MATH 241 Vector Calculus Spring 2016 Study Sheet for Midterm Exam

- This study sheet will not be allowed during the test.
- Books, notes and online resources will not be allowed during the test.
- Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

Topics

- 1. Cross product.
- 2. Lines and planes in \mathbb{R}^3 .
- 3. Single-variable vector-valued functions.
- 4. Derivatives and integrals of single-variable vector-valued functions.
- 5. Arc length.
- 6. Curvature.
- 7. Level curves for multivariable real-valued functions.
- 8. Partial derivatives of multivariable real-valued functions.
- 9. Derivative of multivariable vector-valued functions.
- 10. Jacobian determinant.
- 11. Chain rule for multivariable vector-valued functions.
- 12. Gradient.
- 13. Tangent planes and normal lines.
- 14. Directional derivatives.
- 15. Lagrange Multipliers.

Practice Problems from Stewart, Calculus Concepts and Contexts, 4th ed.

- **Section 9.3:** 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 43.
- **Section 9.4:** 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31.
- **Section 9.5:** 1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 31, 37, 39, 41, 47, 49, 51.
- **Section 10.1:** 1, 3, 5, 25, 27, 43.
- **Section 10.2:** 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 31, 33, 35, 37, 39.
- **Section 10.3:** 1, 3, 5, 17b, 19b, 21, 23.
- **Section 11.1:** 1, 5, 7, 9, 11, 19, 21, 23, 25, 29.
- **Section 11.3:** 1, 3, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 75, 79, 81, 83.
- **Handout Section 31.2:** 1, 2, 3, 4, 5, 6, 7.
- **Handout Section 31.4:** 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

Section 11.4: 1, 3, 5.

- **Section 11.6:** 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 31, 39, 41, 43, 47, 49, 51, 53.
- **Section 11.8:** 1, 3, 5, 7, 9, 11, 13, 15, 17, 27, 29, 31, 37, 39.

Some Important Concepts and Formulas

1. **Cross Product**

Let $\mathbf{a} =$ $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ $\overline{1}$ and $\mathbf{b} =$ $\int b_1$ $b₂$ b_3 $\overline{1}$. The **cross product** of **a** and **b** is defined by \overline{a} $\overline{1}$ $\overline{1}$

$$
\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \det \begin{bmatrix} \mathbf{i} & a_1 & b_1 \\ \mathbf{j} & a_2 & b_2 \\ \mathbf{k} & a_3 & b_3 \end{bmatrix}.
$$

2. **Properties of Cross Product**

Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$, and let $s \in \mathbb{R}$.

\n- 1.
$$
a \times b = -(b \times a)
$$
.
\n- 2. $(sa) \times b = s(a \times b) = a \times (sb)$.
\n- 3. $a \times (b + c) = a \times b + a \times c$.
\n- 4. $(b + c) \times a = b \times a + c \times a$.
\n- 5. $0 \times a = 0$.
\n- 6. $a \times (sa) = 0$.
\n- 7. $a \cdot (a \times b) = 0$ and $b \cdot (a \times b) = 0$.
\n

3. **Geometry of the Cross Product**

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$. Let θ be the angle between \mathbf{a} and \mathbf{b} .

- **1.** If **a** and **b** are non-zero and not parallel, then $\mathbf{a} \times \mathbf{b} = (|\mathbf{a}||\mathbf{b}| \sin \theta) \mathbf{n}$, where **n** is the unique unit vector in ℝ³ that is perpendicular to both **a** and **b** and is in the direction given by the right hand rule.
- 2. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$.
- **3.** The area of the parallelogram formed by **a** and **b** is $|\mathbf{a} \times \mathbf{b}|$.

4. **Scalar Triple Product**

Let $\mathbf{a} =$ $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ $\overline{1}$, and $\mathbf{b} =$ $\int b_1$ $b₂$ b_3 $\overline{1}$ and $\mathbf{c} =$ $\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$ $\overline{1}$

1. The **scalar triple product** of **a**, **b** and **c** is defined by

$$
\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}.
$$

2.

$$
\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = -\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = -\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a}).
$$

3. The volume of the parallelepiped formed by **a**, **b** and **c** is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$.

.

5. **Lines in** \mathbb{R}^3

Let $\mathbf{r}_0 =$ $\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$ $\overline{1}$ and $\mathbf{v} =$ $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ $\overline{1}$. The equation of the line through \mathbf{r}_0 and in the direction of **v** is given in the following three ways.

Vector Equation

Parametric Equations

$$
x = x_0 + at
$$

\n
$$
y = y_0 + bt
$$

\n
$$
z = z_0 + ct.
$$

 $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$.

Symmetric Equations

$$
\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}.
$$

6. **Planes in** \mathbb{R}^3

Let $\mathbf{r}_0 =$ $\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$ $\overline{1}$ and $\mathbf{n} =$ $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ $\overline{1}$. The equation of the line through \mathbf{r}_0 and normal to **n** is given in the following three ways.

Vector Equation

$$
(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0.
$$

Scalar Equation

$$
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.
$$

Linear Equation

$$
ax + by + cz + d = 0.
$$

7. **Single-Variable Vector-Valued Functions**

- **1.** A **single-variable vector-valued function** is a function **r** : $\mathbb{R} \to \mathbb{R}^m$ for some $m \in \mathbb{N}$ such that $m \geq 2$.
- **2.** A single-variable vector-valued function has the form

$$
\mathbf{r}(t) = \begin{bmatrix} r_1(t) \\ r_2(t) \\ \vdots \\ r_m(t) \end{bmatrix}
$$

.

.

3. A function **r** : $\mathbb{R} \to \mathbb{R}^3$ has the form

$$
\mathbf{r}(t) = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}
$$

8. **Single-Variable Vector-Valued Functions: Limits**

Let $\mathbf{r}(t) = \begin{bmatrix} f(t) \\ g(t) \end{bmatrix}$ *ℎ*(*𝑡*) $\overline{1}$ be a single-variable vector-valued function, and let $c \in \mathbb{R}$.

$$
\lim_{t \to c} \mathbf{r}(t) = \begin{bmatrix} \lim_{t \to c} f(t) \\ \lim_{t \to c} g(t) \\ \lim_{t \to c} h(t) \end{bmatrix}.
$$

9. **Single-Variable Vector-Valued Functions: Derivatives**

Let $\mathbf{r}(t)$ be a single-variable vector-valued function defined on an open interval.

1. The derivative of $\mathbf{r}(t)$, denoted $\mathbf{r}'(t)$, is the function defined by

$$
\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h},
$$

for those values of *t* for which the limit exists.

2. The function $\mathbf{r}(t)$ is **differentiable** if $\mathbf{r}'(t)$ is defined for all values of *t*.

3. If
$$
\mathbf{r}(t) = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}
$$
, then $\mathbf{r}'(t) = \begin{bmatrix} f'(t) \\ g'(t) \\ h'(t) \end{bmatrix}$.

4. The unit tangent vector to **r**(*t*), denoted **T**(*t*), is defined by **T**(*t*) = $\frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ $\frac{\mathbf{r}^{\prime}(t)}{|\mathbf{r}^{\prime}(t)|}$, for those values of *t* for which $\mathbf{r}'(t) \neq 0$.

10. **Single-Variable Vector-Valued Functions: Properties of Derivatives**

Let $\mathbf{r}(t)$ and $\mathbf{s}(t)$ be a single-variable vector-valued function, let $f(t)$ be a real-valued function, and let $c \in \mathbb{R}$. Suppose that **r**(*t*) and **s**(*t*) are differentiable.

1.
$$
[\mathbf{r}(t) + \mathbf{s}(t)]' = \mathbf{r}'(t) + \mathbf{s}'(t)
$$
.

2.
$$
[\mathbf{r}(t) - \mathbf{s}(t)]' = \mathbf{r}'(t) - \mathbf{s}'(t).
$$

3. $[cr(t)]' = cr'(t)$.

4.
$$
[f(t)\mathbf{r}(t)]' = f'(t)\mathbf{r}(t) + f(t)\mathbf{r}'(t)
$$
.

5.
$$
[\mathbf{r}(t) \cdot \mathbf{s}(t)]' = \mathbf{r}'(t) \cdot \mathbf{s}(t) + \mathbf{r}(t) \cdot \mathbf{s}'(t).
$$

- **6.** $[\mathbf{r}(t) \times \mathbf{s}(t)]' = \mathbf{r}'(t) \times \mathbf{s}(t) + \mathbf{r}(t) \times \mathbf{s}'(t).$
- **7.** $[\mathbf{r}(f(t))]' = \mathbf{r}'(f(t))f'(t).$

11. **Single-Variable Vector-Valued Functions: Integrals**

Let $\mathbf{r}(t)$ be a single-variable vector-valued function.

1. If $\mathbf{r}(t) = \begin{bmatrix} f(t) \\ g(t) \end{bmatrix}$ *ℎ*(*𝑡*) $\overline{1}$, the integral of $\mathbf{r}(t)$ from *a* to *b* is

$$
\int_a^b \mathbf{r}(t) dt = \begin{bmatrix} \int_a^b f(t) dt \\ \int_a^b g(t) dt \\ \int_a^b h(t) dt \end{bmatrix},
$$

provided the three integrals exist.

2. Fundamental Theorem of Calculus—Version II: If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$, then

$$
\int_a^b \mathbf{r}(t) dt = \mathbf{R}(b) - \mathbf{R}(a).
$$

12. **Arc Length**

Let $\mathbf{r}(t)$ be a single-variable vector-valued function. Suppose that $\mathbf{r}(t)$ is differentiable. The arc length of $\mathbf{r}(t)$ from *a* to *b* is

$$
L = \int_{a}^{b} |\mathbf{r}'(t)| dt.
$$

13. **Curvature**

Let $\mathbf{r}(t)$ be a single-variable vector-valued function.

- **1.** The function **r**(*t*) is **regular** if **r**'(*t*) is continuous and **r**'(*t*) $\neq 0$ for all *t*.
- **2.** Suppose that $\mathbf{r}(t)$ is regular. The curvature of $\mathbf{r}(t)$, denoted $\kappa(t)$, is defined by

$$
\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}.
$$

14. **Partial Derivatives of a Multivariable Real-Valued Function**

1. Let *U* be an open region in \mathbb{R}^2 , and let $f: U \to \mathbb{R}$ be a function. The **partial derivatives** of $f(x, y)$ with respect to *x* and *y* respectively, denoted $f_x(x, y)$ and $f_y(x, y)$, are the functions given by

$$
f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}
$$
 and
$$
f_y(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h},
$$

which are defined at all points for which the limit exists.

2. If *g* is a multivariable real-valued function of *n* of variables, there are *n* partial derivatives of *𝑔*, each of which is obtained by considering all but one of the variables of *𝑔* as constants, and taking the derivative with respect to the variable not being considered as a constant.

15. **Notation for Partial Derivatives**

Let $z = f(x, y)$ be a function.

$$
f_x(x, y)
$$
, $f_1(x, y)$, $D_x f(x, y)$, $D_1 f(x, y)$, $\frac{\partial f}{\partial x}$, $\frac{\partial z}{\partial x}$, $\frac{\partial}{\partial x} f(x, y)$.
 $f_y(x, y)$, $f_2(x, y)$, $D_y f(x, y)$, $D_2 f(x, y)$, $\frac{\partial f}{\partial y}$, $\frac{\partial z}{\partial y}$, $\frac{\partial}{\partial y} f(x, y)$.

16. **Notation for Second Partial Derivatives**

Let $z = f(x, y)$ be a function.

$$
f_{xx}(x, y), \quad f_{11}(x, y), \quad \frac{\partial^2 f}{\partial x^2}, \quad \frac{\partial^2 z}{\partial x^2}.
$$

$$
f_{yy}(x, y), \quad f_{22}(x, y), \quad \frac{\partial^2 f}{\partial y^2}, \quad \frac{\partial^2 z}{\partial y^2}.
$$

$$
f_{xy}(x, y), \quad f_{12}(x, y), \quad \frac{\partial^2 f}{\partial y \partial x}, \quad \frac{\partial^2 z}{\partial y \partial x}.
$$

$$
f_{yx}(x, y), \quad f_{21}(x, y), \quad \frac{\partial^2 f}{\partial x \partial y}, \quad \frac{\partial^2 z}{\partial x \partial y}.
$$

17. **Clairaut's Theorem**

Let *f*(*x*, *y*) be a function defined on an open disk in \mathbb{R}^2 . If $f_{xy}(x, y)$ and $f_{yx}(x, y)$ are both continuous on the disk, then $f_{xy}(x, y) = f_{yx}(x, y)$ for all (x, y) in the disk.

18. **Multivariable Vector-Valued Functions**

- **1.** A **multivariable vector-valued function** is a function $F: \mathbb{R}^n \to \mathbb{R}^m$ for some positive integers *and* $*m*$ *.*
- **2.** A function $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ has the form

$$
\boldsymbol{F}\left(x_1, x_2, ..., x_n\right) = \begin{bmatrix} f_1(x_1, x_2, ..., x_n) \\ f_2(x_1, x_2, ..., x_n) \\ \vdots \\ f_m(x_1, x_2, ..., x_n) \end{bmatrix},
$$

where $f_1, f_2, \ldots, f_m: \mathbb{R}^n \to \mathbb{R}$ are multivariable real-valued functions. The functions f_1, f_2, \ldots, f_m are called the **component functions** of \boldsymbol{F} .

3. A function $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^3$ has the form

$$
F(x, y) = \begin{bmatrix} P(x,y) \\ Q(x,y) \\ R(x,y) \end{bmatrix}.
$$

19. **Derivative of a Multivariable Vector-Valued Function**

1. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a multivariable vector-valued function. Suppose that $F(x_1, x_2, ..., x_n)$ is given by the formula \overline{a} $\overline{1}$

$$
\boldsymbol{F}\left(x_1, x_2, ..., x_n\right) = \begin{bmatrix} f_1(x_1, x_2, ..., x_n) \\ f_2(x_1, x_2, ..., x_n) \\ \vdots \\ f_m(x_1, x_2, ..., x_n) \end{bmatrix}
$$

.

The **derivative** (also called the **Jacobian matrix**) of \vec{F} is the $m \times n$ matrix

$$
DF(x_1, x_2, ..., x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & ... & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & ... & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & ... & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.
$$

2. If the point $(x_1, x_2, ..., x_n)$ is abbreviated by *p*, then the derivative of *F* is also denoted *DF*(*p*); it is also written DF_p or $F'(p)$. When only the name of the derivative is needed, without listing the variables, it is written DF.

 ∂P

⎤ $\overline{}$ $\overline{}$ $\overline{}$ ⎦

.

 $\partial \v Q$

 $\partial \vphantom{X}\smash{\tilde{R}}$ ∂y

3. If
$$
F(x, y) = \begin{bmatrix} P(x,y) \\ Q(x,y) \\ R(x,y) \end{bmatrix}
$$
, then
\n
$$
DF(x, y) = \begin{bmatrix} \frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} \\ \frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} \\ \frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} \end{bmatrix}
$$

20. **Basic Rules for Derivatives**

Let $F, G: \mathbb{R}^n \to \mathbb{R}^m$ be functions, let *c* be a real number, and let *p* be a point in \mathbb{R}^n . Suppose that F and *G* are differentiable. Then

- **1.** $D(F + G)(p) = DF(p) + DG(p);$
- **2.** $D(F G)(p) = DF(p) DG(p);$
- **3.** $D(cF)(p) = cDF(p)$.

21. **The Jacobian Determinant**

1. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a function. The determinant of the derivative of F is called the **Jacobian determinant** (or just the **Jacobian**) of the function, and is denoted

$$
\det DF(x_1, x_2, ..., x_n),
$$

or similarly if a different notation for the derivative is used.

- **2.** If the point $(x_1, x_2, ..., x_n)$ is abbreviated by *p*, then the Jacobian determinant of *F* is also denoted det $DF(p)$. When only the name of the Jacobian determinant is needed, without listing the variables, it is written det DF.
- **3.** If $F(u, v) = \begin{bmatrix} P(u, v) \\ Q(u, v) \end{bmatrix}$ $Q(u,v)$ $\Big]$, then the Jacobian determinant of \overline{F} is sometimes denoted $\Big|$ $\frac{\partial x}{\partial u}$ $\frac{\partial y}{\partial v}$ $\frac{\partial y}{\partial u}$ $\frac{\partial y}{\partial v}$ | | | | or $\frac{\partial(x,y)}{\partial(x,y)}$ $\frac{\partial(x,y)}{\partial(u,v)}$.

22. **Composition of Functions**

Let $G: \mathbb{R}^n \to \mathbb{R}^k$ and $F: \mathbb{R}^k \to \mathbb{R}^m$ be functions. The **composition** of F and G is the function $\mathbf{F} \circ \mathbf{G} : \mathbb{R}^n \to \mathbb{R}^m$ given by the formula

$$
(\boldsymbol{F} \circ \boldsymbol{G})(p) = \boldsymbol{F}(\boldsymbol{G}(p)).
$$

23. **The Chain Rule via Matrix Multiplication**

Let $G: \mathbb{R}^n \to \mathbb{R}^k$ and $F: \mathbb{R}^k \to \mathbb{R}^m$ be functions, and let p be a point in \mathbb{R}^n . Suppose that F and G are differentiable. Then

$$
D(F \circ G)(p) = DF(G(p)) DG(p),
$$

where the multiplication is matrix multiplication.

24. **The Chain Rule Without Matrices**

Let $z = f(x_1, \ldots, x_n)$, and where each of x_1, \ldots, x_n is a function of t_1, \ldots, t_m . Then

$$
\frac{\partial z}{\partial t_i} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial z}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\partial t_i},
$$

for each $i = 1, 2, ..., m$.

25. **The Gradient**

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function, and let $p = (x_1, x_2, ..., x_n)$ be a point in \mathbb{R}^n .

1. The gradient of f at p, denoted $\nabla f(p)$, or $\nabla f(x_1, x_2, ..., x_n)$, or grad $f(p)$, or grad $f(x_1, x_2, ..., x_n)$, is defined by

 $\frac{1}{2}$

$$
\nabla f\left(x_1, x_2, ..., x_n\right) = Df\left(x_1, x_2, ..., x_n\right)^T = \left[\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} ... \frac{\partial f}{\partial x_n}\right]^T = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.
$$

2. Whereas the original function *f* was a multivariable real-valued function $f : \mathbb{R}^n \to \mathbb{R}$, the gradient of *f* is a multivariable vector-valued function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$.

26. **The Gradient and the Chain Rule**

Let $f: \mathbb{R}^n \to \mathbb{R}$ and $r: \mathbb{R} \to \mathbb{R}^n$ be differentiable functions. Then

$$
[f(\mathbf{r}(t))]' = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t).
$$

27. **The Gradient, Level Curves and Level Surfaces**

- **1.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function, let *k* be a real number, and let (a, b) be a point on the curve given by the equation $f(x, y) = k$. Then $\nabla f(a, b)$ is orthogonal to the tangent line of $f(x, y) = k$ at (a, b) .
- **2.** Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a function, let k be a real number, and let (a, b, c) be a point on the surface given by the equation $f(x, y, z) = k$. Then $\nabla f(a, b, c)$ is orthogonal to the tangent plane of $f(x, y, z) = k$ at (a, b, c) .

28. **Tangent Planes for Implicitly Defined Surfaces**

Let $F: \mathbb{R}^3 \to \mathbb{R}$ be a function, and let $k \in \mathbb{R}$. Let (a, b, c) be a point on the surface defined by the equation $F(x, y, z) = k$. Suppose that the partial derivatives of *F* exist at (a, b, c) . The **tangent plane** to the surface at (a, b, c) has normal vector $\nabla F(a, b, c)$, has vector equation

$$
\nabla F(a, b, c) \cdot \begin{bmatrix} x - a \\ y - b \\ z - c \end{bmatrix} = 0
$$

and has scalar equation

$$
F_x(a, b, c)(x - a) + F_y(a, b, c)(y - b) + F_z(a, b, c)(z - c) = 0.
$$

29. **Tangent Planes For Explicitly Defined Surfaces**

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Let (a, b) be a point in \mathbb{R}^2 . Suppose that the partial derivatives of f exist at (a, b) . The **tangent plane** to the surface $z = f(x, y)$ at the point (a, b) is given by the equation

$$
z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b).
$$

30. **Normal Lines for Implicitly Defined Surfaces**

Let $F: \mathbb{R}^3 \to \mathbb{R}$ be a function, and let $k \in \mathbb{R}$. Let (a, b, c) be a point on the surface defined by the equation $F(x, y, z) = k$. The **normal line** to the surface at (a, b, c) has direction vector $\nabla F(a, b, c)$, has vector equation

$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} + t \begin{bmatrix} F_x(a, b, c) \\ F_y(a, b, c) \\ F_z(a, b, c) \end{bmatrix},
$$

has parametric equations

$$
x = a + tF_x(a, b, c)
$$

\n
$$
y = b + tF_y(a, b, c)
$$

\n
$$
z = c + tF_z(a, b, c),
$$

and has symmetric equations

$$
\frac{x-a}{F_x(a, b, c)} = \frac{y-b}{F_y(a, b, c)} = \frac{z-c}{F_z(a, b, c)}.
$$

31. **Directional Derivative**

1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, let *p* be a vector in \mathbb{R}^n and let *u* be a unit vector in \mathbb{R}^n . The **directional derivative** of *f* at *<i>p* in the direction of *<i>u*, denoted $D_u f(p)$, is

$$
D_{u}f(p) = \lim_{h \to 0} \frac{f(p + hu) - f(p)}{h},
$$

which is defined at all points for which the limit exists.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $p = (x, y)$, and let $u = (a, b)$ be a unit vector in \mathbb{R}^2 . Then the directional derivative of f at p in the direction of u is

$$
D_u f(x, y) = \lim_{h \to 0} \frac{f(x + ha, y + hb) - f(x, y)}{h},
$$

32. **Directional Derivative and the Gradient**

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, let *p* be a vector in \mathbb{R}^n and let *u* be a unit vector in \mathbb{R}^n . If the partial derivatives of f at p exist, then $D_{\mu} f(p)$ exists, and

$$
D_{u}f(p) = \nabla f(p) \cdot u.
$$

33. **Directional Derivative: Maximal**

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function and let *p* be a vector in \mathbb{R}^n .

- **1.** The unit vector \bf{u} such that $D_{\bf{u}} f(\bf{p})$ is maximal is the unit vector that has the same direction as $\nabla f(\boldsymbol{p}).$
- **2.** The maximal value of the directional derivatives at \mathbf{p} is $|\nabla f(\mathbf{p})|$.

34. **Lagrange Multipliers**

Let $f, g, h : \mathbb{R}^3 \to \mathbb{R}$ be functions, and let $k, c \in \mathbb{R}$.

1. Suppose that $f(x, y, z)$, when subject to the constraint $g(x, y, z) = k$, has a global maximum and/or a global minimum. Suppose that $\nabla g(x, y, z) \neq 0$ for any (x, y, z) that satisfies the constraint. To find the global extrema of $f(x, y, z)$ subject to the constraint, first find all values of x, y, z and λ that satisfy

$$
\nabla f(x, y, z) = \lambda \nabla g(x, y, z)
$$

$$
g(x, y, z) = k,
$$

then find the value of $f(x, y, z)$ at each of the solutions x, y, z and λ , and find the largest and smallest of these values of $f(x, y, z)$.

2. Suppose that $f(x, y, z)$, when subject to the constraints $g(x, y, z) = k$ and $h(x, y, z) = c$, has a global maximum and/or a global minimum. Suppose that $\nabla g(x, y, z)$ and $\nabla h(x, y, z)$ are nonzero and not parallel for any (x, y, z) that satisfies the constraints. To find the global extrema of $f(x, y, z)$ subject to the constraint, first find all values of *x*, *y*, *z*, λ and μ that satisfy

$$
\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)
$$

$$
g(x, y, z) = k
$$

$$
h(x, y, z) = c,
$$

then find the value of $f(x, y, z)$ at each of the solutions x, y, z, λ and μ , and find the largest and smallest of these values of $f(x, y, z)$.

Basic Rules for Derivatives

1.
$$
[f(x) + g(x)]' = f'(x) + g'(x)
$$

2. $[f(x) - g(x)]' = f'(x) - g'(x)$
3. $[cf(x)]' = cf'(x)$

4.
$$
[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
$$

\n**5.** $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$
\n**6.** $[f(g(x))]' = f'(g(x))g'(x)$

Basic Derivatives

1. $(c)' = 0$ **2.** $(x)' = 1$ **3.** $(x^r)' = rx^{r-1}$, for any real number *r* **4.** $(e^x)' = e^x$ **5.** $(a^x)' = a^x \ln a$ **6.** $(\ln x)' = \frac{1}{x}$ \mathbf{x} **7.** $(\ln |x|)' = \frac{1}{x}$ \mathbf{x} **8.** $(\log_a x)' = \frac{1}{\ln a}$ ln *𝑎* 1 \mathbf{x} **9.** $(\sin x)' = \cos x$ **10.** $(\cos x)' = -\sin x$ **11.** $(\tan x)' = \sec^2 x$

12.
$$
(\sec x)' = \sec x \tan x
$$

\n13. $(\csc x)' = -\csc x \cot x$
\n14. $(\cot x)' = -\csc^2 x$
\n15. $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$
\n16. $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$
\n17. $(\arctan x)' = \frac{1}{1 + x^2}$
\n18. $(\arccsc x)' = \frac{1}{|x|\sqrt{x^2 - 1}}$
\n19. $(\arccsc x)' = -\frac{1}{|x|\sqrt{x^2 - 1}}$
\n20. $(\arccot x)' = -\frac{1}{1 + x^2}$

Basic Rules for Indefinite Integrals

1.
$$
\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx
$$

\n2. $\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$
\n3. $\int cf(x) dx = c \int f(x) dx$

Basic Indefinite Integrals

1.
$$
\int 1 dx = x + C
$$

\n2. $\int x^r dx = \frac{x^{r+1}}{r+1} + C$ when $r \neq -1$
\n3. $\int \frac{1}{x} dx = \ln |x| + C$
\n4. $\int e^x dx = e^x + C$
\n5. $\int a^x dx = \frac{a^x}{\ln a} + C$
\n6. $\int \sin x dx = -\cos x + C$
\n7. $\int \cos x dx = \sin x + C$

8.
$$
\int \sec^2 x \, dx = \tan x + C
$$

\n9. $\int \sec x \tan x \, dx = \sec x + C$
\n10. $\int \csc^2 x \, dx = -\cot x + C$
\n11. $\int \csc x \cot x \, dx = -\csc x + C$
\n12. $\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + C$
\n13. $\int \frac{1}{1 + x^2} \, dx = \arctan x + C$
\n14. $\int \frac{1}{|x|\sqrt{x^2 - 1}} \, dx = \operatorname{arcsec} x + C$