MATH 141 Calculus I Graphing Functions

Step	Example $f(x) = x^3 - 3x^2 - 9x + 7.$
Step 1: Find $f'(x)$	$f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3).$
Step 2: Find $f''(x)$	f''(x) = 6x - 6 = 6(x - 1).
Step 3: Find the critical points The critical points are where f'(x) = 0 or $f'(x)$ does not exist (though $f(x)$ exists).	f'(x) always exists in this case. f'(x) = 0. So $3(x + 1)(x - 3) = 0$. Critical points: $x = -1$ and $x = 3$.
Step 4: Make a chart for $f'(x)$ Label the critical points, and where $f'(x)$ is positive and where it is negative.	f'(x) + - +
Step 5: Find where $f(x)$ is increasing and where it is decreasing	Increasing: $(-\infty, -1)$ and $(3, \infty)$. Decreasing: $(-1, 3)$.
Step 6: Find the local maxima and local minima of $f(x)$	Local maximum: $x = -1$. Local minimum: $x = 3$.

Step 7: Find the second critical points

The second critical points are where f''(x) = 0 or f''(x) does not exist (though f(x) exists).

f''(x) always exists in this case. f''(x) = 0. So 6(x - 1) = 0. Second critical points: x = 1.

Step 13: Plot f(x) at the critical points and second critical points

Step 14: Sketch the graph of f(x)

Use the combined chart to draw each part of the curve between the critical points and second critical points.

