
MATH 241 Vector Calculus Spring 2016
Study Sheet for Final Exam

• This study sheet will not be allowed during the test.

• Books, notes and online resources will not be allowed during the test.

• Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

Topics

1. Double integrals and iterated integrals.

2. Polar coordinates.

3. Double integrals in polar coordinates.

4. Vector fields.

5. Divergence and curl.

6. Conservative vector fields.

7. Line integrals of functions and of vector fields.

8. Fundamental Theorem of Calculus for Line Integrals.

9. Path Independent Line Integrals.

10. Green’s Theorem.

11. Sequences.

12. Series (convergence of series, telescoping series, geometric series, p-series).

13. Convergence tests for series (Divergence Test, Comparison Test, Limit Comparison Test, Integral Test,
Alternating Series Test, Ratio Test).

14. Power series (interval of convergence and radius of convergence).

15. Differentiation and integration of power series.

16. Taylor series and Maclaurin Series.
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Practice Problems from Stewart, Calculus Concepts and Contexts, 4th ed.

Section 12.1: 1, 3, 5, 9a

Section 12.2: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31

Section 12.3: 1, 3, 5, 7, 9, 15, 17, 19, 21, 23, 25, 27, 29, 31, 41, 43, 45, 47, 49, 51

Appendix H.1: 1, 3, 5, 7, 9, 11

Section 12.4: 5, 7, 9, 11, 13, 15, 17, 19, 27, 29, 31

Section 13.1: 1, 3, 5, 11–14, 15–18, 29–32

Section 13.2: 1, 3, 5, 7, 9, 11, 13, 15, 19, 21

Section 13.3: 3, 5, 7, 9, 13, 15, 17

Section 13.4: 1, 3, 5, 7, 9, 11, 13

Section 13.5: 1, 3, 5, 7, 13, 15, 17

Section 8.1: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 41, 43

Section 8.2: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 49, 51, 53, 65

Section 8.3: 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31

Section 8.4: 3, 5, 7, 9, 13, 21, 23, 25, 27, 29, 31, 33, 37

Section 8.5: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25

Section 8.7: 5, 7, 9, 11, 13, 15, 17, 39, 43, 45, 47, 49
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Some Important Concepts and Formulas

1. Double Integrals over Rectangles

1. Let f ∶ R → ℝ be a function defined on a rectangle R = [a, b] × [c, d] in ℝ2. The integral of
f over R is

∬
R

f (x, y) dA = lim
max Δxi→0
max Δyj→0

m
∑

i=1

n
∑

j=1
f (x∗ij , y

∗
ij)ΔAij ,

provided the limit exists, and is the same, for all choices of Riemann sums. If this limit exists,
the function f is integrable.

2. Every continuous function is integrable on any rectangle.

2. Iterated Integrals over Rectangles
Let f ∶ R → ℝ be a function defined on a rectangle R = [a, b] × [c, d] in ℝ2. Suppose that f is
continuous.

∬
R

f (x, y) dA = ∫

b

a ∫

d

c
f (x, y) dy dx = ∫

d

c ∫

b

a
f (x, y) dx dy.

3. Double Integrals and Iterated Integrals over General Regions
Let f ∶ D → ℝ be a function defined on a closed bounded region D of ℝ2. Suppose that f is
continuous.

Type I
Suppose that the region D is given by inequalities of the form

a ≤ x ≤ b
g1(x) ≤ y ≤ g2(x).

Then

∬
D

f (x, y) dA = ∫

b

a ∫

g2(x)

g1(x)
f (x, y) dy dx.

Type II
Suppose that the region D is given by inequalities of the form

c ≤ y ≤ d
ℎ1(y) ≤ y ≤ ℎ2(y).

Then

∬
D

f (x, y) dA = ∫

d

c ∫

ℎ2(y)

ℎ1(y)
f (x, y) dx dy.
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4. Basic Rules for Double Integrals
Let f, g∶ D → ℝ be functions defined on a closed bounded regionD ofℝ2, and let k ∈ ℝ. Suppose
that f and g are integrable.

1. ∬
D

[f (x, y) + g(x, y)] dA = ∬
D

f (x, y) dA +∬
D

g(x, y) dA.

2. ∬
D

[f (x, y) − g(x, y)] dA = ∬
D

f (x, y) dA −∬
D

g(x, y) dA.

3. ∬
D

kf (x, y) dA = k∬
D

f (x, y) dA.

4. ∬
D

k dA = k ⋅ area(D).

5. Breaking up the Region for Double Integrals
Let f ∶ D → ℝ be a function defined on a closed bounded region D of ℝ2. Suppose that f is
integrable. Suppose that D is the union of two regions D1 and D2 that overlap at most on their
boundaries.

∬
D

f (x, y) dA = ∬
D1

f (x, y) dA +∬
D2

f (x, y) dA.

6. Basic Inequalities for Double Integrals
Let f, g∶ D → ℝ be functions defined on a closed bounded region D of ℝ2. Suppose that f and g
are integrable.

1. If f (x, y) ≥ 0 on D, then ∬
D

f (x, y) dA ≥ 0.

2. If f (x, y) ≤ g(x, y) on D, then∬
D

f (x, y) dA ≤ ∬
D

g(x, y) dA.

3. If m ≤ f (x, y) ≤M on D, then m ⋅ area(D) ≤ ∬
D

f (x, y) dA ≤M ⋅ area(D).
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7. Polar Coordinates
Let (x, y) be the rectangular coordinates of a point in ℝ2, and let (r, �) be the polar coordinates of
the same point.

1. x = r cos � and y = r sin �.

2. r =
√

x2 + y2 and tan � = y
x
.

8. Double Integrals in Polar Coordinates
Let D be a region of ℝ2 defined by inequalities of the form

� ≤ � ≤ �
ℎ1(�) ≤ r ≤ ℎ2(�),

and let f ∶ D → ℝ be a function. Suppose that f is continuous.

∬
D

f (x, y) dA = ∫

�

� ∫

ℎ2(�)

ℎ1(�)
f (r cos �, r sin �) r dr d�.

9. Vector Fields

1. Let n ∈ ℕ. A vector field on ℝn is a function F ∶ ℝn → ℝn.

2. Let E ⊆ ℝn be a subset. A vector field on E is a function F ∶ E → ℝn.

3. A vector-field has the form

F (x1, x2,… , xn) =

[

f1(x1,x2,…,xn)
f2(x1,x2,…,xn)

⋮
fn(x1,x2,…,xn)

]

.

4. A vector field on ℝ3 has the form

F (x, y, y) =
[ P (x,y,z)
Q(x,y,z)
R(x,y,z)

]

.

5. Let f ∶ ℝn → ℝ be a function. Then the gradient ∇f is a vector field on ℝn.
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10. Divergence and Curl
Let F ∶ ℝ3 → ℝ3 be a vector field on ℝ3. Suppose that F (x, y, z) is given by

F (x, y, z) =
[ P (x,y,z)
Q(x,y,z)
R(x,y,z)

]

.

Divergence of F
divF = ∇ ⋅ F (x, y, z) = )P

)x
+ )Q
)y

+ )R
)z
.

Curl of F

curlF = ∇ × F (x, y, z) = det
⎡

⎢

⎢

⎢

⎣

i )
)x

P
j )

)y
Q

k )
)z

R

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

)R
)y
− )Q

)z
)P
)z
− )R

)x
)Q
)x
− )P

)y

⎤

⎥

⎥

⎥

⎦

.

11. Curl of the Gradient
Let f ∶ ℝ3 → ℝ be a function. Suppose that f has continuous second-order partial derivatives.
Then curl (∇f ) = 0, which means that it is constantly zero for all (x, y, z).

12. Conservative Vector Fields
Let E ⊆ ℝn be an open subset, and let F ∶ E → ℝn be a vector field on E. The vector field F is
conservative if F = ∇f for some some function f ∶ E → ℝ; the function f is called a potential
function for F .

13. When is a Vector Field Conservative
Let E ⊆ ℝn be an open subset, and let F ∶ E → ℝn be a vector field on E. Suppose that E is a
simply connected region of ℝ3, and that the components of F have continuous partial derivatives.
Then F is conservative if and only if curlF = 0.

14. Finding a Potential Function for a Conservative Vector Field
LetE ⊆ ℝ3 be an open subset, and let F ∶ E → ℝ3 be a vector field onE. Suppose that F (x, y, z) =
[ P (x,y,z)
Q(x,y,z)
R(x,y,z)

]

, and that F is conservative. To find a function f such that F = ∇f , solve the three
equations

)f
)x

= P (x, y, z) and )f
)y

= Q(x, y, z) and )f
)z

= R(x, y, z)

by taking the antiderivative of one these equations with respect to the relevant variable, and then
substitute the result into the other two equations.
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15. Conservative Vector Fields on ℝ2

LetE ⊆ ℝ2 be a simply connected open subset, and let F ∶ E → ℝ2 be a vector field onE. Suppose
that F (x, y) =

[ P (x,y)
Q(x,y)

]

. Define the vector field F̂ ∶ E ×ℝ → ℝ3 by the formula F̂ (x, y, z) =
[ P (x,y)
Q(x,y)
0

]

. ThenF (x, y) is conservative if and only if F̂ (x, y, z) is conservative if and only if )Q
)x
− )P

)y
=

0.

16. Line Integrals of Functions
Let E ⊆ ℝ2 be an open subset, and let r∶ E → ℝ be a function. Let C be a smooth curve in E
given by a vector-valued function r(t) =

[ x(t)
y(t)

]

defined on the interval [a, b]. There are three types
of line integrals of f along C .

Line Integral with Respect to Arc Length

∫C
f (x, y) ds = ∫

b

a
f (r(t))|r′(t)| dt.

Line Integral with Respect to x

∫C
f (x, y) dx = ∫

b

a
f (r(t))x′(t) dt.

Line Integral with Respect to y

∫C
f (x, y) dy = ∫

b

a
f (r(t))y′(t) dt.

17. Line Integrals of Vector Fields
Let E ⊆ ℝ2 be an open subset, and let F ∶ E → ℝ2 be a vector field on E. Suppose that F (x, y) =
[ P (x,y)
Q(x,y)

]

. Let C be a smooth curve in E given by a vector-valued function r(t) =
[ x(t)
y(t)

]

defined on
the interval [a, b]. Let T (t) be the unit tangent vector to r(t). There are two types of line integrals
of F along C .

Tangential Line Integral

∫C
F ⋅ T ds = ∫C

F ⋅ dr = ∫

b

a
F (r(t)) ⋅ r′(t) dt

= ∫C
P (x, y) dx +Q(x, y) dy.

Normal Line Integral

∫C
F ⋅ n ds = ∫C

−Q(x, y) dx + P (x, y) dy.
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18. Fundamental Theorem of Calculus for Line Integrals
Suppose E ⊆ ℝ2 is an open subset, and suppose f ∶ E → ℝ be a function. Suppose that f has
continuous partial derivatives. Suppose C is a smooth curve in E given by a vector-valued function
r(t) defined on the interval [a, b]. Then

∫C
∇f ⋅ dr = f (r(b)) − f (r(a)).

19. Paths and Closed Curves

1. A path in ℝ2 is a continuous function of the form r∶ [a, b] → ℝ2, for some closed bounded
interval [a, b]. Similarly for paths in ℝ3.

2. If r∶ [a, b]→ ℝ2 is a path, the initial point of r is r(a), and the terminal point of r is r(b).

3. A closed curve in ℝ2 is a path r∶ [a, b] → ℝ2 such that r(a) = r(b). Similarly for closed
curves in ℝ3.

4. A simple closed curve in ℝ2 is a closed curve is a path r∶ [a, b] → ℝ2 such that r does not
intersect itself on on [a, b).

5. A simple closed curve in ℝ2 is positively oriented if it is traversed in the counterclockwise
direction.

6. Let E ⊆ ℝ2 be an open subset, and let f ∶ E → ℝ be a function. Let C be a smooth simple
closed curve inE given by a vector-valued function r(t) defined on the interval [a, b]. Because
C is a simple closed curve, the line integral of f along C is denoted

∮C
f (x, y) ds.
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20. Green’s Theorem
Let E ⊆ ℝ2 be an open subset, and let F∶ E → ℝ2 be a vector field on E. Suppose that F(x, y) =
[ P (x,y)
Q(x,y)

]

. Suppose that P and Q have continuous partial derivatives. Let C be a positively oriented,
piecewise smooth, simple closed curve in E given by a vector-valued function r(t) defined on the
interval [a, b]. Let D be the region bounded by C .

Curl Version

∬
D

curlF ⋅ k dA = ∮C
F ⋅ dr

∬
D

(

)Q
)x

− )P
)y

)

dA = ∮C
P (x, y) dx +Q(x, y) dy.

Divergence Version

∬
D

divF dA = ∮C
F ⋅ n ds

∬
D

(

)P
)x

+ )Q
)y

)

dA = ∮C
−Q(x, y) dx + P (x, y) dy.

21. Sequences

1. A sequence of real numbers is a collection of real numbers of which there is a first, a sec-
ond, a third and so on, with one real number for each element of ℕ. A sequence is written
a1, a2, a3,…, and also

{

an
}∞
n=1.

2. The index n of a sequence could start at any number, not just 1.

3. In mathematical usage, the terms “sequence” and “series” mean different things, and should be
used according to their precise meanings.

4. As sequence can be defined explicitly, which means that the sequence is given by a formula
for an in terms of n, or recursively, which means that the sequence is given by specifying a1
together with a formula for an+1 in terms of an.
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22. Sequences: Limits

1. Let
{

an
}∞
n=1 be a sequence, and let L ∈ ℝ. The number L is the limit of

{

an
}∞
n=1, written

lim
n→∞

an = L,

if the value of an gets closer and closer to a number L as the value of n gets larger and larger.
If lim

n→∞
an = L, the sequence

{

an
}∞
n=1 converges to L. If

{

an
}∞
n=1 converges to some real

number, the sequence
{

an
}∞
n=1 is convergent; otherwise

{

an
}∞
n=1 is divergent.

2. The above definition, and in particular the use of the phrase “gets closer and closer,” is informal.
A rigorous definition of limits will be seen in a Real Analysis course.

3. If a sequence has a limit, the limit is unique.

4. Let
{

an
}∞
n=1 be a sequence. Let f ∶ [1,∞) → ℝ be a function such that f (n) = an for all n in

ℕ. If lim
x→∞

f (x) = L, then lim
n→∞

an = L.

23. Sequences: Basic Limits

1. lim
n→∞

1
n
= 0.

2.

lim
n→∞

rn =

⎧

⎪

⎨

⎪

⎩

0, if |r| < 1
1, if r = 1
does not exist, otherwise.
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24. Sequences: Properties of Limits
Let

{

an
}∞
n=1,

{

bn
}∞
n=1 and

{

cn
}∞
n=1 be sequences, and let k ∈ ℝ. Suppose that

{

an
}∞
n=1 and

{

bn
}∞
n=1

are convergent.

1.
{

an + bn
}∞
n=1 is convergent and limn→∞ (an + bn) = lim

n→∞
an + limn→∞ bn.

2.
{

an − bn
}∞
n=1 is convergent and limn→∞ (an − bn) = lim

n→∞
an − limn→∞ bn.

3.
{

kan
}∞
n=1 is convergent and limn→∞ kan = k limn→∞ an.

4.
{

anbn
}∞
n=1 is convergent and limn→∞ anbn = [limn→∞ an] ⋅ [ limn→∞ bn].

5. If lim
n→∞

bn ≠ 0, then
{an
bn

}∞
n=1 is convergent and limn→∞

an
bn
=

lim
n→∞

an

lim
n→∞

bn
.

6. If f (x) is a continuous function, then lim
n→∞

f (an) = f ( limn→∞ an).

7. If an ≤ bn for all n ∈ ℕ, then lim
n→∞

an ≤ lim
n→∞

bn.

8. (Squeeze Theorem) If an ≤ cn ≤ bn for all n ∈ ℕ, and if lim
n→∞

an = lim
n→∞

bn, then
{

cn
}∞
n=1 is

convergent and lim
n→∞

cn = lim
n→∞

an = lim
n→∞

bn.

25. Series

1. A series of real numbers is a formal sum of a sequence of real numbers, written

∞
∑

n=1
an = a1 + a2 + a3 +⋯ .

2. The index n of a series could start at any number, not just 1.
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26. Series: Convergence
Let

∑∞
n=1 an be a series.

1. For each k ∈ ℕ, the kth partial sum of
∑∞

n=1 an, denoted sk, is defined by

sk =
k
∑

i=1
ai = a1 + a2 +⋯ + ak.

2. The sequence of partial sums of
∑∞

n=1 an is the sequence
{

sn
}∞
n=1.

3. Let L ∈ ℝ. The number L is the sum of
∑∞

n=1 an, written

∞
∑

n=1
an = L,

if lim
n→∞

sn = L. If
∑∞

n=1 an = L, the series
∑∞

n=1 an converges to L. If
∑∞

n=1 an converges to
some real number, the series

∑∞
n=1 an is convergent; otherwise

∑∞
n=1 an is divergent.

4. If a series has a sum, the sum is unique.

5. Changing or deleting a finite numbers of terms in a series will not affect whether the series is
convergent or divergent (though it might change the sum of the series if the series is conver-
gent).

27. Harmonic Series

1. The harmonic series is the series
∞
∑

n=1

1
n
= 1
1
+ 1
2
+ 1
3
+⋯ .

2. The harmonic series is divergent.

28. Geometric Series

1. A geometric series is any series of the form
∞
∑

n=1
arn−1 = a + ar + ar2 +⋯ ,

where a, r ∈ ℝ.

2. A geometric series converges to a
1 − r

if |r| < 1, and is divergent if |r| ≥ 1.
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29. Series: Properties
Let

∑∞
n=1 an and

∑∞
n=1 bn be series, and let k ∈ ℝ. Suppose that

∑∞
n=1 an and

∑∞
n=1 bn are convergent.

1.
∑∞

n=1 (an + bn) is convergent and
∑∞

n=1 (an + bn) =
∑∞

n=1 an +
∑∞

n=1 bn.

2.
∑∞

n=1 (an − bn) is convergent and
∑∞

n=1 (an − bn) =
∑∞

n=1 an −
∑∞

n=1 bn.

3.
∑∞

n=1 kan is convergent and
∑∞

n=1 kan = k
∑∞

n=1 an.

30. Divergence Test
Let

∑∞
n=1 an be a series.

1. If lim
n→∞

an ≠ 0, then the series
∞
∑

n=1
an is divergent.

2. Caution: If lim
n→∞

an = 0, you CANNOT conclude that the series
∞
∑

n=1
an is convergent.

31. Integral Test
Let

∑∞
n=1 an be a series, and let f ∶ [1,∞)→ ℝ be function that satisfies the following four proper-

ties:

(1) f (n) = an for all n.

(2) f (x) is continuous on [1,∞).

(3) f (x) > 0 on [1,∞).

(4) f (x) is decreasing on [1,∞).

Then
∑∞

n=1 an is convergent if and only if ∫

∞

1
f (x) dx is convergent.

32. p-Series

1. A p-series is any series of the form
∞
∑

n=1

1
np
= 1
1p
+ 1
2p
+ 1
3p
+⋯ ,

where p ∈ ℝ.

2. A p-series is convergent if p > 1, and is divergent if p ≤ 1.

13



33. Comparison Test
Let

∑∞
n=1 an and

∑∞
n=1 bn be series. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ ℕ. Suppose that

an ≤ bn for all n ∈ ℕ.

1. If
∞
∑

n=1
bn is convergent, then

∞
∑

n=1
an is convergent.

2. If
∞
∑

n=1
an is divergent, then

∞
∑

n=1
bn is divergent.

3. Caution: If
∞
∑

n=1
an is convergent or if

∞
∑

n=1
bn is divergent, you CANNOT conclude anything

about the other series by the Comparison Test.

34. Limit Comparison Test
Let

∑∞
n=1 an and

∑∞
n=1 bn be series. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ ℕ. Suppose that

lim
n→∞

bn
an
= L,

for some L ∈ ℝ or L = ∞.

1. Suppose that 0 < L < ∞. Then either both
∑∞

n=1 an and
∑∞

n=1 bn are convergent, or both
∑∞

n=1 an and
∑∞

n=1 bn are divergent.

2. Suppose that L = 0. If
∞
∑

n=1
an is convergent, then

∞
∑

n=1
bn is convergent.

3. Suppose that L = ∞. If
∞
∑

n=1
an is divergent, then

∞
∑

n=1
bn is divergent.

35. Alternating Series
An alternating series is any series of the form

∞
∑

n=1
(−1)n−1an or

∞
∑

n=1
(−1)nan,

where an > 0 for all n ∈ ℕ.
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36. Alternating Series Test
Let

∑∞
n=1 (−1)

n−1an be an alternating series, where an > 0 for all n ∈ ℕ.

1. Suppose that the alternating series satisfies the following two properties:

(a) the sequence
{

an
}∞
n=1 is decreasing.

(b) lim
n→∞

an = 0.

Then the alternating series is convergent.

2. The same result holds for alternating series of the form
∑∞

n=1 (−1)
nan.

37. Remainder Estimate for the Alternating Series Test
Let

∑∞
n=1 (−1)

n−1an be an alternating series, where an > 0 for all n ∈ ℕ. Let m ∈ ℕ.

1. The mth remainder of the alternating series, denoted Rm, is defined by

Rm =
∞
∑

n=1
(−1)n−1an − sm =

∞
∑

n=m+1
(−1)nan.

2. Suppose that the alternating series satisfies the hypotheses of the Alternating Series Test, and
hence is convergent. Then |Rm| ≤ am+1.

3. The same result holds for alternating series of the form
∑∞

n=1 (−1)
nan.

38. Absolute Convergence and Conditional Convergence
Let

∑∞
n=1 an be a series.

1. The series
∑∞

n=1 an is absolutely convergent if
∑∞

n=1 |an| is convergent.

2. The series
∑∞

n=1 an is conditionally convergent if
∑∞

n=1 an is convergent but not absolutely
convergent.

3. If
∑∞

n=1 an is absolutely convergent, then
∑∞

n=1 an is convergent.

4. Any series is either absolutely convergent, conditionally convergent or divergent.
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39. Ratio Test
Let

∑∞
n=1 an be a series. Suppose that an ≠ 0 for all n ∈ ℕ. Suppose that

lim
n→∞

|

|

|

|

an+1
an

|

|

|

|

= L,

for some L ∈ ℝ or L = ∞.

1. If L < 1, then
∑∞

n=1 an is absolutely convergent.

2. If L > 1, then
∑∞

n=1 an is divergent.

3. Caution: If L = 1, you CANNOT conclude conclude that
∑∞

n=1 an is either convergent or
divergent by the Ratio Test.

40. Power Series

1. A power series is any series of the form
∞
∑

n=0
cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 +⋯ ,

where a, c0, c1, c2,⋯ ∈ ℝ.

2. If a = 0, a power series has the form
∞
∑

n=0
cnx

n = c0 + c1x + c2x2 + c3x3 +⋯ .

3. The numbers c0, c1, c2,⋯ are the coefficients of the power series.
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41. Interval of Convergence and Radius of Convergence of Power Series

1. Let
∑∞

n=0 cn(x − a)
n be a power series. Then precisely one of the following happens:

(1) The series is absolutely convergent for all real numbers x, in which case R = ∞.
(2) The series is convergent only for x = a, in which case R = 0.
(3) There is some positive number R such that the series is absolutely convergent for all

|x − a| < R, and the series is divergent for all |x − a| > R.

2. The radius of convergence of the power series is R, which is either a real number or∞.

3. The interval of convergence of the power series is set of all numbers x at which the power
series is convergent.

4. (1) If R = ∞, the interval of convergence is (−∞,∞).
(2) If R = 0, the interval of convergence is [a, a].
(3) If 0 < R <∞, the the interval of convergence is one of (a − R, a + R), or (a − R, a + R],

or [a − R, a + R) or [a − R, a + R].

5. To find the interval of convergence and radius of convergence, a method that often works is to
use the Ratio Test, which leads to finding the radius convergence, and then, if 0 < R < ∞,
to use other convergence tests to find out convergence or divergence at the endpoints of the
interval of convergence.

42. Representing a Function as a Power Series

1. Let E ⊆ ℝ be a subset, let f ∶ E → ℝ be a function, and let
∑∞

n=0 cn(x− a)
n be a power series.

The function f is represented by
∑∞

n=0 cn(x − a)
n if the following three properties hold:

(1) The radius of convergence of
∑∞

n=0 cn(x − a)
n is positive.

(2) The interval of convergence of
∑∞

n=0 cn(x − a)
n is a subset of E.

(3) f (x) =
∑∞

n=0 cn(x − a)
n for all x in the interval of convergence.

2. Caution: If f is represented by
∑∞

n=0 cn(x − a)
n, it is not necessarily the case that the interval

of convergence of
∑∞

n=0 cn(x − a)
n is all of E.

3. Not every function is represented by a power series.

4. If a function is represented by a power series, the power series is unique.
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43. Differentiation and Integration of Power Series
Let E ⊆ ℝ be a subset, let f ∶ E → ℝ be a function, and let

∑∞
n=0 cn(x − a)

n be a power series.
Suppose that the function f (x) is represented by

∑∞
n=0 cn(x−a)

n. LetR be the radius of convergence
of

∑∞
n=0 cn(x − a)

n.

1. The power series
∞
∑

n=1
ncn(x− a)n−1 has radius of convergence R, and f ′(x) =

∞
∑

n=1
ncn(x− a)n−1

for all x ∈ (a − R, a + R).

2. The power series =
∞
∑

n=0
cn
(x − a)n+1

n + 1
has radius of convergence R, and ∫ f (x) dx = C +

∞
∑

n=0
cn
(x − a)n+1

n + 1
for all x ∈ (a − R, a + R).

3. Caution: For any particular function f (x), it might be that the above power series are conver-
gent on the endpoints of the interval (a − R, a + R), and it might be that f ′(x) or ∫ f (x) dx
equals the power series at the endpoints, but that needs to be verified in each case.

44. Taylor Series and Maclaurin Series
Let I ⊆ ℝ be an open interval, let f ∶ I → ℝ be a function, and let a ∈ I . Suppose that f is
infinitely differentiable.

1. The Taylor series of f centered at a is
∞
∑

n=0

f (n)(a)
n!

(x − a)n = f (a) + f ′(a)(x − a) +
f ′′(a)
2!

(x − a)2 +
f ′′′(a)
3!

(x − a)3 +⋯ .

2. Suppose that 0 ∈ I . TheMaclaurin series of f is

∞
∑

n=0

f (n)(0)
n!

xn = f (0) + f ′(0)x +
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 +⋯ .

3. Caution: The Taylor series andMaclaurin series of a function do not always equal the function.
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45. Taylor Series of Some Standard Functions
The following equalities hold for all x ∈ ℝ.

1.

ex = 1 + x + x2

2!
+ x3

3!
+⋯ + xn

n!
+⋯ =

∞
∑

n=0

xn

n!
.

2.

sin x = x − x3

3!
+ x5

5!
− x7

7!
+⋯ =

∞
∑

n=0
(−1)n x2n+1

(2n + 1)!
.

3.

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+⋯ =

∞
∑

n=0
(−1)n x

2n

(2n)!
.
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Basic Rules for Derivatives

1. [f (x) + g(x)]′ = f ′(x) + g′(x)

2. [f (x) − g(x)]′ = f ′(x) − g′(x)

3. [cf (x)]′ = cf ′(x)

4. [f (x)g(x)]′ = f ′(x)g(x) + f (x)g′(x)

5.
[

f (x)
g(x)

]′

=
f ′(x)g(x) − f (x)g′(x)

[g(x)]2

6. [f (g(x))]′ = f ′(g(x))g′(x)

Basic Derivatives

1. (c)′ = 0

2. (x)′ = 1

3. (xr)′ = rxr−1, for any real number r

4. (ex)′ = ex

5. (ax)′ = ax ln a

6. (ln x)′ = 1
x

7. (ln |x|)′ = 1
x

8. (loga x)′ =
1
ln a

1
x

9. (sin x)′ = cos x

10. (cos x)′ = − sin x

11. (tan x)′ = sec2 x

12. (sec x)′ = sec x tan x

13. (csc x)′ = −csc x cot x

14. (cot x)′ = −csc2 x

15. (arcsin x)′ = 1
√

1 − x2

16. (arccos x)′ = − 1
√

1 − x2

17. (arctan x)′ = 1
1 + x2

18. (arcsec x)′ = 1

|x|
√

x2 − 1

19. (arccsc x)′ = − 1

|x|
√

x2 − 1

20. (arccot x)′ = − 1
1 + x2
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Basic Rules for Indefinite Integrals

1. ∫ [f (x) + g(x)] dx = ∫ f (x) dx + ∫ g(x) dx

2. ∫ [f (x) − g(x)] dx = ∫ f (x) dx − ∫ g(x) dx

3. ∫ cf (x) dx = c ∫ f (x) dx

Basic Indefinite Integrals

1. ∫ 1 dx = x + C

2. ∫ xr dx = xr+1

r + 1
+ C when r ≠ −1

3. ∫
1
x
dx = ln |x| + C

4. ∫ ex dx = ex + C

5. ∫ ax dx = ax

ln a
+ C

6. ∫ sin x dx = −cos x + C

7. ∫ cos x dx = sin x + C

8. ∫ sec2 x dx = tan x + C

9. ∫ sec x tan x dx = sec x + C

10. ∫ csc2 x dx = −cot x + C

11. ∫ csc x cot x dx = −csc x + C

12. ∫
1

√

1 − x2
dx = arcsin x + C

13. ∫
1

1 + x2
dx = arctan x + C

14. ∫
1

|x|
√

x2 − 1
dx = arcsec x + C
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