
MATH 241 Vector Calculus Spring 2016
Study Sheet for Midterm Exam

• This study sheet will not be allowed during the test.

• Books, notes and online resources will not be allowed during the test.

• Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

Topics

1. Cross product.

2. Lines and planes in ℝ3.

3. Single-variable vector-valued functions.

4. Derivatives and integrals of single-variable vector-valued functions.

5. Arc length.

6. Curvature.

7. Level curves for multivariable real-valued functions.

8. Partial derivatives of multivariable real-valued functions.

9. Derivative of multivariable vector-valued functions.

10. Jacobian determinant.

11. Chain rule for multivariable vector-valued functions.

12. Gradient.

13. Tangent planes and normal lines.

14. Directional derivatives.

15. Lagrange Multipliers.
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Practice Problems from Stewart, Calculus Concepts and Contexts, 4th ed.

Section 9.3: 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 43.

Section 9.4: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31.

Section 9.5: 1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 31, 37, 39, 41, 47, 49, 51.

Section 10.1: 1, 3, 5, 25, 27, 43.

Section 10.2: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 31, 33, 35, 37, 39.

Section 10.3: 1, 3, 5, 17b, 19b, 21, 23.

Section 11.1: 1, 5, 7, 9, 11, 19, 21, 23, 25, 29.

Section 11.3: 1, 3, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61,
63, 65, 67, 69, 71, 75, 79, 81, 83.

Handout Section 31.2: 1, 2, 3, 4, 5, 6, 7.

Handout Section 31.4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

Section 11.4: 1, 3, 5.

Section 11.6: 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 31, 39, 41, 43, 47, 49, 51, 53.

Section 11.8: 1, 3, 5, 7, 9, 11, 13, 15, 17, 27, 29, 31, 37, 39.
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Some Important Concepts and Formulas

1. Cross Product

Let a =
[ a1
a2
a3

]

and b =
[

b1
b2
b3

]

. The cross product of a and b is defined by

a × b =
[

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1

]

= det
[

i a1 b1
j a2 b2
k a3 b3

]

.

2. Properties of Cross Product

Let a,b, c ∈ ℝ3, and let s ∈ ℝ.

1. a × b = −(b × a).
2. (sa) × b = s(a × b) = a × (sb).
3. a × (b + c) = a × b + a × c.
4. (b + c) × a = b × a + c × a.
5. 0 × a = 0.
6. a × (sa) = 0.
7. a ⋅ (a × b) = 0 and b ⋅ (a × b) = 0.

3. Geometry of the Cross Product

Let a,b ∈ ℝ3. Let � be the angle between a and b.

1. If a and b are non-zero and not parallel, then a × b = (|a||b| sin �)n, where n is the unique unit
vector in ℝ3 that is perpendicular to both a and b and is in the direction given by the right hand
rule.

2. |a × b| = |a||b| sin �.
3. The area of the parallelogram formed by a and b is |a × b|.
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4. Scalar Triple Product

Let a =
[ a1
a2
a3

]

, and b =
[

b1
b2
b3

]

and c =
[ c1
c2
c3

]

.

1. The scalar triple product of a, b and c is defined by

a ⋅ (b × c) = det
[

a1 b1 c1
a2 b2 c2
a3 b3 c3

]

.

2.
a ⋅ (b × c) = c ⋅ (a × b) = b ⋅ (c × a) = −a ⋅ (c × b) = −b ⋅ (a × c) = −c ⋅ (b × a).

3. The volume of the parallelepiped formed by a, b and c is |a ⋅ (b × c)|.

5. Lines in ℝ3

Let r0 =
[ x0
y0
z0

]

and v =
[ a
b
c

]

. The equation of the line through r0 and in the direction of v is given in
the following three ways.

Vector Equation
r = r0 + tv.

Parametric Equations

x = x0 + at
y = y0 + bt
z = z0 + ct.

Symmetric Equations
x − x0
a

=
y − y0
b

=
z − z0
c

.

6. Planes in ℝ3

Let r0 =
[ x0
y0
z0

]

and n =
[ a
b
c

]

. The equation of the line through r0 and normal to n is given in the
following three ways.

Vector Equation
(r − r0) ⋅ n = 0.

Scalar Equation
a(x − x0) + b(y − y0) + c(z − z0) = 0.

Linear Equation
ax + by + cz + d = 0.
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7. Single-Variable Vector-Valued Functions

1. A single-variable vector-valued function is a function r ∶ ℝ → ℝm for some m ∈ ℕ such that
m ≥ 2.

2. A single-variable vector-valued function has the form

r(t) =
[

r1(t)
r2(t)
⋮

rm(t)

]

.

3. A function r ∶ ℝ → ℝ3 has the form
r(t) =

[ f (t)
g(t)
ℎ(t)

]

.

8. Single-Variable Vector-Valued Functions: Limits

Let r(t) =
[ f (t)
g(t)
ℎ(t)

]

be a single-variable vector-valued function, and let c ∈ ℝ.

lim
t→c

r(t) =
⎡

⎢

⎢

⎢

⎣

lim
t→c

f (t)
lim
t→c

g(t)
lim
t→c

ℎ(t)

⎤

⎥

⎥

⎥

⎦

.

9. Single-Variable Vector-Valued Functions: Derivatives

Let r(t) be a single-variable vector-valued function defined on an open interval.

1. The derivative of r(t), denoted r′(t), is the function defined by

r′(t) = lim
ℎ→0

r(t + ℎ) − r(t)
ℎ

,

for those values of t for which the limit exists.
2. The function r(t) is differentiable if r′(t) is defined for all values of t.

3. If r(t) =
[ f (t)
g(t)
ℎ(t)

]

, then r′(t) =
[

f ′(t)
g′(t)
ℎ′(t)

]

.

4. The unit tangent vector to r(t), denoted T(t), is defined by T(t) = r′(t)
|r′(t)|

, for those values of t for
which r′(t) ≠ 0.
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10. Single-Variable Vector-Valued Functions: Properties of Derivatives

Let r(t) and s(t) be a single-variable vector-valued function, let f (t) be a real-valued function, and let
c ∈ ℝ. Suppose that r(t) and s(t) are differentiable.

1. [r(t) + s(t)]′ = r′(t) + s′(t).
2. [r(t) − s(t)]′ = r′(t) − s′(t).
3. [cr(t)]′ = cr′(t).
4. [f (t)r(t)]′ = f ′(t)r(t) + f (t)r′(t).
5. [r(t) ⋅ s(t)]′ = r′(t) ⋅ s(t) + r(t) ⋅ s′(t).
6. [r(t) × s(t)]′ = r′(t) × s(t) + r(t) × s′(t).
7. [r(f (t))]′ = r′(f (t))f ′(t).

11. Single-Variable Vector-Valued Functions: Integrals

Let r(t) be a single-variable vector-valued function.

1. If r(t) =
[ f (t)
g(t)
ℎ(t)

]

, the integral of r(t) from a to b is

∫

b

a
r(t) dt =

⎡

⎢

⎢

⎢

⎣

∫ b
a f (t) dt
∫ b
a g(t) dt
∫ b
a ℎ(t) dt

⎤

⎥

⎥

⎥

⎦

,

provided the three integrals exist.
2. Fundamental Theorem of Calculus—Version II: If R(t) is an antiderivative of r(t), then

∫

b

a
r(t) dt = R(b) − R(a).

12. Arc Length

Let r(t) be a single-variable vector-valued function. Suppose that r(t) is differentiable. The arc length
of r(t) from a to b is

L = ∫

b

a
|r′(t)| dt.
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13. Curvature

Let r(t) be a single-variable vector-valued function.

1. The function r(t) is regular if r′(t) is continuous and r′(t) ≠ 0 for all t.
2. Suppose that r(t) is regular. The curvature of r(t), denoted �(t), is defined by

�(t) =
|T′(t)|
|r′(t)|

=
|r′(t) × r′′(t)|

|r′(t)|3
.

14. Partial Derivatives of a Multivariable Real-Valued Function

1. Let U be an open region in ℝ2, and let f ∶ U → ℝ be a function. The partial derivatives of
f (x, y)with respect to x and y respectively, denoted fx(x, y) and fy(x, y), are the functions given
by

fx(x, y) = lim
ℎ→0

f (x + ℎ, y) − f (x, y)
ℎ

and fy(x, y) = lim
ℎ→0

f (x, y + ℎ) − f (x, y)
ℎ

,

which are defined at all points for which the limit exists.
2. If g is a multivariable real-valued function of n of variables, there are n partial derivatives of

g, each of which is obtained by considering all but one of the variables of g as constants, and
taking the derivative with respect to the variable not being considered as a constant.

15. Notation for Partial Derivatives

Let z = f (x, y) be a function.

fx(x, y), f1(x, y), Dxf (x, y), D1f (x, y),
)f
)x
, )z

)x
, )

)x
f (x, y).

fy(x, y), f2(x, y), Dyf (x, y), D2f (x, y),
)f
)y
, )z

)y
, )

)y
f (x, y).

16. Notation for Second Partial Derivatives

Let z = f (x, y) be a function.

fxx(x, y), f11(x, y),
)2f
)x2

, )2z
)x2

.

fyy(x, y), f22(x, y),
)2f
)y2

, )2z
)y2

.

fxy(x, y), f12(x, y),
)2f
)y)x

, )2z
)y)x

.

fyx(x, y), f21(x, y),
)2f
)x)y

, )2z
)x)y

.
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17. Clairaut’s Theorem

Let f (x, y) be a function defined on an open disk in ℝ2. If fxy(x, y) and fyx(x, y) are both continuous
on the disk, then fxy(x, y) = fyx(x, y) for all (x, y) in the disk.

18. Multivariable Vector-Valued Functions

1. A multivariable vector-valued function is a function F ∶ ℝn → ℝm for some positive integers
n and m.

2. A function F ∶ ℝn → ℝm has the form

F
(

x1, x2,…, xn
)

=

[

f1(x1,x2,…,xn)
f2(x1,x2,…,xn)

⋮
fm(x1,x2,…,xn)

]

,

where f1, f2,… , fm∶ ℝn → ℝ are multivariable real-valued functions. The functions
f1, f2,… , fm are called the component functions of F .

3. A function F ∶ ℝ2 → ℝ3 has the form

F (x, y) =
[ P (x,y)
Q(x,y)
R(x,y)

]

.

19. Derivative of a Multivariable Vector-Valued Function

1. Let F ∶ ℝn → ℝm be a multivariable vector-valued function. Suppose that F (x1, x2,… , xn) is
given by the formula

F
(

x1, x2,…, xn
)

=

[

f1(x1,x2,…,xn)
f2(x1,x2,…,xn)

⋮
fm(x1,x2,…,xn)

]

.

The derivative (also called the Jacobian matrix) of F is the m × n matrix

DF
(

x1, x2,…, xn
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

)f1
)x1

)f1
)x2

⋯ )f1
)xn

)f2
)x1

)f2
)x2

⋯ )f2
)xn

⋮ ⋮ ⋮ ⋮
)fm
)x1

)fm
)x2

⋯ )fm
)xn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

2. If the point (x1, x2,…, xn) is abbreviated by p, then the derivative of F is also denoted DF (p); it
is also written DF p or F

′(p). When only the name of the derivative is needed, without listing
the variables, it is written DF .

3. If F (x, y) =
[ P (x,y)
Q(x,y)
R(x,y)

]

, then

DF (x, y) =

⎡

⎢

⎢

⎢

⎣

)P
)x

)P
)y

)Q
)x

)Q
)y

)R
)x

)R
)y

⎤

⎥

⎥

⎥

⎦

.
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20. Basic Rules for Derivatives

Let F ,G∶ ℝn → ℝm be functions, let c be a real number, and let p be a point in ℝn. Suppose that F
and G are differentiable. Then

1. D(F +G)(p) = DF (p) +DG(p);
2. D(F −G)(p) = DF (p) −DG(p);
3. D(cF )(p) = cDF (p).

21. The Jacobian Determinant

1. Let F ∶ ℝn → ℝn be a function. The determinant of the derivative of F is called the Jacobian
determinant (or just the Jacobian) of the function, and is denoted

detDF
(

x1, x2,…, xn
)

,

or similarly if a different notation for the derivative is used.
2. If the point (x1, x2,…, xn) is abbreviated by p, then the Jacobian determinant of F is also denoted

detDF (p). When only the name of the Jacobian determinant is needed, without listing the
variables, it is written detDF .

3. If F (u, v) =
[ P (u,v)
Q(u,v)

]

, then the Jacobian determinant of F is sometimes denoted
|

|

|

|

)x
)u

)x
)v

)y
)u

)y
)v

|

|

|

|

or )(x,y)
)(u,v)

.

22. Composition of Functions

Let G∶ ℝn → ℝk and F ∶ ℝk → ℝm be functions. The composition of F and G is the function
F ◦G∶ ℝn → ℝm given by the formula

(F ◦G)(p) = F (G(p)).

23. The Chain Rule via Matrix Multiplication

Let G∶ ℝn → ℝk and F ∶ ℝk → ℝm be functions, and let p be a point in ℝn. Suppose that F and G
are differentiable. Then

D(F ◦G)(p) = DF (G(p))DG(p),

where the multiplication is matrix multiplication.
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24. The Chain Rule Without Matrices

Let z = f (x1,… , xn), and where each of x1,… , xn is a function of t1,… , tm. Then

)z
)ti

= )z
)x1

)x1
)ti

+ )z
)x2

)x2
)ti

+⋯ + )z
)xn

)xn
)ti

,

for each i = 1, 2,… , m.

25. The Gradient

Let f ∶ ℝn → ℝ be a function, and let p = (x1, x2,…, xn) be a point in ℝn.

1. The gradient of f atp, denoted∇f (p), or∇f
(

x1, x2,…, xn
)

, or grad f (p), or grad f
(

x1, x2,…, xn
)

,
is defined by

∇f
(

x1, x2,…, xn
)

= Df
(

x1, x2,…, xn
)T =

[

)f
)x1

)f
)x2

…
)f
)xn

]T

=

⎡

⎢

⎢

⎢

⎢

⎣

)f
)x1
)f
)x2
⋮
)f
)xn

⎤

⎥

⎥

⎥

⎥

⎦

.

2. Whereas the original function f was a multivariable real-valued function f ∶ ℝn → ℝ, the gra-
dient of f is a multivariable vector-valued function ∇f ∶ ℝn → ℝn.

26. The Gradient and the Chain Rule

Let f ∶ ℝn → ℝ and r∶ ℝ → ℝn be differentiable functions. Then

[f (r(t))]′ = ∇f (r(t)) ⋅ r′(t).

27. The Gradient, Level Curves and Level Surfaces

1. Let f ∶ ℝ2 → ℝ be a function, let k be a real number, and let (a, b) be a point on the curve given
by the equation f (x, y) = k. Then ∇f (a, b) is orthogonal to the tangent line of f (x, y) = k at
(a, b).

2. Let f ∶ ℝ3 → ℝ be a function, let k be a real number, and let (a, b, c) be a point on the surface
given by the equation f (x, y, z) = k. Then ∇f (a, b, c) is orthogonal to the tangent plane of
f (x, y, z) = k at (a, b, c).
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28. Tangent Planes for Implicitly Defined Surfaces

Let F ∶ ℝ3 → ℝ be a function, and let k ∈ ℝ. Let (a, b, c) be a point on the surface defined by the
equation F (x, y, z) = k. Suppose that the partial derivatives of F exist at (a, b, c). The tangent plane
to the surface at (a, b, c) has normal vector ∇F (a, b, c), has vector equation

∇F (a, b, c) ⋅
⎡

⎢

⎢

⎣

x − a
y − b
z − c

⎤

⎥

⎥

⎦

= 0

and has scalar equation

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0.

29. Tangent Planes For Explicitly Defined Surfaces

Let f ∶ ℝ2 → ℝ be a function. Let (a, b) be a point in ℝ2. Suppose that the partial derivatives of f
exist at (a, b). The tangent plane to the surface z = f (x, y) at the point (a, b) is given by the equation

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

30. Normal Lines for Implicitly Defined Surfaces

Let F ∶ ℝ3 → ℝ be a function, and let k ∈ ℝ. Let (a, b, c) be a point on the surface defined by the
equation F (x, y, z) = k. The normal line to the surface at (a, b, c) has direction vector ∇F (a, b, c),
has vector equation

⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

a
b
c

⎤

⎥

⎥

⎦

+ t
⎡

⎢

⎢

⎣

Fx(a, b, c)
Fy(a, b, c)
Fz(a, b, c)

⎤

⎥

⎥

⎦

,

has parametric equations

x = a + tFx(a, b, c)
y = b + tFy(a, b, c)
z = c + tFz(a, b, c),

and has symmetric equations

x − a
Fx(a, b, c)

=
y − b

Fy(a, b, c)
= z − c
Fz(a, b, c)

.
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31. Directional Derivative

1. Let f ∶ ℝn → ℝ be a function, let p be a vector in ℝn and let u be a unit vector in ℝn. The
directional derivative of f at p in the direction of u, denoted Duf (p), is

Duf (p) = lim
ℎ→0

f (p + ℎu) − f (p)
ℎ

,

which is defined at all points for which the limit exists.
2. Let f ∶ ℝ2 → ℝ be a function. Let p = (x, y), and let u = (a, b) be a unit vector in ℝ2. Then the

directional derivative of f at p in the direction of u is

Duf (x, y) = lim
ℎ→0

f (x + ℎa, y + ℎb) − f (x, y)
ℎ

,

32. Directional Derivative and the Gradient

Let f ∶ ℝn → ℝ be a function, let p be a vector in ℝn and let u be a unit vector in ℝn. If the partial
derivatives of f at p exist, then Duf (p) exists, and

Duf (p) = ∇f (p) ⋅ u.

33. Directional Derivative: Maximal

Let f ∶ ℝn → ℝ be a function and let p be a vector in ℝn.

1. The unit vector u such that Duf (p) is maximal is the unit vector that has the same direction as
∇f (p).

2. The maximal value of the directional derivatives at p is |∇f (p)|.
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34. Lagrange Multipliers

Let f, g, ℎ∶ ℝ3 → ℝ be functions, and let k, c ∈ ℝ.

1. Suppose that f (x, y, z), when subject to the constraint g(x, y, z) = k, has a global maximum
and/or a global minimum. Suppose that ∇g(x, y, z) ≠ 0 for any (x, y, z) that satisfies the con-
straint. To find the global extrema of f (x, y, z) subject to the constraint, first find all values of
x, y, z and � that satisfy

∇f (x, y, z) = �∇g(x, y, z)
g(x, y, z) = k,

then find the value of f (x, y, z) at each of the solutions x, y, z and �, and find the largest and
smallest of these values of f (x, y, z).

2. Suppose that f (x, y, z), when subject to the constraints g(x, y, z) = k and ℎ(x, y, z) = c, has a
global maximum and/or a global minimum. Suppose that ∇g(x, y, z) and ∇ℎ(x, y, z) are non-
zero and not parallel for any (x, y, z) that satisfies the constraints. To find the global extrema of
f (x, y, z) subject to the constraint, first find all values of x, y, z, � and � that satisfy

∇f (x, y, z) = �∇g(x, y, z) + �∇ℎ(x, y, z)
g(x, y, z) = k
ℎ(x, y, z) = c,

then find the value of f (x, y, z) at each of the solutions x, y, z, � and �, and find the largest and
smallest of these values of f (x, y, z).
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Basic Rules for Derivatives

1. [f (x) + g(x)]′ = f ′(x) + g′(x)

2. [f (x) − g(x)]′ = f ′(x) − g′(x)

3. [cf (x)]′ = cf ′(x)

4. [f (x)g(x)]′ = f ′(x)g(x) + f (x)g′(x)

5.
[

f (x)
g(x)

]′

=
f ′(x)g(x) − f (x)g′(x)

[g(x)]2

6. [f (g(x))]′ = f ′(g(x))g′(x)

Basic Derivatives

1. (c)′ = 0

2. (x)′ = 1

3. (xr)′ = rxr−1, for any real number r

4. (ex)′ = ex

5. (ax)′ = ax ln a

6. (ln x)′ = 1
x

7. (ln |x|)′ = 1
x

8. (loga x)′ =
1
ln a

1
x

9. (sin x)′ = cos x

10. (cos x)′ = − sin x

11. (tan x)′ = sec2 x

12. (sec x)′ = sec x tan x

13. (csc x)′ = −csc x cot x

14. (cot x)′ = −csc2 x

15. (arcsin x)′ = 1
√

1 − x2

16. (arccos x)′ = − 1
√

1 − x2

17. (arctan x)′ = 1
1 + x2

18. (arcsec x)′ = 1

|x|
√

x2 − 1

19. (arccsc x)′ = − 1

|x|
√

x2 − 1

20. (arccot x)′ = − 1
1 + x2
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Basic Rules for Indefinite Integrals

1. ∫ [f (x) + g(x)] dx = ∫ f (x) dx + ∫ g(x) dx

2. ∫ [f (x) − g(x)] dx = ∫ f (x) dx − ∫ g(x) dx

3. ∫ cf (x) dx = c ∫ f (x) dx

Basic Indefinite Integrals

1. ∫ 1 dx = x + C

2. ∫ xr dx = xr+1

r + 1
+ C when r ≠ −1

3. ∫
1
x
dx = ln |x| + C

4. ∫ ex dx = ex + C

5. ∫ ax dx = ax

ln a
+ C

6. ∫ sin x dx = −cos x + C

7. ∫ cos x dx = sin x + C

8. ∫ sec2 x dx = tan x + C

9. ∫ sec x tan x dx = sec x + C

10. ∫ csc2 x dx = −cot x + C

11. ∫ csc x cot x dx = −csc x + C

12. ∫
1

√

1 − x2
dx = arcsin x + C

13. ∫
1

1 + x2
dx = arctan x + C

14. ∫
1

|x|
√

x2 − 1
dx = arcsec x + C
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