MATH 241 Vector Calculus Spring 2016
Study Sheet for Midterm Exam

e This study sheet will not be allowed during the test.
e Books, notes and online resources will not be allowed during the test.

e Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

10.

11.

12.

13.

14.

15.

Topics

. Cross product.

Lines and planes in R3.

. Single-variable vector-valued functions.

Derivatives and integrals of single-variable vector-valued functions.

. Arc length.

Curvature.

Level curves for multivariable real-valued functions.

. Partial derivatives of multivariable real-valued functions.

. Derivative of multivariable vector-valued functions.

Jacobian determinant.

Chain rule for multivariable vector-valued functions.
Gradient.

Tangent planes and normal lines.

Directional derivatives.

Lagrange Multipliers.




Practice Problems from Stewart, Calculus Concepts and Contexts, 4th ed.

Section 9.3: 3,5,7,9, 11, 15, 17, 19, 21, 23, 43.

Section9.4: 1,3,7,9, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31.

Section 9.5: 1,3,5,7,9, 11, 13, 17, 19, 21, 23, 25, 27, 31, 37, 39, 41, 47, 49, 51.
Section 10.1: 1, 3, 5, 25, 27, 43.

Section 10.2: 3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 31, 33, 35, 37, 39.

Section 10.3: 1, 3,5, 17b, 19b, 21, 23.

Section 11.1: 1,5,7,9, 11, 19, 21, 23, 25, 29.

Section 11.3: 1, 3, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61,
63, 65, 67, 69,71, 75, 79, 81, 83.

Handout Section 31.2: 1,2,3,4,5,6,7.

Handout Section 31.4: 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14.

Section 11.4: 1, 3, 5.

Section 11.6: 7,9, 11, 13, 15, 17, 19, 21, 23, 27, 31, 39, 41, 43, 47, 49, 51, 53.

Section 11.8: 1,3,5,7,9, 11, 13, 15, 17, 27, 29, 31, 37, 39.



Some Important Concepts and Formulas

1. Cross Product

a b
Leta = [Z; ] and b = lb;l . The cross product of a and b is defined by

3 bs

ayby;—asb, ia b
axXb=|ab-ab | =det|jaub]|.

a by,—ab; k a3 by

2. Properties of Cross Product

Leta,b,c € R? andlet s € R.

1. axb=—(bxa).

2. (sa) xb = s(axb)=ax(sb).
J.ax(b+c)=axb+axec.
4. (b+c)xa=bxa+cxa.
5. 0xa=0.

6. ax(sa)=0.

7

.a-(axb)=0andb-(axb)=0.

3. Geometry of the Cross Product

Leta,b € R3. Let 0 be the angle between a and b.

1. If a and b are non-zero and not parallel, then a X b = (|a||b| sin §)n, where n is the unique unit
vector in R? that is perpendicular to both a and b and is in the direction given by the right hand
rule.

2. |ax b| = |a||b|sin6.
3. The area of the parallelogram formed by a and b is |a X b]|.




4. Scalar Triple Product

a by c
Leta = [35],andb= lbzl and ¢ = [ﬁi].

bs 3

1. The scalar triple product of a, b and c is defined by

ay by ¢
a-(bxc)=det [azbzczl.

as by c3

a-(bxc)=c-(axb)=b-(cxa)=-a-(cxb)=-b-(axc)=—-c-(bxa).

3. The volume of the parallelepiped formed by a, b and cis |a - (b X ¢)].

5. Lines in R3

X
Letr, = [ig] and v = [g] The equation of the line through r, and in the direction of v is given in
0

the following three ways.

Vector Equation

r =r,+1v.
Parametric Equations

X =X, +at

y=1y,+bt

z = 2zy+cl.

Symmetric Equations

6. Planes in R3

Letr, = [chg] and n = [Z]. The equation of the line through r, and normal to n is given in the
Z c
following three ways.

Vector Equation
(r—-ry -n=0.

Scalar Equation
a(x —xq) + b(y —y,) +c(z —zy) =0.

Linear Equation
ax+by+cz+d=0.




7. Single-Variable Vector-Valued Functions
1. A single-variable vector-valued function is a function r : R — R™ for some m € N such that

m>2.
2. A single-variable vector-valued function has the form

ri(n)
r()=|""|.

Fo0)

3. A functionr : R — R3 has the form o
r(f) = [gm] .
h(r)

8. Single-Variable Vector-Valued Functions: Limits

f@® . ) .
Letr(t) = [g(z) ] be a single-variable vector-valued function, and let ¢ € R.

h(7)
lim f(¢)
t—c
limr(r) = [ limg(®) |,
t—c —C
lim A(t)

t—c

9. Single-Variable Vector-Valued Functions: Derivatives

Let r(¢) be a single-variable vector-valued function defined on an open interval

1. The derivative of r(z), denoted r’(¢), is the function defined by

() = lim r(t+h)—r()
- h—0 h ’

for those values of ¢ for which the limit exists.
2. The function r(¢) is differentiable if r’(¢) is defined for all values of ¢.
f@® f1@
3. Ifr(f) = [ 20 ] then r'(f) = lg'm l .
h(1) (1)
r'o for those values of ¢ for

4. The unit tangent vector to r(z), denoted T(?), is defined by T(¢) = o

which r'() # 0.




10. Single-Variable Vector-Valued Functions: Properties of Derivatives

Let r(¢) and s(¢) be a single-variable vector-valued function, let f(¢) be a real-valued function, and let
¢ € R. Suppose that r(¢) and s(¢) are differentiable.

[r(®) +s@)] =1'(t) +5'@).

[r(1) =s®)] =r'(1) —s'().

[er ()] = cr'(2).

[fOr@®] = f'(Or@) + fOr' @).

[r(@) -s@®)]) =r'(t) - s@) + 1) -s'().

[r(®) xs(®)] =r'(t) xs@) +r) xXs' ().

[x(F N =" (fO) ' @)

A L L

11. Single-Variable Vector-Valued Functions: Integrals

Let r(¢) be a single-variable vector-valued function.

f@)
1. Ifr(¥) = [ié ] , the integral of r(¢) from a to b is
t

[P r@ar

b
/r(t)dt: orar
‘ [ h()dt

provided the three integrals exist.

2. Fundamental Theorem of Calculus—Version II: If R(?) is an antiderivative of r(¢), then

b
/ r(7) dt = R(b) — R(a).

12. Arc Length

Let r(7) be a single-variable vector-valued function. Suppose that r(¢) is differentiable. The arc length

of r(¢) from a to b is
b
Lz/ I’ (1)| dt.




13. Curvature
Let r(¢) be a single-variable vector-valued function.
1. The function r(¢) is regular if r’(¢) is continuous and r’(¢) # 0 for all .
2. Suppose that r(?) is regular. The curvature of r(¢), denoted x(7), is defined by
'Ol _ Ir'() xx" @)
roOl - wol

k() =

14. Partial Derivatives of a Multivariable Real-Valued Function

1. Let U be an open region in R?, and let f : U — R be a function. The partial derivatives of
f(x, y) withrespect to x and y respectively, denoted f,(x, y) and f (x, y), are the functions given
by

h,y) = fx, _ fy+h) - f(x,
fX(x’ y) - }ll—l;% f(x - y]z f(x y) and fy(x» y) = }ll_l;% f(x : u ]’2 f(x y)a

which are defined at all points for which the limit exists.

2. If g is a multivariable real-valued function of n of variables, there are n partial derivatives of
g, each of which is obtained by considering all but one of the variables of g as constants, and
taking the derivative with respect to the variable not being considered as a constant.

15. Notation for Partial Derivatives

Let z = f(x, y) be a function.

Lw. Alow. DG, Dy, L Ly
£, faoy. Dyf(ry). Dyf(xy). % = s,
16. Notation for Second Partial Derivatives
Let z = f(x, y) be a function.
faloy) f1Go). 327’; %
(). faly). 227{ giyj
o) Fitey) ;;—a’; a‘fazx.
FruCoy), fa(xy), % aaxz z




17. Clairaut’s Theorem

Let f(x, y) be a function defined on an open disk in R2. If f(x,y) and f) (x, y) are both continuous
on the disk, then f,,(x, y) = f,,(x, y) for all (x, y) in the disk.

18. Multivariable Vector-Valued Functions

1. A multivariable vector-valued function is a function F : R" — R™ for some positive integers
n and m.

2. A function F ;: R" - R™ has the form

F10e1,X0,0000%,)
F (xl Xy X ) — Fo(x),X0,000%,)
s s oo Xy : ’
Sn(X1,X0,...,%,)
where f|, fys..-» [, - R" — R are multivariable real-valued functions. The functions

fi> f5s ..., f,, are called the component functions of F.
3. A function F : R* — R3 has the form

P(x,y)
F(x,y) = [Q(x,y)] .
R(x,y)

19. Derivative of a Multivariable Vector-Valued Function

1. Let F: R" — R™ be a multivariable vector-valued function. Suppose that F(x,, x,, ..., X,) is
given by the formula

S1(x1,%5,..,x,)
— | foOxpxgsens X,)

F(xl,xz,...,xn) = | /2 .
fm(xl,xz,.“,xn)

The derivative (also called the Jacobian matrix) of F is the m X n matrix

o A
0x, 0x, ox,
D.F (xl,X2,...,xn> - a).cl ‘))-(2 X a).cn
0x, 0x, ox,

2. If the point (x,, x,, ..., x,) is abbreviated by p, then the derivative of F is also denoted D F(p); it
is also written DF , or F '(p). When only the name of the derivative is needed, without listing
the variables, it is written DF.

P(x.,y)
3. If F (x. ) = [gw], then
R(x,y)

op op
& %
DF (x,y) =5 3,
9R oR
ox dy



20.

21.

22.

23.

Basic Rules for Derivatives

Let F,G: R" — R" be functions, let ¢ be a real number, and let p be a point in R”. Suppose that F
and G are differentiable. Then

1. D(F + G)(p) = DF(p) + DG(p);

2. D(F - G)(p) = DF(p) — DG(p);

3. D(cF)(p) =cDF(p).

The Jacobian Determinant

1. Let F: R" — R" be a function. The determinant of the derivative of F is called the Jacobian
determinant (or just the Jacobian) of the function, and is denoted

det DF (x,x,,...,%,),

or similarly if a different notation for the derivative is used.

2. If the point (x,, x,, ..., x,) 1s abbreviated by p, then the Jacobian determinant of F is also denoted
det DF(p). When only the name of the Jacobian determinant is needed, without listing the
variables, it is written det DF.

Ju Jv
Y 9y
oJu Jv

9(x.y)

or .
o(u,v)

3. If F(u,v) = [SEZZ; , then the Jacobian determinant of F is sometimes denoted

Composition of Functions

Let G: R" - R* and F: R* — R™ be functions. The composition of F and G is the function
FoG: R"— R" given by the formula

(F o G)(p) = F(G(p)).

The Chain Rule via Matrix Multiplication

Let G: R" - R and F : R* — R™ be functions, and let p be a point in R". Suppose that F and G
are differentiable. Then
D(F o G)(p) = DF(G(p)) DG(p),

where the multiplication is matrix multiplication.




24. The Chain Rule Without Matrices

Let z = f(x,,...,x,), and where each of x|, ..., x, is a function of 7, ..., 7,,.. Then
9z _ 0z 9%  0z9% . 0z9%
dt, 0x, ot;,  dx, o, ox, ot,’
foreachi=1,2,...,m.

25. The Gradient

Let f: R" — R be a function, and let p = (x,, x,, ..., x,,) be a point in R".

1. The gradient of f at p, denoted V f(p),or V f (xl, Xy eues xn), or grad f(p),orgrad f (xl, Xy, ..

is defined by
of
| %
r_[of of of s
Vf (xl,xz,...,xn) =Df (xl,xz,...,xn) = laxl ox, " ox, = Ez
of

0x

n

0 X,)s

2. Whereas the original function f was a multivariable real-valued function f : R" — R, the gra-

dient of f is a multivariable vector-valued function Vf : R" - R".

26. The Gradient and the Chain Rule
Let f: R" > Rand r: R - R” be differentiable functions. Then

Lfr@)] =V f@r@®) - r'®.

27. The Gradient, Level Curves and Level Surfaces

1. Let f : R? - R be a function, let k be a real number, and let (a, b) be a point on the curve given
by the equation f(x,y) = k. Then V f(a, b) is orthogonal to the tangent line of f(x,y) = k at

(a, b).

2. Let £ : R? — R be a function, let k be a real number, and let (a, b, ¢) be a point on the surface
given by the equation f(x,y,z) = k. Then V f(a,b,c) is orthogonal to the tangent plane of

f(x,y,z) =kat(a,b,c).

10



28.

29.

30.

Tangent Planes for Implicitly Defined Surfaces

Let F: R? — R be a function, and let k € R. Let (a, b, ¢) be a point on the surface defined by the
equation F(x, y, z) = k. Suppose that the partial derivatives of F exist at (a, b, ¢). The tangent plane
to the surface at (a, b, ¢) has normal vector VF (a, b, c¢), has vector equation

xX—a
VF(a,b,c)-|y—b|=0
z—c

and has scalar equation

F.(a,b,c)(x —a)+ Fy(a, b,c)y—b)+ F,(a,b,c)(z—c)=0.

Tangent Planes For Explicitly Defined Surfaces

Let f: R? —» R be a function. Let (a, b) be a point in R2. Suppose that the partial derivatives of f
exist at (a, b). The tangent plane to the surface z = f(x, y) at the point (a, b) is given by the equation

z = f(a,b)+ f(a,b)(x — a) + f,(a,b)(y = b).

Normal Lines for Implicitly Defined Surfaces

Let F: R?® — R be a function, and let k € R. Let (a, b, ¢) be a point on the surface defined by the
equation F(x,y,z) = k. The normal line to the surface at (a, b, ¢) has direction vector VF (a, b, ¢),
has vector equation

a F.(a,b,c)
=|b|+1t|Fla,b,0)|,

c F. (a,b,c)

N e =

has parametric equations

x=a+tF.(ab,c)
y=>b+tFy/a,b,c)
z=c+1tF,(a,b,c),

and has symmetric equations

x—a _ y—-b  z-¢
F.(a,b,c) Fy(a,b,c) Fz(a,b,c)'

11



31. Directional Derivative

1. Let f: R" — R be a function, let p be a vector in R” and let u be a unit vector in R". The
directional derivative of f at p in the direction of u, denoted D, f(p), is

f(p+hu) - f(p)
Y :

D,f(p) = lim

which is defined at all points for which the limit exists.

2. Let f: R?> = R be a function. Let p = (x, ), and let u = (a, b) be a unit vector in R?. Then the
directional derivative of f at p in the direction of u is

f(x+ ha,y+ hb)— f(x,y)
h b

D,f(x,) = lim

32. Directional Derivative and the Gradient

Let f: R" — R be a function, let p be a vector in R” and let u be a unit vector in R". If the partial
derivatives of f at p exist, then D, f(p) exists, and

D,f(p)=Vf(p)-u.

33. Directional Derivative: Maximal

Let f: R" — R be a function and let p be a vector in R”.

1. The unit vector u such that D, f(p) is maximal is the unit vector that has the same direction as
Vf(p).

2. The maximal value of the directional derivatives at p is |V f(p)|.

12



34. Lagrange Multipliers
Let f,g,h: R?> — R be functions, and let k, c € R.

1. Suppose that f(x,y, z), when subject to the constraint g(x,y,z) = k, has a global maximum
and/or a global minimum. Suppose that Vg(x, y, z) # 0 for any (x, y, z) that satisfies the con-
straint. To find the global extrema of f(x, y, z) subject to the constraint, first find all values of
X, y, z and A that satisfy

Vf(x,y,z) = 4AVg(x,y, z)
g(x,y,z) =k,
then find the value of f(x,y, z) at each of the solutions x, y, z and 4, and find the largest and
smallest of these values of f(x, y, z).

2. Suppose that f(x,y, z), when subject to the constraints g(x, y,z) = k and h(x,y,z) = ¢, has a
global maximum and/or a global minimum. Suppose that Vg(x, y, z) and Vh(x, y, z) are non-
zero and not parallel for any (x, y, z) that satisfies the constraints. To find the global extrema of
f(x,y, z) subject to the constraint, first find all values of x, y, z, A and u that satisfy

Vf(x,y,2) =AVg(x,y,z)+ uVh(x,y, z)

g(x,y,z) =k
h(x,y,z) =c,

then find the value of f(x, y, z) at each of the solutions x, y, z, 4 and y, and find the largest and
smallest of these values of f(x,y, z).

13



Basic Rules for Derivatives

)+ 8] = () +8'(x)

2. [fx)—gx)] = f'(x)—g'x)
3. [ef @) = ¢f'(x)
1. (¢) =0
2. (x) =
3. (x")' = rx"~!, for any real number r
4. (e*) =e*
5. (@*) =a*lna
6. (Inx) = 1
X
7. (In|x]) = 1
X
8. (log,x) = 11
Inax
9. (sinx) =cosx
10. (cosx) = —sinx
11. (tanx) = sec® x

4. [f(0)g)] = f1(x)g(x) + f(x)g'(x)

5 [f(X) /= J(x)g(x) = f(x)g'(x)
" e [g()]?

6. [f(gGx)] = f'(g(x)g'(x)

Basic Derivatives

12. (secx) = sec xtanx

13. (cscx)) = —cscxcot x
14. (cot x)’ = —csc? x
15. (arcsinx) = 1
V1-—x2
, 1
16. (arccosx) = —
V1-x2
17. (arctanx) = L
) 1 + x2

18. (arcsecx) =

1
[x]Vx2 -1

19. (arcescx) = N S
[x|Vx2—1
1

20. tx) =—
(arccot x) T2

14



[

[\%)

W

-/[f(X)+g(X)]dx=/f(X)dX+/g(X)dx

-/[f(X)—g(X)]dx=/f(X)dx—/g(X)dx

/

Basic Rules for Indefinite Integrals

cf(x)dx = c/f(x)dx

Basic Indefinite Integrals

ldx=x+C

xr+l h
"dx = +C -1
x dx P when r #

ldx=1n|x|+C
X

+C

=lna

sinxdx =—cosx +C

cosxdx =sinx+C

15

8. /seczxdxztanx+C
9. /secxtanxdxzsecx+C
10. /csczxdx=—cotx+C

11. /cscxcotxdx= —cscx+C

12. / 1 dx = arcsinx + C

V1-—x2

13./ 1 dx = arctanx + C
1+ x2

14 dx = arcsecx + C

'/|x|\/>1ﬁ



