breadth-First Search Algorithm for Shortest Paths
Let G be a graph. Suppose that G is connected. Let A be a vertex of G. The Breadth-First
Search Algorithm can be used to find a shortest path from A to every other vertex of G.

First, do Breadth-First Search Algorithm starting with the vertex A. The algorithm will
produce a numerical label of each vertex of G, which is the edge distance from A to that
vertex.

Let B be a vertex of G other than A.

1. Suppose B has value r.

2. The vertex B must be adjacent to at least one vertex with label r− 1; choose one such
vertex, and call it vr−1.

3. The vertex vr−1 must be adjacent to at least one vertex with label r − 2; choose one
such vertex, and call it vr−2.

4. The vertex vr−2 must be adjacent to at least one vertex with label r − 3; choose one
such vertex, and call it vr−3.

5. Continue the above process until a vertex with value 0 is reached, and that vertex must
be A.

6. The path with vertices A, v1, v2,… , vr−1, B is a shortest path from A to B.

28. Average Distance and Diameter
Let G be a graph.

1. The average distance of G is the average of the edge distances between all pairs of
distinct vertices of G.

2. The diameter of G is the longest edge distance between any pair of distinct vertices
of G.
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29. Breadth-First Search Algorithm for Spanning Trees
Let G be a graph. Suppose that G is connected. This algorithm, called Breadth-First
Search Algorithm for Spanning Trees, finds a spanning tree of G.

The algorithm starts with both the vertices and the edges of the graph unmarked. The
highlighted edges at the end of the algorithm is a spanning tree.

1. Choose an arbitrary vertex of G, say A.

2. Label A with value 0.

3. For each vertex that is adjacent to A, label it with value 1.

4. For each vertex with label 1, choose a single edge that from it to the vertex labeled 0,
and highlight that edge.

5. For each vertex that is unlabeled and is adjacent to a vertex with label 1, label it with
value 2.

6. For each vertex with label 2, choose a single edge that from it to a vertex with label 1,
and highlight that edge.

7. For each vertex that is unlabeled and is adjacent to a vertex labeled 2, label it with
value 3.

8. For each vertex with label 3, choose a single edge that from it to a vertex with label 2,
and highlight that edge.

9. Continue the above process until all vertices are labeled, and every vertex has a high-
lighted edge from it to a vertex with a label with value one less.

10. The highlighted edges are a spanning tree of G.

30. Shortest Weighted Path
Let G be a weighted graph, and let v and w be vertices of G. A shortest weighted path
from v to w is a path from v to w that has the smallest total weight among all paths from v
to w.

31. Weighted Distance
Let G be a graph, and let v and w be vertices of G. The weighted distance (also called
distance) between v and w is the total weight of edges of a shortest weighted path from v
to w.
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32. Dijkstra’s Algorithm
Let G be a weighted graph. Suppose that all the edge weights are positive or zero. Suppose
that G is connected. Let A be a vertex of G. This algorithm, called Dijkstra’s Algorithm,
finds the weighted distance to every other vertex of G, and finds a shortest path from A to
every other vertex.

At every step of the algorithm, each vertex will be labeled with a numerical value from
0 to ∞, including possibly either of those. After each step of the algorithm, the number
labeling some of the vertices might be updated to a smaller number than the previous label.
The label on each vertex at the end of the algorithm is the weighted distance from A to that
vertex.

1. Label A with value 0, and label every other vertex with value ∞.

2. Circle vertex A. This vertex is the currently visited vertex.

3. For each vertex that is adjacent to A, update its numerical label to the distance to A,
and draw a small arrow at the vertex pointing to A.

4. Among all the vertices on G other than A, choose the one with the smallest current
numerical label. Circle that vertex, and designate it as the currently visited vertex.

5. Main Step: Suppose that the currently visited vertex is labeled X. Look at all the un-
circled vertices of G that are adjacent to X, one at a time (in any order). Let U be
such a vertex. Add the distance fromX to U to the numerical label ofX. If this sum
is less than the numerical label of U , then update the numerical label of U to the
sum, draw a small arrow at U pointing to X, and erase the previous small arrow at
U pointing to another vertex if there is such an arrow; if the sum is not less than the
numerical label of U , then do not change anything for U . Do that for all un-circled
vertices that are adjacent to X.

6. Among all the un-circled vertices of G, choose the one with the smallest current nu-
merical label. Circle that vertex, and designate it as the currently visited vertex.

7. Repeat the Main Step until all the vertices are circled.

8. When every vertex is circled, each vertex will have a numerical label that is less than
∞, and each vertex other than A will have a one small arrow pointing to another
vertex.

9. The final numerical label of each vertex is the weighted distance fromA to that vertex.

10. To find a shortest path from A to another vertex, start at that other vertex, and follow
the arrows back to A.

10



33. PageRank Algorithm
Let G be a directed graph. This algorithm, called the PageRank Algorithm, ranks the
vertices ofG by assigning a number to each vertex, where the vertices are then ranked from
highest assigned number to lowest assigned number.

The algorithm works by making an initial assignment of numbers to the vertices, and
then revising the numbers repeatedly until the desired numbers are found.

Let p be a number between 0 and 1. The number p is typically 0.85.

1. Suppose that G has n vertices. Assign each vertex an initial value of 1
n
.

2. If a vertex has m edges going out of it (that is, the out-degree of the vertex is m), then
give every edge going out of that vertex weight 1

m
.

3. Redistribute the number assigned to each vertex as follows. Suppose a vertex is as-
signed the number x, and it has m edges going out of it. Then transfer x ⋅ 1

m
to each of

the vertices that are reached by the m edges going out of that vertex. Do that simul-
taneously to all the vertices.

4. Modify the number assigned to each vertex as follows. Suppose that after the redistri-
bution a vertex is assigned the number y. Recall that there are n vertices. Thenmodify
the number assigned to this vertex to be p ⋅ y+ (1 − p) ⋅ 1

n
. Do that simultaneously to

all the vertices.

5. Repeat this two-step process (redistribution and modification, redistribution and mod-
ification, and so on) until it appears that the numbers assigned to the vertices do not
change with each new repetition of the two-step process.

6. The numbers assigned to each vertex in the previous step are the final numbers assigned
to each vertex.

7. A way to check for errors in calculation at each stage of the process is to use the fact
that at each stage of the process, the sum of the numbers assigned to the vertices is
always 1. If the sum is ever not 1, that indicates an error.
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34. Matrices Definitions
1. Amatrix (plural:matrices) is a rectangular array of numbers enclosed in square brack-

ets.

2. The size of the matrix is determined by the number of rows and the number of columns.

3. If a matrix has m rows and n columns, it is called an m × n matrix.

4. Let A be an m × n matrix. Then A is written in general as

A =
[ a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn

]

,

where the entry aij is the entry in the ith row and j th column.

5. The entry in the ith row and j th column of a matrix is referred to as the (i, j) entry in
the matrix.

6. A vector (also called a column vector) is an m × 1 matrix.

35. Adjacency Matrix of a Graph
Let G be a graph. Suppose that G has N vertices. Let v1,… , vN be the vertices of G. The
adjacency matrix ofG is theN ×N matrix that has the (i, j) entry in the matrix equal to 1
if the vertices vi and vj are adjacent and equal to 0 if the vertices vi and vj are not adjacent.

36. Adjacency Matrix of a Directed Graph
Let G be a directed graph. Suppose that G hasN vertices. Let v1,… , vN be the vertices of
G. The adjacency matrix of G is the N ×N matrix that has the (i, j) entry in the matrix
equal to the number of edges from vi to vj (which is 0 if there is no edge from vi to vj).
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37. Matrices: Addition and Scalar Multiplication

Let A =
[ a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn

]

and B =

[

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n
⋮ ⋮ ⋮ ⋮
bm1 bm2 ⋯ bmn

]

, and let c be a number.

1. A + B =

[

a11+b11 a12+b12 ⋯ a1n+b1n
a21+b21 a22+b22 ⋯ a2n+b2n

⋮ ⋮ ⋮ ⋮
am1+bm1 am2+bm2 ⋯ amn+bmn

]

.

2. A − B =

[

a11−b11 a12−b12 ⋯ a1n−b1n
a21−b21 a22−b22 ⋯ a2n−b2n

⋮ ⋮ ⋮ ⋮
am1−bm1 am2−bm2 ⋯ amn−bmn

]

.

3. −A =
[ −a11 −a12 ⋯ −a1n

−a21 −a22 ⋯ −a2n
⋮ ⋮ ⋮ ⋮

−am1 −am2 ⋯ −amn

]

.

4. cA =
[ ca11 ca12 ⋯ ca1n
ca21 ca22 ⋯ ca2n
⋮ ⋮ ⋮ ⋮

cam1 cam2 ⋯ camn

]

.

38. Matrices: Multiplication

Row times Column

[

a1 a2 ⋯ an
]

⋅

⎡

⎢

⎢

⎢

⎣

b1
b2
⋮
bn

⎤

⎥

⎥

⎥

⎦

= a1b1 + a2b2 +⋯ anbn.

General If A is an m × p matrix and B is a p × n matrix, then AB is an m × n matrix
obtained by multiplying each row in A by each column in B.

39. Transition Matrix of a Directed Graph
Let G be a directed graph. Suppose that G hasN vertices. Let v1,… , vN be the vertices of
G, and let k1,… , kN denote the degrees of the vertices, respectively. The transitionmatrix
ofG is theN ×N matrix that has the (j, i) entry in the matrix equal to 1

ki
if there is an edge

from vi to vj and equal to 0 if there is no edge from vi to vj .
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40. Probability Vector and Stochastic Matrix
1. A vector is a probability vector (also called a stochastic vector) if none of the values

in the vector is negative, and the sum of the values in the vector is 1.

2. A matrix is a stochastic matrix if none of the values in the matrix is negative, and the
sum of the values of every column in the matrix is 1.

41. PageRank Algorithm Using Matrices
Let G be a directed graph. This algorithm, called the PageRank Algorithm, ranks the
vertices ofG by assigning a number to each vertex, where the vertices are then ranked from
highest assigned number to lowest assigned number.

In the matrix version of the PageRank algorithm, rather than directly assigning a number
to each vertex, a probability vector is found that has as many entries as there are vertices in
G; the first entry of the probability vector is then assigned to the first vertex, and so on.

The matrix version of the PageRank algorithm works by defining an initial probability
vector, and then repeatedly multiplying it by a certain stochastic matrix, until the desired
probability vector is found.

Let p be a number between 0 and 1. The number p is typically 0.85.

1. Suppose that G has n vertices. The initial probability vector v is the vector with n
entries, and with each entry equalling 1

n
.

2. Let A be the transition matrix of the graph G. The matrix A is an n × n stochastic
matrix.

3. Let B be the n × n matrix that has all its entries equal to 1
n
. The matrix B is an n × n

stochastic matrix.

4. LetM = pA + (1 − p)B. The matrixM is an n × n stochastic matrix.

5. ComputeMv, then computeM2v, then computeM3v, and so on. Keep going, until
it appears that the resulting vector does not change with each new multiplication by
M . All these vectors are probability vectors.

6. The probability vector that does not change when multiplied byM , found in the pre-
vious step, is used to assign a number to each vertex, where the first entry in the
probability vector is assigned to the first vertex, and so on.

7. Aquicker way to find the desired probability vector is to find a probability vector v̄ such
thatMv̄ = v̄, though doing so requires a bit more algebra than the above method.
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42. The Square of the Adjacency Matrix
Let G be a directed graph. Suppose that G hasN vertices. Let v1,… , vN be the vertices of
G. Let A be the adjacency matrix of G.

1. The (i, i) element of A2, which is on the diagonal, is the degree of vertex vi.

2. If i and j are two different numbers, the (i, j) element of A2 is the number of paths of
length 2 from vi to vj .

43. Powers of the Adjacency Matrix
Let G be a directed graph. Suppose that G hasN vertices. Let v1,… , vN be the vertices of
G. LetA be the adjacency matrix ofG. Let r be a positive whole number. The (i, j) element
of Ar is the number of paths of length r from vi to vj .

44. Clique
LetG be a graph. A clique inG is a collectionQ of vertices inG that satisfies the following
three conditions.

1. The collection Q has at least three vertices.

2. Every vertex in Q is adjacent to every other vertex in Q.

3. The collectionQ is not contained in a larger collection of vertices such that very vertex
in the larger collection is adjacent to every other vertex in the larger collection.

45. Cliques and Matrices
Let G be a directed graph. Suppose that G hasN vertices. Let v1,… , vN be the vertices of
G. Let A be the adjacency matrix of G. The vertex vi is in a clique if and only if the (i, i)
element of A3 is non-zero.
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1. Statistics Terminology
1. A population is the complete collection of objects of interest.

2. A parameter of the population is a number that summarizes some aspect of the pop-
ulation.

3. A sample of the population is a subcollection of the population.

4. A statistic of the sample is a number that summarizes some aspect of the sample.

2. Frequency Table
Suppose that in a given set of numerical data, the values that appear (possibly more than
once each) are x1, x2,… , xn. A frequency table for the data is a chart of the form

x x1 x2 ⋯ xn
f f1 f2 ⋯ fn

,

where f1, f2,… , fn are the number of times each of x1, x2,… , xn occurs, in the data, re-
spectively.

3. Mean
Let x1, x2, x3,… , xn be a collection of n numbers. Themean of these numbers, denoted x̄,
is defined by

x̄ =
x1 + x2 + x3 +⋯ + xn

n
=

∑n
i=1 xi
n

=
∑

x
n

= 1
n
∑

x.

4. Mean from Frequency Table
Suppose that numerical data is given in a frequency table of the form

x x1 x2 ⋯ xn
f f1 f2 ⋯ fn

.

The mean of this data is computed by

x̄ =
f1x1 + f2x2 + f3x3 +⋯ + fnxn

f1 + f2 + f3 +⋯ + fn
=

∑n
i=1 fixi
∑n

i=1 fi
=

∑

fx
∑

f
.
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5. Sample Mean vs. Population Mean
Suppose that a sample is taken from a population.

1. The sample mean, which is the mean of the sample, is denoted x̄.

2. The population mean, which is the mean of the whole population, is denoted �.

6. Median
Let x1, x2, x3,… , xn be a collection of n numbers.

1. The median of these numbers, denoted x̃, is the number such that half of
x1, x2, x3,… , xn are above it and half of x1, x2, x3,… , xn are below it.

2. To find the median, first list the numbers x1, x2, x3,… , xn in increasing order.

1. Suppose n is odd. Then the median is middle number, which is the entry xi,
where i is obtained by rounding the fraction n

2
up to the nearest whole number.

2. Suppose n is even. Then the median is the average of the two middle numbers,
which is xi+xi+1

2
, where i is the whole number n

2
.

7. Mode
Let x1, x2, x3,… , xn be a collection of n numbers. Themode of these numbers is the value
that occurs most frequently among the numbers.

8. Range
Let x1, x2, x3,… , xn be a collection of n numbers. The range of these numbers is the dif-
ference between the largest value among these numbers and the smallest value among these
numbers.
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9. Sample Variance and Standard Deviation
Let x1, x2, x3,… , xn be a sample.

1. The sample variance of these numbers, denoted s2, is defined by

s2 =
(x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 +⋯ + (xn − x̄)2

n − 1

=
∑n

i=1(xi − x̄)
2

n − 1
=

∑

(x − x̄)2

n − 1
.

2. The sample standard deviation of these numbers, denoted s, is defined by

s =

√

(x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 +⋯ + (xn − x̄)2

n − 1

=

√

∑n
i=1(xi − x̄)2

n − 1
=

√

∑

(x − x̄)2

n − 1
.

3. Note that the denominator of the above fractions is n − 1.

10. Sample Variance and Standard Deviation from Frequency Table
Suppose that numerical data is given in a frequency table of the form

x x1 x2 ⋯ xn
f f1 f2 ⋯ fn

.

1. The sample variance of this data is computed by

s2 =
f1(x1 − x̄)2 + f2(x2 − x̄)2 + f3(x3 − x̄)2 +⋯ + fn(xn − x̄)2

f1 + f2 + f3 +⋯ + fn − 1

=
∑n

i=1 fi(xi − x̄)
2

(
∑n

i=1 fi
)

− 1
=

∑

f (x − x̄)2
(
∑

f
)

− 1
.

2. The sample standard deviation of this data is computed by

s =

√

f1(x1 − x̄)2 + f2(x2 − x̄)2 + f3(x3 − x̄)2 +⋯ + fn(xn − x̄)2

f1 + f2 + f3 +⋯ + fn − 1

=

√

√

√

√

∑n
i=1 fi(xi − x̄)2
(
∑n

i=1 fi
)

− 1
=

√

∑

f (x − x̄)2
(
∑

f
)

− 1
.
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11. Population Variance and Standard Deviation
Let x1, x2, x3,… , xn be a population.

1. The population variance of these numbers, denoted �2, is defined by

�2 =
(x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 +⋯ + (xn − x̄)2

n

=
∑n

i=1(xi − x̄)
2

n
=

∑

(x − x̄)2

n
.

2. The population standard deviation of these numbers, denoted �, is defined by

� =

√

(x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 +⋯ + (xn − x̄)2

n

=

√

∑n
i=1(xi − x̄)2

n
=

√

∑

(x − x̄)2

n
.

3. Note that the denominator of the above fractions is n.

12. Probability Terminology
1. A random variable is a numerical variable the value of which depends upon a random

phenomenon.

2. A sample space for a random variable is the set of all possible distinct outcomes for
the random variable.

3. An event for a random variable is a subcollection of the sample space.

4. The probability of an event is a number between 0 and 1 (including those two num-
bers) that measures the likelihood of the event occurring.

5. If E is an event, the probability of E is denoted P (E).

13. Discrete Probability
Suppose that a random variable has a finite sample space, in which all elements of the
sample space are equally likely. Let E be an event for this random variable. Then

P (E) = number of elements in E
number of elements in the sample space

= number of successful outcomes
total number of possible outcomes

.
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14. Set
1. A set is any collection of objects.

2. An element of a set is any object contained in the set.

3. A finite set S with elements a1, a2,… , an is written

S = {a1, a2,… , an}.

15. Subset
Let A and S be sets. The set A is a subset of S if every element of A is also an element of
S.

16. Complement
Let A and S be sets. Suppose that A is a subset of S. The complement of A in S, denoted
Ac, is the set consisting of all elements of S that are not in A.

17. Probability of a Complement
Let S be a sample space and let E be an event. Then

P (not E) = 1 − P (E) .

18. Intersection
Let A, B and S be sets. Suppose that A and B are subsets of S. The intersection of A and
B in S, denoted A ∩ B, is the set consisting of all elements of S that are in both A and B.

19. Probability of an Intersection
Let S be a sample space and let A and B be events. Suppose that A and B are independent.
Then

P (A andB) = P (A) ⋅ P (B) .

This formula is also written

P (A ∩ B) = P (A) ⋅ P (B) .

20. Union
Let A, B and S be sets. Suppose that A and B are subsets of S. The union of A and B in S,
denoted A ∪ B, is the set consisting of all elements of S that are in either A or B or both.
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21. Disjoint
Let A, B and S be sets. Suppose that A and B are subsets of S. The sets A and B are
disjoint (also called mutually exclusive) if there are no elements of S that are in both A
and B.

22. Probability of a Disjoint Union
Let S be a sample space and letA andB be events. Suppose thatA andB are disjoint. Then

P (A or B) = P (A) + P (B) .

This formula is also written

P (A ∪ B) = P (A) + P (B) .

23. Probability of a Union
Let S be a sample space and let A and B be events. Then

P (A or B) = P (A) + P (B) − P (A ∩ B) .

This formula is also written

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) .

24. Probability Density Function
A probability density function (abbreviated PDF) is a function that allows us to compute
the probability of a continuous random variable X.

A probability density function satisfies the following conditions.

1. The probability density function is continuous.

2. The probability density function is never negative.

3. The area under the whole probability density function and above the x-axis is 1.

4. If a and b are numbers such that a < b, then P (a < X < b) is the area under the
probability density function and above the x-axis between the values x = a and
x = b.
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25. Normal Distribution
The normal distribution (also knows as the Gaussian distribution, or bell-shaped
curve), is a type of probability density function that is very widely used in probability
and statistics.

1. Each normal distribution is determined by two parameters, which are the mean, de-
noted �, and the standard deviation, denoted �. The value of � can be any number,
and the value of � must be positive.

2. The normal distribution with mean � and standard deviation � is denotedN(�, �).

3. All normal distributions have similar shapes. The choice of � moves the normal distri-
bution to the right or left. The choice of � makes the normal distribution either taller
and thinner, or shorter and wider.

4. Some normal distributions are shown in below.
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26. Standard Normal Distribution
1. The standard normal distribution is the normal distribution with � = 0 and � = 1.

The standard normal distribution is denotedN(0, 1), also writtenN(� = 0, � = 1).

2. The graph of the standard normal distribution is shown below.

27. Z-Score Cutoff Points
Let c be a positive number less than 0.5.

1. The number zc is defined to be the number such that P
(

Z > zc
)

= c.

2. By symmetry, it follows that P
(

Z < −zc
)

= c.

3. To find zc, it is easier to find −zc first, and then obtain zc by negating −zc.
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28. Standard Z-Scores
Here are the Z-scores for some standard intervals.

Size of Interval: 90%

Name Top Middle Bottom
Interval [−1.282,∞) [−1.645, 1.645] (−∞, 1.282]

Size of Interval: 95%

Name Top Middle Bottom
Interval [−1.645,∞) [−1.960, 1.960] (−∞, 1.645]

Size of Interval: 99%

Name Top Middle Bottom
Interval [−2.326,∞) [−2.576, 2.576] (−∞, 2.326]

29. X-Value to Z-Score: Generic
Let X be a random variable. Suppose X follows a normal distribution with mean � and
standard deviation �. This normal distribution is transformed to the standard normal distri-
bution via the transformation

Z =
X − �
�

.

The value of Z obtained in this way is called the Z-score for X.

30. Probability for X-Values
Let X be a random variable. Suppose X follows a normal distribution with mean � and
standard deviation �. Let a and b be numbers. Suppose a < b.

1.
P (X < b) = P

(

Z <
b − �
�

)

.

2.
P (a < X) = P

(a − �
�

< Z
)

= 1 − P
(

Z <
a − �
�

)

.

3.

P (a < X < b) = P
(

a − �
�

< Z <
b − �
�

)

= P
(

Z <
b − �
�

)

− P
(

Z <
a − �
�

)

.
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31. 68-95-99.7 Rule
Let X be a random variable. Suppose X follows a normal distribution with mean � and
standard deviation �. The following probabilities are called the 68-95-99.7 Rule.

1.
P (� − � < X < � + �) ≈ 0.68 = 68%.

2.
P (� − 2� < X < � + 2�) ≈ 0.95 = 95%.

3.
P (� − 3� < X < � + 3�) ≈ 0.997 = 99.7%.

32. Z-Score to X-Value: Generic
Let X be a random variable. Suppose X follows a normal distribution with mean � and
standard deviation �. Let Z be a Z-score for the standard normal distribution. Then Z is
transformed to the corresponding X-value via the transformation

X = � +Z�.

33. Distribution of Averages
Let X be a random variable (with any type of distribution). Suppose X has mean � and
standard deviation �.

Suppose thatX is sampled n times, and the mean X̄ is computed. If sampling and com-
puting the mean is done repeatedly, it leads to a new distribution, called the sampling dis-
tribution, which is the distribution of the mean X̄.

1. The mean of the sampling distribution is called the sample mean and is denoted �X̄ .

2. The standard deviation of the sampling distribution is called the sample standard
deviation (also known as the standard error) and is denoted �X̄ .

34. Central Limit Theorem
Let X be a random variable (with any type of distribution). Suppose X has mean � and
standard deviation �.

The Central Limit Theorem states that for large sample sizes n (generally 30 or more),
the sampling distribution is approximately a normal distribution, and that

�X̄ = � and �X̄ = �
√

n
.
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35. Point Estimate
A point estimate is an estimate of a single parameter regarding the population.

36. Confidence Interval: Basic Idea
Let X be a random variable. Suppose a sample is taken, with sample mean x̄.

1. The level of confidence (aka confidence level) for confidence intervals is a percentage
strictly between 0% and 100%. The larger the percentage, the more confident we are
in the result, though the harder it is to achieve that level of confidence. The level of
confidence is specified by a positive number � that is less than 1, where the level of
confidence equals 100(1 − �)%.

2. A confidence interval for the populationmean � at the 100(1−�)% level of confidence
is an interval of the form [x̄−E, x̄+E], for some numberE, such that the probability
that the interval [x̄ −E, x̄+E] actually contains the true value of � is 100(1 − �)%.

3. Themargin of error of a confidence interval of the form [x̄−E, x̄+E] is the number
E.

37. Confidence Intervals: Standard Z-Scores
Here are Z-scores for some standard confidence levels for confidence intervals.

Confidence level: 90%, � = 0.10

Name Top Middle Bottom
Interval [−1.282,∞) [−1.645, 1.645] (−∞, 1.282]

Confidence level: 95%, � = 0.05

Name Top Middle Bottom
Interval [−1.645,∞) [−1.960, 1.960] (−∞, 1.645]

Confidence level: 99%, � = 0.01

Name Top Middle Bottom
Interval [−2.326,∞) [−2.576, 2.576] (−∞, 2.326]

38. Confidence Intervals: Z-Scores
The Z-score confidence interval at the 100(1 − �)% level of confidence is

[

−z�∕2, z�∕2
]

.
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39. Confidence Intervals: Z-Score to X-Value
LetX be a random variable. SupposeX follows a normal distribution with mean � and stan-
dard deviation �. Suppose a sample of size n is taken. Let Z be a Z-score for the standard
normal distribution. Then for computing confidence intervals, the score Z is transformed
to the corresponding X-value via the transformation

X = x̄ +Z ⋅
�
√

n
.

If the population standard deviation � is not know, it is replaced by the sample standard
deviation s, yielding the transformation

X = x̄ +Z ⋅
s
√

n
.

40. Confidence Interval: Known Population Standard Deviation
LetX be a random variable. SupposeX follows a normal distribution with standard devia-
tion �. Suppose a sample of size n is taken, with sample mean x̄. The confidence interval
for the population mean � at the 100(1 − �)% level of confidence is

[

x̄ − z�∕2 ⋅
�
√

n
, x̄ + z�∕2 ⋅

�
√

n

]

.

41. Confidence Interval: Unknown Population Standard Deviation
Let X be a random variable. Suppose X follows a normal distribution. Suppose a sample
of size n is taken, with sample mean x̄ and sample standard deviation s. The confidence
interval for the population mean � at the 100(1 − �)% level of confidence is

[

x̄ − z�∕2 ⋅
s
√

n
, x̄ + z�∕2 ⋅

s
√

n

]

.
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42. Margin of Error: Known Population Standard Deviation
LetX be a random variable. SupposeX follows a normal distribution with standard devia-
tion �. Suppose a sample of size n is taken, with sample mean x̄. The margin of error for
the population mean � at the 100(1 − �)% level of confidence is

E = z�∕2 ⋅
�
√

n
.

The confidence interval can be written

[x̄ − E, x̄ + E].

43. Margin of Error: Unknown Population Standard Deviation
LetX be a random variable. SupposeX follows a normal distribution. Suppose a sample of
size n is taken, with sample mean x̄ and sample standard deviation s. Themargin of error
for the population mean � at the 100(1 − �)% level of confidence is

E = z�∕2 ⋅
s
√

n
.

The confidence interval can be written

[x̄ − E, x̄ + E].

44. Confidence Interval: Sample Size
Let X be a random variable. Suppose X follows a normal distribution with standard devi-
ation �. Let E be a positive number.

1. The minimum sample size n needed to obtain a confidence interval with margin of
error E and 100(1 − �)% level of confidence is

n =
(z�∕2)2�2

E2
.

2. The sample size obtained using the above formula must be rounded up to be a whole
number
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45. Hypothesis Testing: Basic Idea
Let X be a random variable. Suppose X follows a normal distribution. Suppose a sample
of size n is taken, with sample mean x̄.

1. The level of significance (aka significance level) for hypothesis testing is a percentage
strictly between 0% and 100%. The smaller the percentage, the more confident we are
in the result, though the harder it is to achieve that level of significance. The level of
significance is specified by a positive number � that is less than 1, where the level of
significance equals 100�%.

2. The null hypothesis, denotedH0, is the hypothesis we assume to be true unless there
is sufficient evidence to reject it.

3. The alternative hypothesis, denoted Ha, is the hypothesis we would support if there
is sufficient evidence, and only if there is sufficient evidence, to reject the null hy-
pothesis.

4. A hypothesis testing for the sample mean x̄ at the 100�% level of significance is a
procedure to determine whether there is sufficient evidence to deduce that the sam-
ple mean x̄ is sufficiently different from what the null hypothesis states that the null
hypothesis should be rejected.

46. Three Cases of Hypothesis Testing
There are three cases of hypothesis testing for the mean, depending upon the form that the
null hypothesis takes.

Let �0 be a number.

Left tail Two-sided Right tail
Actual Null Hypothesis H0∶ � ≥ �0 H0∶ � = �0 H0∶ � ≤ �0
Used Null Hypothesis H0∶ � = �0 H0∶ � = �0 H0∶ � = �0
Alternative Hypothesis Ha∶ � < �0 Ha∶ � ≠ �0 Ha∶ � > �0

The name of each of the three cases corresponds to the nature of where the region to reject
the null hypothesis is located.
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47. Hypothesis Testing: Z-Scores
Let �0 be a number. Let � be the level of significance for hypothesis testing.

The Z-scores for rejecting and not rejecting the null hypothesis are as follows.

Left tail Two-sided Right tail
Actual Null Hypothesis H0∶ � ≥ �0 H0∶ � = �0 H0∶ � ≤ �0
Used Null Hypothesis H0∶ � = �0 H0∶ � = �0 H0∶ � = �0
Alternative Hypothesis Ha∶ � < �0 Ha∶ � ≠ �0 Ha∶ � > �0
Non-Rejection Region

[

−z�,∞
) [

−z�∕2, z�∕2
] (

−∞, z�
]

Rejection Region
(

−∞,−z�
] (

−∞,−z�∕2
]

&
[

z�∕2,∞
) [

z�,∞
)

48. Hypothesis Testing: Standard Z-Scores
Here are Z-scores for some standard levels of significance for hypothesis testing.

Significance level: 10%

Left tail Two-sided Right tail
Null Hypothesis H0∶ � ≥ �0 H0∶ � = �0 H0∶ � ≤ �0
Alternative Hypothesis Ha∶ � < �0 Ha∶ � ≠ �0 Ha∶ � > �0
Non-Rejection Region [−1.282,∞) [−1.645, 1.645] (−∞, 1.282]
Rejection Region (−∞,−1.282] (−∞,−1.645]& [1.645,∞) [1.282,∞)

Significance level: 5%

Left tail Two-sided Right tail
Null Hypothesis H0∶ � ≥ �0 H0∶ � = �0 H0∶ � ≤ �0
Alternative Hypothesis Ha∶ � < �0 Ha∶ � ≠ �0 Ha∶ � > �0
Non-Rejection Region [−1.645,∞) [−1.960, 1.960] (−∞, 1.645]
Rejection Region (−∞,−1.645] (−∞,−1.960]& [1.960,∞) [1.645,∞)

Significance level: 1%

Left tail Two-sided Right tail
Null Hypothesis H0∶ � ≥ �0 H0∶ � = �0 H0∶ � ≤ �0
Alternative Hypothesis Ha∶ � < �0 Ha∶ � ≠ �0 Ha∶ � > �0
Non-Rejection Region [−2.326,∞) [−2.576, 2.576] (−∞, 2.326]
Rejection Region (−∞,−2.326] (−∞,−2.576]& [2.576,∞) [2.326,∞)
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49. Hypothesis Testing: Z-Score to X-Value
Let X be a random variable. Suppose X follows a normal distribution with mean � and
standard deviation �. Suppose a sample of size n is taken. LetZ be aZ-score in the standard
normal distribution. Then for hypothesis testing with Null Hypothesis � = �0 (or � ≤ �0 or
� ≥ �0), the score Z is transformed to the corresponding X-value via the transformation

X = �0 +Z ⋅
�
√

n
.

If the population standard deviation � is not know, it is replaced by the sample standard
deviation s, yielding the transformation

X = �0 +Z ⋅
s
√

n
.
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50. Hypothesis Testing: X-Values
Let �0 be a number. Let � be the level of significance for hypothesis testing.

The X-values for rejecting and not rejecting the null hypothesis are as follows.
If x̄ is in the non-rejection region, the null hypothesis is not rejected, and if x̄ is in the

rejection region, the null hypothesis is rejected.

Left tail
Null Hypothesis: � ≥ �0
Alternative Hypothesis: � < �0
Non-Rejection Region:

[

�0 − z� ⋅
s
√

n
,∞

)

Rejection Region:
(

−∞, �0 − z� ⋅
s
√

n

]

.

Two-sided
Null Hypothesis: � ≥ �0
Alternative Hypothesis: � < �0
Non-Rejection Region:

[

�0 − z�∕2 ⋅
s
√

n
, �0 + z�∕2 ⋅

s
√

n

]

Rejection Region:
(

−∞, �0 − z�∕2 ⋅
s
√

n

]

&
[

�0 + z�∕2 ⋅
s
√

n
,∞

)

.

Right tail
Null Hypothesis: � ≥ �0
Alternative Hypothesis: � < �0
Non-Rejection Region:

(

−∞, �0 + z� ⋅
s
√

n

]

Rejection Region:
[

�0 + z� ⋅
s
√

n
,∞

)

.
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51. Hypothesis Testing: Errors
The possible errors in hypothesis testing are summarized in the following chart.

Actually True or False
H0 is true H0 is false

Our Decision H0 is not rejected Good Type 2 Error
H0 is rejected Type 1 Error Good

1. A type 1 error for hypothesis testing is whenwe reject the null hypothesis, even though
it is actually true.

2. A type 2 error for hypothesis testing is when we do not reject the null hypothesis even
though it is false.
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