MATH 241 Vector Calculus Spring 2016 Study Sheet for Final Exam

- This study sheet will not be allowed during the test.
- Books, notes and online resources will not be allowed during the test.
- Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

Topics

- 1. Double integrals and iterated integrals.
- 2. Polar coordinates.
- 3. Double integrals in polar coordinates.
- 4. Vector fields.
- 5. Divergence and curl.
- 6. Conservative vector fields.
- 7. Line integrals of functions and of vector fields.
- 8. Fundamental Theorem of Calculus for Line Integrals.
- 9. Path Independent Line Integrals.
- 10. Green's Theorem.
- 11. Sequences.
- 12. Series (convergence of series, telescoping series, geometric series, *p*-series).
- 13. Convergence tests for series (Divergence Test, Comparison Test, Limit Comparison Test, Integral Test, Alternating Series Test, Ratio Test).
- 14. Power series (interval of convergence and radius of convergence).
- 15. Differentiation and integration of power series.
- 16. Taylor series and Maclaurin Series.

Practice Problems from Stewart, Calculus Concepts and Contexts, 4th ed.

- **Section 12.1:** 1, 3, 5, 9a
- **Section 12.2:** 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31
- **Section 12.3:** 1, 3, 5, 7, 9, 15, 17, 19, 21, 23, 25, 27, 29, 31, 41, 43, 45, 47, 49, 51
- **Appendix H.1:** 1, 3, 5, 7, 9, 11
- **Section 12.4:** 5, 7, 9, 11, 13, 15, 17, 19, 27, 29, 31
- **Section 13.1:** 1, 3, 5, 11–14, 15–18, 29–32
- **Section 13.2:** 1, 3, 5, 7, 9, 11, 13, 15, 19, 21
- **Section 13.3:** 3, 5, 7, 9, 13, 15, 17
- **Section 13.4:** 1, 3, 5, 7, 9, 11, 13
- **Section 13.5:** 1, 3, 5, 7, 13, 15, 17
- **Section 8.1:** 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 41, 43
- **Section 8.2:** 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 49, 51, 53, 65
- **Section 8.3:** 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31
- **Section 8.4:** 3, 5, 7, 9, 13, 21, 23, 25, 27, 29, 31, 33, 37
- **Section 8.5:** 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25
- **Section 8.7:** 5, 7, 9, 11, 13, 15, 17, 39, 43, 45, 47, 49

1. Double Integrals over Rectangles

1. Let $f: R \to \mathbb{R}$ be a function defined on a rectangle $R = [a, b] \times [c, d]$ in \mathbb{R}^2 . The **integral** of *f* over *R* is

$$
\iint\limits_R f(x, y) dA = \lim_{\substack{\max \Delta x_i \to 0 \\ \max \Delta y_j \to 0}} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A_{ij},
$$

provided the limit exists, and is the same, for all choices of Riemann sums. If this limit exists, the function f is **integrable**.

2. Every continuous function is integrable on any rectangle.

2. Iterated Integrals over Rectangles

Let $f: R \to \mathbb{R}$ be a function defined on a rectangle $R = [a, b] \times [c, d]$ in \mathbb{R}^2 . Suppose that f is continuous.

$$
\iint\limits_R f(x, y) \, dA = \int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy.
$$

3. Double Integrals and Iterated Integrals over General Regions

Let $f: D \to \mathbb{R}$ be a function defined on a closed bounded region *D* of \mathbb{R}^2 . Suppose that *f* is continuous.

Type I

Suppose that the region D is given by inequalities of the form

$$
a \le x \le b
$$

$$
g_1(x) \le y \le g_2(x).
$$

Then

$$
\iint\limits_{D} f(x, y) dA = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx.
$$

Type II

Suppose that the region D is given by inequalities of the form

$$
c \le y \le d
$$

$$
h_1(y) \le y \le h_2(y).
$$

Then

$$
\iint\limits_{D} f(x, y) dA = \int_{c}^{d} \int_{h_1(y)}^{h_2(y)} f(x, y) dx dy.
$$

4. Basic Rules for Double Integrals

Let *f*, *g* : $D \to \mathbb{R}$ be functions defined on a closed bounded region *D* of \mathbb{R}^2 , and let $k \in \mathbb{R}$. Suppose that *f* and *g* are integrable.

1.
$$
\iint_{D} [f(x, y) + g(x, y)] dA = \iint_{D} f(x, y) dA + \iint_{D} g(x, y) dA.
$$

2.
$$
\iint_{D} [f(x, y) - g(x, y)] dA = \iint_{D} f(x, y) dA - \iint_{D} g(x, y) dA.
$$

3.
$$
\iint_{D} kf(x, y) dA = k \iint_{D} f(x, y) dA.
$$

4.
$$
\iint_{D} k dA = k \cdot \text{area}(D).
$$

5. Breaking up the Region for Double Integrals

Let $f: D \to \mathbb{R}$ be a function defined on a closed bounded region *D* of \mathbb{R}^2 . Suppose that *f* is integrable. Suppose that *D* is the union of two regions D_1 and D_2 that overlap at most on their boundaries.

$$
\iint\limits_{D} f(x, y) dA = \iint\limits_{D_1} f(x, y) dA + \iint\limits_{D_2} f(x, y) dA.
$$

6. Basic Inequalities for Double Integrals

Let $f, g : D \to \mathbb{R}$ be functions defined on a closed bounded region *D* of \mathbb{R}^2 . Suppose that *f* and *g* are integrable.

\n- **1.** If
$$
f(x, y) \ge 0
$$
 on *D*, then $\iint_D f(x, y) \, dA \ge 0$.
\n- **2.** If $f(x, y) \le g(x, y)$ on *D*, then $\iint_D f(x, y) \, dA \le \iint_D g(x, y) \, dA$.
\n- **3.** If $m \le f(x, y) \le M$ on *D*, then $m \cdot \text{area}(D) \le \iint_D f(x, y) \, dA \le M \cdot \text{area}(D)$.
\n

7. Polar Coordinates

Let (x, y) be the rectangular coordinates of a point in \mathbb{R}^2 , and let (r, θ) be the polar coordinates of the same point.

1.
$$
x = r \cos \theta
$$
 and $y = r \sin \theta$.

2.
$$
r = \sqrt{x^2 + y^2}
$$
 and $\tan \theta = \frac{y}{x}$.

8. Double Integrals in Polar Coordinates

Let *D* be a region of \mathbb{R}^2 defined by inequalities of the form

$$
\alpha \leq \theta \leq \beta
$$

$$
h_1(\theta) \leq r \leq h_2(\theta),
$$

and let $f : D \to \mathbb{R}$ be a function. Suppose that f is continuous.

$$
\iint\limits_{D} f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta.
$$

9. Vector Fields

- **1.** Let *n* ∈ ℕ. A **vector field** on ℝ^{*n*} is a function \mathbf{F} : ℝ^{*n*} → ℝ^{*n*}.
- **2.** Let $E \subseteq \mathbb{R}^n$ be a subset. A **vector field** on *E* is a function $F: E \to \mathbb{R}^n$.
- **3.** A vector-field has the form

$$
\boldsymbol{F}(x_1, x_2, \ldots, x_n) = \begin{bmatrix} f_1(x_1, x_2, \ldots, x_n) \\ f_2(x_1, x_2, \ldots, x_n) \\ \vdots \\ f_n(x_1, x_2, \ldots, x_n) \end{bmatrix}.
$$

4. A vector field on \mathbb{R}^3 has the form

$$
F(x, y, y) = \begin{bmatrix} P(x, y, z) \\ Q(x, y, z) \\ R(x, y, z) \end{bmatrix}.
$$

5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. Then the gradient ∇f is a vector field on \mathbb{R}^n .

10. Divergence and Curl

Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field on \mathbb{R}^3 . Suppose that $F(x, y, z)$ is given by

$$
F(x, y, z) = \begin{bmatrix} P(x,y,z) \\ Q(x,y,z) \\ R(x,y,z) \end{bmatrix}.
$$

Divergence of F

$$
\operatorname{div} \boldsymbol{F} = \nabla \cdot \boldsymbol{F}(x, y, z) = \frac{\partial \boldsymbol{P}}{\partial x} + \frac{\partial \boldsymbol{Q}}{\partial y} + \frac{\partial \boldsymbol{R}}{\partial z}.
$$

Curl of *𝑭*

$$
\text{curl } \mathbf{F} = \nabla \times \mathbf{F}(x, y, z) = \det \begin{bmatrix} \mathbf{i} & \frac{\partial}{\partial x} & P \\ \mathbf{j} & \frac{\partial}{\partial y} & Q \\ \mathbf{k} & \frac{\partial}{\partial z} & R \end{bmatrix} = \begin{bmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \\ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial y} \\ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{bmatrix}
$$

.

11. Curl of the Gradient

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a function. Suppose that f has continuous second-order partial derivatives. Then curl $(\nabla f) = 0$, which means that it is constantly zero for all (x, y, z) .

12. Conservative Vector Fields

Let $E \subseteq \mathbb{R}^n$ be an open subset, and let $F : E \to \mathbb{R}^n$ be a vector field on *E*. The vector field *F* is **conservative** if $F = \nabla f$ for some some function $f : E \to \mathbb{R}$; the function f is called a **potential function** for *F*.

13. When is a Vector Field Conservative

Let $E \subseteq \mathbb{R}^n$ be an open subset, and let $F: E \to \mathbb{R}^n$ be a vector field on *E*. Suppose that *E* is a simply connected region of \mathbb{R}^3 , and that the components of \bm{F} have continuous partial derivatives. Then \vec{F} is conservative if and only if curl $\vec{F} = 0$.

14. Finding a Potential Function for a Conservative Vector Field

Let *E* ⊆ ℝ³ be an open subset, and let \vec{F} : $E \to \mathbb{R}^3$ be a vector field on *E*. Suppose that $F(x, y, z) =$ $\sum_{\text{L}} P(x, y, z)$ $Q(x, y, z)$ $R(x, y, z)$.
1 , and that *F* is conservative. To find a function *f* such that $F = \nabla f$, solve the three equations

$$
\frac{\partial f}{\partial x} = P(x, y, z)
$$
 and $\frac{\partial f}{\partial y} = Q(x, y, z)$ and $\frac{\partial f}{\partial z} = R(x, y, z)$

by taking the antiderivative of one these equations with respect to the relevant variable, and then substitute the result into the other two equations.

15. Conservative Vector Fields on ℝ²

Let $E \subseteq \mathbb{R}^2$ be a simply connected open subset, and let $F: E \to \mathbb{R}^2$ be a vector field on *E*. Suppose that $F(x, y) = \begin{bmatrix} P(x, y) \\ Q(x, y) \end{bmatrix}$ $Q(x,y)$ 1. Define the vector field $\hat{F}: E \times \mathbb{R} \to \mathbb{R}^3$ by the formula $\hat{F}(x, y, z) =$ $\frac{1}{\Gamma}$ $P(x, y)$ $Q(x, y)$ 0 $\frac{1}{1}$. Then $F(x, y)$ is conservative if and only if $\hat{F}(x, y, z)$ is conservative if and only if $\frac{\partial Q}{\partial x} - \frac{\partial F}{\partial y}$ $\frac{\partial P}{\partial y} =$ 0.

16. Line Integrals of Functions

Let $E \subseteq \mathbb{R}^2$ be an open subset, and let $r: E \to \mathbb{R}$ be a function. Let *C* be a smooth curve in *E* given by a vector-valued function $\mathbf{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ $y(t)$ $\rightarrow \infty$ be a function. Ect C be a smooth curve in E defined on the interval [a, b]. There are three types of line integrals of *𝑓* along *𝐶*.

Line Integral with Respect to Arc Length

$$
\int_C f(x, y) ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt.
$$

Line Integral with Respect to *x*

$$
\int_C f(x, y) dx = \int_a^b f(\mathbf{r}(t)) x'(t) dt.
$$

Line Integral with Respect to *y*

$$
\int_C f(x, y) dy = \int_a^b f(\mathbf{r}(t)) y'(t) dt.
$$

17. Line Integrals of Vector Fields

Let $E \subseteq \mathbb{R}^2$ be an open subset, and let $F: E \to \mathbb{R}^2$ be a vector field on *E*. Suppose that $F(x, y) =$ $\overline{P}(x,y)$ $Q(x, y)$ \subseteq is be an open subset, and let $\Gamma: E \to \mathbb{R}$ be a vector held on *E*. Suppose a
[. Let *C* be a smooth curve in *E* given by a vector-valued function $r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ $y(t)$.a
1 defined on the interval [a, b]. Let $T(t)$ be the unit tangent vector to $r(t)$. There are two types of line integrals of \boldsymbol{F} along \boldsymbol{C} .

Tangential Line Integral

$$
\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt
$$
\n
$$
= \int_C P(x, y) \, dx + Q(x, y) \, dy.
$$

Normal Line Integral

$$
\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C -Q(x, y) \, dx + P(x, y) \, dy.
$$

18. Fundamental Theorem of Calculus for Line Integrals

Suppose $E \subseteq \mathbb{R}^2$ is an open subset, and suppose $f: E \to \mathbb{R}$ be a function. Suppose that f has continuous partial derivatives. Suppose C is a smooth curve in E given by a vector-valued function $\mathbf{r}(t)$ defined on the interval [a, b]. Then

$$
\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).
$$

19. Paths and Closed Curves

- **1.** A **path** in \mathbb{R}^2 is a continuous function of the form $\mathbf{r}: [a, b] \to \mathbb{R}^2$, for some closed bounded interval [a, b]. Similarly for paths in \mathbb{R}^3 .
- **2.** If \mathbf{r} : $[a, b] \to \mathbb{R}^2$ is a path, the **initial point** of \mathbf{r} is $\mathbf{r}(a)$, and the **terminal point** of \mathbf{r} is $\mathbf{r}(b)$.
- **3.** A **closed curve** in \mathbb{R}^2 is a path $\mathbf{r}: [a, b] \to \mathbb{R}^2$ such that $\mathbf{r}(a) = \mathbf{r}(b)$. Similarly for closed curves in \mathbb{R}^3 .
- **4.** A simple closed curve in \mathbb{R}^2 is a closed curve is a path $r : [a, b] \to \mathbb{R}^2$ such that r does not intersect itself on on $[a, b)$.
- 5. A simple closed curve in ℝ² is **positively oriented** if it is traversed in the counterclockwise direction.
- **6.** Let $E \subseteq \mathbb{R}^2$ be an open subset, and let $f : E \to \mathbb{R}$ be a function. Let *C* be a smooth simple closed curve in *E* given by a vector-valued function $\mathbf{r}(t)$ defined on the interval [*a*, *b*]. Because *C* is a simple closed curve, the line integral of *f* along *C* is denoted

$$
\oint_C f(x, y) \, ds.
$$

20. Green's Theorem

Let $E \subseteq \mathbb{R}^2$ be an open subset, and let $\mathbf{F} : E \to \mathbb{R}^2$ be a vector field on *E*. Suppose that $\mathbf{F}(x, y) =$ $\overline{P}(x,y)$ $Q(x, y)$ \subseteq is be an open subset, and let \vec{r} : \vec{r} \rightarrow is be a vector field on E : suppose that \vec{r} (\vec{x} , \vec{y}) \rightarrow . Suppose that *P* and *Q* have continuous partial derivatives. Let *C* be a positively ori piecewise smooth, simple closed curve in E given by a vector-valued function $\mathbf{r}(t)$ defined on the interval $[a, b]$. Let D be the region bounded by C .

Curl Version

$$
\iint\limits_{D} \text{curl } \mathbf{F} \cdot \mathbf{k} dA = \oint_{C} \mathbf{F} \cdot d\mathbf{r}
$$

$$
\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C} P(x, y) dx + Q(x, y) dy.
$$

Divergence Version

$$
\iint\limits_{D} \operatorname{div} \mathbf{F} dA = \oint_{C} \mathbf{F} \cdot \mathbf{n} ds
$$

$$
\iint\limits_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dA = \oint_{C} -Q(x, y) dx + P(x, y) dy.
$$

21. Sequences

- **1.** A **sequence** of real numbers is a collection of real numbers of which there is a first, a second, a third and so on, with one real number for each element of ℕ. A sequence is written a_1, a_2, a_3, \ldots , and also $\{a_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$.
- **2.** The index *n* of a sequence could start at any number, not just 1.
- **3.** In mathematical usage, the terms "sequence" and "series" mean different things, and should be used according to their precise meanings.
- **4.** As sequence can be defined **explicitly**, which means that the sequence is given by a formula for a_n in terms of *n*, or **recursively**, which means that the sequence is given by specifying a_1 together with a formula for a_{n+1} in terms of a_n .

22. Sequences: Limits

1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence, and let $L \in \mathbb{R}$. The number *L* is the **limit** of $\{a_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$, written

$$
\lim_{n\to\infty}a_n=L,
$$

if the value of a_n gets closer and closer to a number L as the value of n gets larger and larger. If $\lim_{n\to\infty} a_n = L$, the sequence $\{a_n\}_{n=1}^\infty$ **converges** to *L*. If $\{a_n\}_{n=1}^\infty$ $\sum_{n=1}^{\infty}$ converges to some real number, the sequence $\{a_n\}_{n=1}^{\infty}$ is **convergent**; otherwise $\{a_n\}_{n=1}^{\infty}$ is **divergent**.

- **2.** The above definition, and in particular the use of the phrase "gets closer and closer," is informal. A rigorous definition of limits will be seen in a Real Analysis course.
- **3.** If a sequence has a limit, the limit is unique.
- **4.** Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Let $f : [1, \infty) \to \mathbb{R}$ be a function such that $f(n) = a_n$ for all *n* in N. If $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} a_n = L$.

23. Sequences: Basic Limits

1.
$$
\lim_{n \to \infty} \frac{1}{n} = 0.
$$

2.
$$
\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{if } |r| < 1 \\ 1, & \text{if } r = 1 \\ \text{does not exist, otherwise.} \end{cases}
$$

24. Sequences: Properties of Limits

Let $\left\{a_n\right\}_{n=1}^{\infty}$ $\frac{\infty}{n=1}$, ${b_n}_{n=1}^{\infty}$ and ${c_n}_{n=1}^{\infty}$ be sequences, and let $k \in \mathbb{R}$. Suppose that ${a_n}_{n=1}^{\infty}$ and ${b_n}_{n=1}^{\infty}$ Let $\left\{ \alpha_n \right\}_{n=1}$, $\left\{ \alpha_n \right\}_{n=1}$ and $\left\{ \alpha_n \right\}_{n=1}$ be sequences, and let $\alpha \in \mathbb{R}$. Suppose that $\left\{ \alpha_n \right\}_{n=1}$ and $\left\{ \alpha_n \right\}_{n=1}$ are convergent.

1. $\{a_n + b_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$.

2.
$$
\left\{a_n - b_n\right\}_{n=1}^{\infty}
$$
 is convergent and $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$.

- **3.** ${k a_n}_{n=0}^{\infty}$ $\sum_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} ka_n = k \lim_{n\to\infty} a_n$.
- **4.** $\{a_n b_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} a_n b_n = [\lim_{n\to\infty} a_n] \cdot [\lim_{n\to\infty} b_n].$
- **5.** If $\lim_{n \to \infty} b_n \neq 0$, then $\left\{\frac{a_n}{b_n}\right\}$ ₎∞ $\sum_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty}$ a_n $\frac{a_n}{b_n} =$ $\lim_{n\to\infty} a_n$ $\lim_{n\to\infty}$ _{*n*} $\frac{1}{n}$.
- **6.** If $f(x)$ is a continuous function, then $\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n)$.
- **7.** If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.
- **8.** (Squeeze Theorem) If $a_n \leq c_n \leq b_n$ for all $n \in \mathbb{N}$, and if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, then $\{c_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ is convergent and $\lim_{n \to \infty} c_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

25. Series

1. A **series** of real numbers is a formal sum of a sequence of real numbers, written

$$
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots.
$$

2. The index *n* of a series could start at any number, not just 1.

26. Series: Convergence

Let $\sum_{n=1}^{\infty} a_n$ be a series.

1. For each *k* ∈ ℕ, the *k*th **partial sum** of $\sum_{n=1}^{\infty} a_n$, denoted *s_k*, is defined by

$$
s_k = \sum_{i=1}^k a_i = a_1 + a_2 + \dots + a_k.
$$

2. The **sequence of partial sums** of $\sum_{n=1}^{\infty} a_n$ is the sequence $\{s_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$.

3. Let $L \in \mathbb{R}$. The number *L* is the sum of $\sum_{n=1}^{\infty} a_n$, written

$$
\sum_{n=1}^{\infty} a_n = L,
$$

if $\lim_{n\to\infty} s_n = L$. If $\sum_{n=1}^{\infty} a_n = L$, the series $\sum_{n=1}^{\infty} a_n$ converges to *L*. If $\sum_{n=1}^{\infty} a_n$ converges to some real number, the series $\sum_{n=1}^{\infty} a_n$ is **convergent**; otherwise $\sum_{n=1}^{\infty} a_n$ is **divergent**.

- **4.** If a series has a sum, the sum is unique.
- **5.** Changing or deleting a finite numbers of terms in a series will not affect whether the series is convergent or divergent (though it might change the sum of the series if the series is convergent).

27. Harmonic Series

1. The **harmonic series** is the series

$$
\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots
$$

2. The harmonic series is divergent.

28. Geometric Series

1. A **geometric series** is any series of the form

$$
\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots,
$$

where $a, r \in \mathbb{R}$.

2. A geometric series converges to $\frac{a}{1}$ $\frac{a}{1-r}$ if $|r| < 1$, and is divergent if $|r| \ge 1$.

29. Series: Properties

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series, and let $k \in \mathbb{R}$. Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent. **1.** $\sum_{n=1}^{\infty} (a_n + b_n)$ is convergent and $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$. 2. $\sum_{n=1}^{\infty} (a_n - b_n)$ is convergent and $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$. **3.** $\sum_{n=1}^{\infty} ka_n$ is convergent and $\sum_{n=1}^{\infty} ka_n = k \sum_{n=1}^{\infty} a_n$.

30. Divergence Test Let $\sum_{n=1}^{\infty} a_n$ be a series. **1.** If $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ $n=1$ a_n is divergent.

2. Caution: If $\lim_{n\to\infty} a_n = 0$, you CANNOT conclude that the series $\sum_{n=1}^{\infty} a_n = 0$ $n=1$ a_n is convergent.

31. Integral Test

Let $\sum_{n=1}^{\infty} a_n$ be a series, and let $f : [1, \infty) \to \mathbb{R}$ be function that satisfies the following four properties:

- (1) $f(n) = a_n$ for all *n*.
- (2) $f(x)$ is continuous on [1, ∞).
- (3) $f(x) > 0$ on [1, ∞).
- (4) $f(x)$ is decreasing on [1, ∞).

Then $\sum_{n=1}^{\infty} a_n$ is convergent if and only if \int ∞ 1 $f(x) dx$ is convergent.

32. *𝑝***-Series**

1. A *p*-series is any series of the form

$$
\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots,
$$

where $p \in \mathbb{R}$.

2. A *p*-series is convergent if $p > 1$, and is divergent if $p \le 1$.

33. Comparison Test

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series. Suppose that $a_n \geq 0$ and $b_n \geq 0$ for all $n \in \mathbb{N}$. Suppose that $a_n \leq b_n$ for all $n \in \mathbb{N}$.

- **1.** If $\sum_{i=1}^{\infty}$ $n=1$ b_n is convergent, then $\sum_{n=1}^{\infty}$ $n=1$ a_n is convergent.
- 2. If $\sum_{i=1}^{\infty}$ $n=1$ a_n is divergent, then $\sum_{n=1}^{\infty}$ $n=1$ b_n is divergent.
- **3. Caution:** If $\sum_{n=1}^{\infty}$ $n=1$ a_n is convergent or if $\sum_{n=1}^{\infty}$ $n=1$ b_n is divergent, you CANNOT conclude anything about the other series by the Comparison Test.

34. Limit Comparison Test

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series. Suppose that $a_n \ge 0$ and $b_n \ge 0$ for all $n \in \mathbb{N}$. Suppose that

$$
\lim_{n\to\infty}\frac{b_n}{a_n}=L,
$$

for some $L \in \mathbb{R}$ or $L = \infty$.

- **1.** Suppose that $0 < L < \infty$. Then either both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent, or both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are divergent.
- **2.** Suppose that $L = 0$. If $\sum_{n=1}^{\infty}$ $n=1$ a_n is convergent, then $\sum_{n=1}^{\infty}$ $n=1$ b_n is convergent.
- **3.** Suppose that $L = \infty$. If $\sum_{n=1}^{\infty} a_n$ is divergent, then $\sum_{n=1}^{\infty} b_n$ is divergent. $n=1$ $n=1$

35. Alternating Series

An **alternating series** is any series of the form

$$
\sum_{n=1}^{\infty} (-1)^{n-1} a_n \qquad \text{or} \qquad \sum_{n=1}^{\infty} (-1)^n a_n
$$

,

where $a_n > 0$ for all $n \in \mathbb{N}$.

36. Alternating Series Test

Let $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ be an alternating series, where $a_n > 0$ for all $n \in \mathbb{N}$.

1. Suppose that the alternating series satisfies the following two properties:

(a) the sequence
$$
\{a_n\}_{n=1}^{\infty}
$$
 is decreasing.

(b)
$$
\lim_{n \to \infty} a_n = 0.
$$

Then the alternating series is convergent.

2. The same result holds for alternating series of the form $\sum_{n=1}^{\infty} (-1)^n a_n$.

37. Remainder Estimate for the Alternating Series Test

Let $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ be an alternating series, where $a_n > 0$ for all $n \in \mathbb{N}$. Let $m \in \mathbb{N}$.

1. The mth **remainder** of the alternating series, denoted R_m , is defined by

$$
R_m = \sum_{n=1}^{\infty} (-1)^{n-1} a_n - s_m = \sum_{n=m+1}^{\infty} (-1)^n a_n.
$$

- **2.** Suppose that the alternating series satisfies the hypotheses of the Alternating Series Test, and hence is convergent. Then $|R_m| \le a_{m+1}$.
- **3.** The same result holds for alternating series of the form $\sum_{n=1}^{\infty} (-1)^n a_n$.

38. Absolute Convergence and Conditional Convergence

Let $\sum_{n=1}^{\infty} a_n$ be a series.

- **1.** The series $\sum_{n=1}^{\infty} a_n$ is **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent.
- **2.** The series $\sum_{n=1}^{\infty} a_n$ is **conditionally convergent** if $\sum_{n=1}^{\infty} a_n$ is convergent but not absolutely convergent.
- **3.** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- **4.** Any series is either absolutely convergent, conditionally convergent or divergent.

39. Ratio Test Let $\sum_{n=1}^{\infty} a_n$ be a series. Suppose that $a_n \neq 0$ for all $n \in \mathbb{N}$. Suppose that

$$
\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L,
$$

for some $L \in \mathbb{R}$ or $L = \infty$.

- **1.** If $L < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- **2.** If $L > 1$, then $\sum_{n=1}^{\infty} a_n$ is divergent.
- **3. Caution:** If $L = 1$, you CANNOT conclude conclude that $\sum_{n=1}^{\infty} a_n$ is either convergent or divergent by the Ratio Test.

40. Power Series

1. A **power series** is any series of the form

$$
\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots,
$$

where $a, c_0, c_1, c_2, \dots \in \mathbb{R}$.

2. If $a = 0$, a power series has the form

$$
\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots.
$$

3. The numbers c_0, c_1, c_2, \cdots are the **coefficients** of the power series.

41. Interval of Convergence and Radius of Convergence of Power Series

- **1.** Let $\sum_{n=0}^{\infty} c_n (x a)^n$ be a power series. Then precisely one of the following happens:
	- (1) The series is absolutely convergent for all real numbers x, in which case $R = \infty$.
	- (2) The series is convergent only for $x = a$, in which case $R = 0$.
	- (3) There is some positive number *R* such that the series is absolutely convergent for all $|x - a| < R$, and the series is divergent for all $|x - a| > R$.
- **2.** The **radius of convergence** of the power series is R , which is either a real number or ∞ .
- **3.** The **interval of convergence** of the power series is set of all numbers x at which the power series is convergent.
- **4.** (1) If $R = \infty$, the interval of convergence is $(-\infty, \infty)$.
	- (2) If $R = 0$, the interval of convergence is $[a, a]$.
	- (3) If $0 < R < \infty$, the the interval of convergence is one of $(a R, a + R)$, or $(a R, a + R)$, or $[a - R, a + R)$ or $[a - R, a + R]$.
- **5.** To find the interval of convergence and radius of convergence, a method that often works is to use the Ratio Test, which leads to finding the radius convergence, and then, if $0 < R < \infty$, to use other convergence tests to find out convergence or divergence at the endpoints of the interval of convergence.

42. Representing a Function as a Power Series

- **1.** Let *E* ⊆ ℝ be a subset, let *f* : *E* → ℝ be a function, and let $\sum_{n=0}^{\infty} c_n (x a)^n$ be a power series. The function *f* is **represented** by $\sum_{n=0}^{\infty} c_n (x - a)^n$ if the following three properties hold:
	- (1) The radius of convergence of $\sum_{n=0}^{\infty} c_n (x a)^n$ is positive.
	- (2) The interval of convergence of $\sum_{n=0}^{\infty} c_n (x a)^n$ is a subset of *E*.
	- (3) $f(x) = \sum_{n=0}^{\infty} c_n (x a)^n$ for all *x* in the interval of convergence.
- **2. Caution**: If f is represented by $\sum_{n=0}^{\infty} c_n(x a)^n$, it is not necessarily the case that the interval of convergence of $\sum_{n=0}^{\infty} c_n(x a)^n$ is all of E.
- **3.** Not every function is represented by a power series.
- **4.** If a function is represented by a power series, the power series is unique.

43. Differentiation and Integration of Power Series

Let *E* ⊆ ℝ be a subset, let *f* : *E* → ℝ be a function, and let $\sum_{n=0}^{\infty} c_n (x - a)^n$ be a power series. Suppose that the function *f*(*x*) is represented by $\sum_{n=0}^{\infty} c_n (x-a)^n$. Let *R* be the radius of convergence $\int_{0}^{\infty} \sum_{n=0}^{\infty} c_n (x - a)^n$.

1. The power series
$$
\sum_{n=1}^{\infty} nc_n(x - a)^{n-1}
$$
 has radius of convergence *R*, and $f'(x) = \sum_{n=1}^{\infty} nc_n(x - a)^{n-1}$ for all $x \in (a - R, a + R)$.

2. The power series =
$$
\sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}
$$
 has radius of convergence R, and
$$
\int f(x) dx = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}
$$
 for all $x \in (a - R, a + R)$.

3. Caution: For any particular function $f(x)$, it might be that the above power series are convergent on the endpoints of the interval $(a - R, a + R)$, and it might be that $f'(x)$ or $\int f(x) dx$ equals the power series at the endpoints, but that needs to be verified in each case.

44. Taylor Series and Maclaurin Series

 $\overline{n=0}$

Let *I* ⊆ ℝ be an open interval, let $f: I \to \mathbb{R}$ be a function, and let $a \in I$. Suppose that *f* is infinitely differentiable.

1. The **Taylor series** of *f* centered at *a* is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots.
$$

2. Suppose that $0 \in I$. The **Maclaurin series** of f is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots
$$

3. Caution: The Taylor series and Maclaurin series of a function do not always equal the function.

45. Taylor Series of Some Standard Functions

The following equalities hold for all $x \in \mathbb{R}$.

1.

$$
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.
$$

2.

$$
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.
$$

3.

$$
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.
$$

Basic Rules for Derivatives

1.
$$
[f(x) + g(x)]' = f'(x) + g'(x)
$$

2. $[f(x) - g(x)]' = f'(x) - g'(x)$
3. $[cf(x)]' = cf'(x)$

4.
$$
[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
$$

\n**5.** $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$
\n**6.** $[f(g(x))]' = f'(g(x))g'(x)$

Basic Derivatives

- 1. $(c)' = 0$ **2.** $(x)' = 1$ **3.** $(x^r)' = rx^{r-1}$, for any real number *r* **4.** $(e^x)' = e^x$ **5.** $(a^x)' = a^x \ln a$ **6.** $(\ln x)' = \frac{1}{x}$ \mathbf{x} **7.** $(\ln |x|)' = \frac{1}{x}$ \mathbf{x} **8.** $(\log_a x)' = \frac{1}{\ln a}$ ln *𝑎* 1 \mathbf{x} **9.** $(\sin x)' = \cos x$ **10.** $(\cos x)' = -\sin x$ **11.** $(\tan x)' = \sec^2 x$
- **12.** $(\sec x)' = \sec x \tan x$ **13.** $(\csc x)' = -\csc x \cot x$ **14.** $(\cot x)' = -\csc^2 x$ **15.** $(\arcsin x)' = \frac{1}{\sqrt{2\pi}}$ √ $1 - x^2$ **16.** $(\arccos x)' = -\frac{1}{\sqrt{2\pi}}$ √ $1 - x^2$ **17.** $(\arctan x)' = \frac{1}{1+x^2}$ $1 + x^2$ **18.** $(\arccos c x)' = \frac{1}{\sqrt{2}}$ $|x|$ √ $x^2 - 1$ **19.** $(\arccos c x)' = -\frac{1}{\sqrt{2}}$ $|x|$ √ $x^2 - 1$ **20.** $(\arccot x)' = -\frac{1}{1+x^2}$ $1 + x^2$

Basic Rules for Indefinite Integrals

1.
$$
\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx
$$

\n2. $\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$
\n3. $\int cf(x) dx = c \int f(x) dx$

Basic Indefinite Integrals

1.
$$
\int 1 dx = x + C
$$

\n2. $\int x^r dx = \frac{x^{r+1}}{r+1} + C$ when $r \neq -1$
\n3. $\int \frac{1}{x} dx = \ln |x| + C$
\n4. $\int e^x dx = e^x + C$
\n5. $\int a^x dx = \frac{a^x}{\ln a} + C$
\n6. $\int \sin x dx = -\cos x + C$
\n7. $\int \cos x dx = \sin x + C$

8.
$$
\int \sec^2 x \, dx = \tan x + C
$$

\n9. $\int \sec x \tan x \, dx = \sec x + C$
\n10. $\int \csc^2 x \, dx = -\cot x + C$
\n11. $\int \csc x \cot x \, dx = -\csc x + C$
\n12. $\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + C$
\n13. $\int \frac{1}{1 + x^2} \, dx = \arctan x + C$
\n14. $\int \frac{1}{|x|\sqrt{x^2 - 1}} \, dx = \operatorname{arcsec} x + C$