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2 1. Binary Operations

1.1 Binary Operations

Fraleigh, 7th ed. – Section 2
Gallian, 7th ed. – Section 2
Judson, 2016 – Section 3.2

Definition 1.1.1. LetA be a set. A binary operation onA is a functionAùAô A.
A unary operation on A is a function Aô A.  

Definition 1.1.2. Let A be a set, let < be a binary operation on A and let H ” A.
The subset H is closed under < if a < b À H for all a, b À H .  

Definition 1.1.3. Let A be a set, and let < be a binary operation on A. The binary
operation < satisfies the Commutative Law (an alternative expression is that < is
commutative) if a < b = b < a for all a, b À A.  

Definition 1.1.4. Let A be a set, and let < be a binary operation on A. The binary
operation < satisfies the Associative Law (an alternative expression is that < is
associative) if (a < b) < c = a < (b < c) for all a, b, c À A.  

Definition 1.1.5. Let A be a set, and let < be a binary operation on A.

1. Let e À A. The element e is an identity element for < if a < e = a = e < a
for all a À A.

2. If < has an identity element, the binary operation < satisfies the Identity
Law.  

Lemma 1.1.6. Let A be a set, and let < be a binary operation on A. If < has an

identity element, the identity element is unique.

Definition 1.1.7. Let A be a set, and let < be a binary operation of A. Let e À A.
Suppose that e is an identity element for <.

1. Let a À A. An inverse for a is an element a® À A such that a < a® = e and
a® < a = e.

2. If every element in A has an inverse, the binary operation < satisfies the
Inverses Law.  

Exercises
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Exercise 1.1.1. Which of the following formulas defines a binary operation on the
given set?

(1) Let < be defined by x < y = xy for all x, y À {*1,*2,*3,…}.

(2) Let ↵ be defined by x ↵ y =
˘
xy for all x, y À [2,ÿ).

(3) Let ‚ be defined by x ‚ y = x * y for all x, y À Q.

(4) Let ˝ be defined by (x, y) ˝(z,w) = (x + z, y + w) for all (x, y), (z,w) À
R2

* {(0, 0)}.

(5) Let Ê be defined by x Ê y = x + y for all x, y À N.

(6) Let ‰ be defined by x ‰ y = ln(xy * e) for all x, y À N.

Exercise 1.1.2. For each of the following binary operations, state whether the bi-
nary operation is associative, whether it is commutative, whether there is an iden-
tity element and, if there is an identity element, which elements have inverses.

(1) The binary operation ‚ on Z defined by x ‚ y = *xy for all x, y À Z.

(2) The binary operation ? on R defined by x ? y = x + 2y for all x, y À R.

(3) The binary operation ‰ on R defined by x‰y = x+ y* 7 for all x, y À R.

(4) The binary operation < on Q defined by x < y = 3(x + y) for all x, y À Q.

(5) The binary operation ˝ on R defined by x ˝ y = x for all x, y À R.

(6) The binary operation ↵ on Q defined by x ↵ y = x+ y+ xy for all x, y À Q.

(7) The binary operation Ê on R2 defined by (x, y)Ê (z,w) = (4xz, y+w) for
all (x, y), (z,w) À R2.

Exercise 1.1.3. For each of the following binary operations given by operation ta-
bles, state whether the binary operation is commutative, whether there is an iden-
tity element and, if there is an identity element, which elements have inverses. (Do
not check for associativity.)

(1)

‰ 1 2 3

1 1 2 1

2 2 3 2

3 1 2 3

.
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(2)

Ê j k l m
j k j m j
k j k l m
l k l j l
m j m l m .

(3)

< x y z w
x x z w y
y z w y x
z w y x z
w y x z w .

(4)

? a b c d e
a d e a b b
b e a b a d
c a b c d e
d b a d e c
e b d e c a .

(5)

↵ i r s a b c
i i r s a b c
r r s i c a b
s s i r b c a
a a b c i s r
b b c a r i s
c c a b s r i .

Exercise 1.1.4. Find an example of a set and a binary operation on the set such
that the binary operation satisfies the Identity Law and Inverses Law, but not the
Associative Law, and for which at least one element of the set has more than one
inverse. The simplest way to solve this problem is by constructing an appropriate
operation table.

Exercise 1.1.5. Let n À N. Recall the definition of the set Zn and the binary
operation � on Zn. Observe that [1] is the identity element for Zn with respect to
multiplication. Let a À Z. Prove that the following are equivalent.

a. The element [a] À Zn has an inverse with respect to multiplication.

b. The equation ax í 1 (mod n) has a solution.

c. There exist p, q À Z such that ap + nq = 1.

(It turns out that the three conditions listed above are equivalent to the fact that a
and n are relatively prime.)

Exercise 1.1.6. LetA be a set. A ternary operation onA is a functionAùAùAô
A. A ternary operation ?: A ù A ù Aô A is left-induced by a binary operation
↵: A ù Aô A if ?((a, b, c)) = (a ↵ b) ↵ c for all a, b, c À A.

Is every ternary operation on a set left-induced by a binary operation? Give a
proof or a counterexample.
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Exercise 1.1.7. Let A be a set, and let < be a binary operation on A. Suppose that
< satisfies the Associative Law and the Commutative Law. Prove that (a < b) <
(c < d) = b < [(d < a) < c] for all a, b, c, d À A.

Exercise 1.1.8. Let B be a set, and let ↵ be a binary operation on B. Suppose that
↵ satisfies the Associative Law. Let

P = {b À B › b ↵w = w ↵ b for all w À B}.

Prove that P is closed under ↵.

Exercise 1.1.9. Let C be a set, and let ? be a binary operation on C . Suppose that
? satisfies the Associative Law and the Commutative Law. Let

Q = {c À C › c ? c = c}.

Prove that Q is closed under ?.

Exercise 1.1.10. Let A be a set, and let < be a binary operation on A. An element
c À A is a left identity element for < if c < a = a for all a À A. An element d À A
is a right identity element for < if a < d = a for all a À A.

(1) If A has a left identity element, is it unique? Give a proof or a counterex-
ample.

(2) If A has a right identity element, is it unique? Give a proof or a counterex-
ample.

(3) If A has a left identity element and a right identity element, do these ele-
ments have to be equal? Give a proof or a counterexample.
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1.2 Isomorphic Binary Operations

Fraleigh, 7th ed. – Section 3
Gallian, 7th ed. – Section 6

Definition 1.2.1. Let (G, <) and (H , ↵) be sets with binary operations, and let
f : G ô H be a function. The function f is an isomorphism of the binary oper-
ations if f is bijective and if f (a < b) = f (a) ↵ f (b) for all a, b À G.  

Definition 1.2.2. Let (G, <) and (H , ↵) be sets with binary operations. The binary
operations < and ↵ are isomorphic if there is an isomorphism G ô H .  

Theorem 1.2.3. Let (G, <) and (H , ↵) be sets with binary operations. Suppose that

(G, <) and (H , ↵) are isomorphic.

1. (G, <) satisfies the Commutative Law if and only if (H , ↵) satisfies the Com-

mutative Law.

2. (G, <) satisfies the Associative Law if and only if (H , ↵) satisfies the Asso-

ciative Law.

3. (G, <) satisfies the Identity Law if and only if (H , ↵) satisfies the Identity

Law. If f : G ô H is an isomorphism, then f (eG) = eH .

4. (G, <) satisfies the Inverses Law if and only if (H , ↵) satisfies the Inverses

Law.

Exercises

Exercise 1.2.1. Prove that the two sets with binary operations in each of the fol-
lowing pairs are isomorphic.

(1) (Z,+) and (5Z,+), where 5Z = {5n › n À Z}.

(2) (R * {0}, �) and (R * {*1}, <), where x < y = x + y + xy for all x, y À

R * {*1}.

(3) (R4,+) and (M
2ù2

(R),+), where M
2ù2

(R) is the set of all 2 ù 2 matrices
with real entries.

Exercise 1.2.2. Let f : Z ô Z be defined by f (n) = n + 1 for all n À Z.
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(1) Define a binary operation < on Z so that f is an isomorphism of (Z,+) and
(Z, <), in that order.

(2) Define a binary operation ↵ on Z so that f is an isomorphism of (Z, ↵) and
(Z,+), in that order.

Exercise 1.2.3. Prove Theorem 1.2.3 (2).

Exercise 1.2.4. Prove Theorem 1.2.3 (3).

Exercise 1.2.5. Prove Theorem 1.2.3 (4).
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2.1 Groups

Fraleigh, 7th ed. – Section 4
Gallian, 7th ed. – Section 2
Judson, 2016 – Section 3.2

Definition 2.1.1. Let G be a non-empty set, and let < be a binary operation on G.
The pair (G, <) is a group if < satisfies the Associative Law, the Identity Law and
the Inverses Law.  

Definition 2.1.2. Let (G, <) be a group. The group (G, <) is abelian if < satisfies
the Commutative Law.  

Lemma 2.1.3. Let (G, <) be a group. If g À G, then g has a unique inverse.

Definition 2.1.4. Let (G, <) be a group. If G is a finite set, then the order of the
group, denoted G, is the cardinality of the set G.  

Definition 2.1.5. Let n À N, and let a, b À Z. The number a is congruent to the
number b modulo n, denoted a í b (mod n), if a * b = kn for some k À Z.  

Theorem 2.1.6. Let n À N, and let a À Z. Then there is a unique r À {0,… , n*1}
such that a í r (mod n).

Theorem 2.1.7. Let n À N.

1. Let a, b À Z. If a í b (mod n), then [a] = [b]. If a ì b (mod n), then

[a] „ [b] = Á.

2. [0] ‰ [1] ‰… ‰ [n * 1] = Z.

Definition 2.1.8. Let n À N. The set of integers modulo n, denoted Zn, is the set
defined by Zn = {[0], [1],… , [n * 1]}, where the relation classes are for congru-
ence modulo n.  

Definition 2.1.9. Let n À N. Let + and � be the binary operations on Zn defined
by [a] + [b] = [a + b] and [a] � [b] = [ab] for all [a], [b] À Zn.  

Lemma 2.1.10. Let n À N, and let a, b, c, d À Z. Suppose that a í c (mod n)
and b í d (mod n). Then a + b í c + d (mod n) and ab í cd (mod n).

Corollary 2.1.11. Let n À N, and let [a], [b], [c], [d] À Zn. Suppose that [a] = [c]
and [b] = [d]. Then [a + b] = [c + d] and [ab] = [cd].

Lemma 2.1.12. Let n À N. Then (Zn,+) is an abelian group.
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Exercises

Exercise 2.1.1. For each of the following sets with binary operations, state whether
the set with binary operation is a group, and whether it is an abelian group.

(1) The set (0, 1], and the binary operation multiplication.

(2) The set of positive rational numbers, and the binary operation multiplica-
tion.

(3) The set of even integers, and the binary operation addition.

(4) The set of even integers, and the binary operation multiplication.

(5) The set Z, and the binary operation < on Z defined by a < b = a * b for all
a, b À Z.

(6) The set Z, and the binary operation ? on Z defined by a ? b = ab + a for
all a, b À Z.

(7) The set Z, and the binary operation ↵ on Z defined by a ↵ b = a+ b+ 1 for
all a, b À Z.

(8) The set R * {*1}, and the binary operation Ê on R * {*1} defined by
a Ê b = a + b + ab for all a, b À R * {*1}.

Exercise 2.1.2. Let P = {a, b, c, d, e}. Find a binary operation < on P given by an
operation table such that (P , <) is a group.

Exercise 2.1.3. Find an example of a set and a binary operation on the set given
by an operation table such that each element of the set appears once and only once
in each row of the operation table and once and only once in each column, but the
set together with this binary operation is not a group.

Exercise 2.1.4. Let A be a set. Let P(A) denote the power set of A. Define the
binary operation   on P(A) byX   Y = (X*Y )‰(Y *X) for allX, Y À P(A).
(This binary operation is called symmetric di�erence. Prove that (P(A), ) is an
abelian group.

Exercise 2.1.5. Let (G, <) be a group. Prove that if x® = x for all x À G, then G is
abelian. Is the converse to this statement true?
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Exercise 2.1.6. Let (H ,?) be a group. Suppose that H is finite, and has an even
number of elements. Prove that there is some h À H such that h ë eH and h?h =

eH .
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2.2 Isomorphic Groups

Fraleigh, 7th ed. – Section 3
Gallian, 7th ed. – Section 6
Judson, 2016 – Section 9.1

Definition 2.2.1. Let (G, <) and (H , ↵) be groups, and let f : G ô H be a func-
tion. The function f is an isomorphism (sometimes called a group isomorphism)
if f is bijective and if f (a < b) = f (a) ↵ f (b) for all a, b À G.  

Definition 2.2.2. Let (G, <) and (H , ↵) be groups. The groups G and H are iso-
morphic if there is an isomorphism G ô H . If G and H are isomorphic, it is
denoted G ˆ H .  

Theorem 2.2.3. LetG andH be groups, and let f : G ô H be an isomorphism.

1. f (eG) = eH .

2. If a À G, then f (a®) = [f (a)]®, where the first inverse is inG, and the second

is in H .

Theorem 2.2.4. Let G, H and K be groups, and let f : G ô H and j : H ô K
be isomorphisms.

1. The identity map 1G : G ô G is an isomorphism.

2. The function f*1

is an isomorphism.

3. The function j ˝ f is an isomorphism.

Lemma 2.2.5. Let G and H be groups. Suppose that G and H are isomorphic.

Then G is abelian if and only if H is abelian.

Lemma 2.2.6. Let (G, <) be a group, let A be a set, and let f : A ô G be a

bijective map. Then there is a unique binary operation ↵ on A such that (A, ↵) is a

group and f is an isomorphism.

Exercises

Exercise 2.2.1. Which of the following functions are isomorphisms? The groups
under consideration are (R,+), and (Q,+), and ((0,ÿ), �).

(1) Let f : Q ô (0,ÿ) be defined by f (x) = 5

x for all x À Q.
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(2) Let k: (0,ÿ) ô (0,ÿ) be defined by k(x) = x*7 for all x À (0,ÿ).

(3) Let m: R ô R be defined by m(x) = x + 3 for all x À R.

(4) Let g: (0,ÿ) ô R be defined by g(x) = ln x for all x À (0,ÿ).

Exercise 2.2.2. Prove Theorem 2.2.3 (1).

Exercise 2.2.3. Prove Theorem 2.2.4 (1) and (2).

Exercise 2.2.4. Prove that up to isomorphism, the only two groups with four ele-
ments are Z

4

and the Klein 4-group K . Consider all possible operation tables for
the binary operation of a group with four elements; use the fact that each element
of a group appears once in each row and once in each column of the operation table
for the binary operation of the group, as stated in Remark 2.3.2.

Exercise 2.2.5. Let G be a group, and let g À G. Let ig : G ô G be defined by
ig(x) = gxg*1 for all x À G. Prove that ig is an isomorphism.
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2.3 Basic Properties of Groups

Fraleigh, 7th ed. – Section 4
Gallian, 7th ed. – Section 2
Judson, 2016 – Section 3.2

Theorem 2.3.1. Let G be a group, and let a, b, c À G.

1. e*1 = e.

2. If ac = bc, then a = b (Cancelation Law).

3. If ca = cb, then a = b (Cancelation Law).

4. (a*1)*1 = a.

5. (ab)*1 = b*1a*1.

6. If ba = e, then b = a*1.

7. If ab = e, then b = a*1.

Remark 2.3.2. A useful consequence of Theorem 2.3.1 (2) and (3) is that if the
binary operation of a group with finitely many elements is given by an operation
table, then each element of the group appears once and only once in each row of
the operation table and once and only once in each column (consider what would
happen otherwise). On the other hand, just because an operation table does have
each element once and only once in each row and once and only once in each
column does not guarantee that the operation yields a group; the reader is asked to
find such an operation table in Exercise 2.1.3. ·

Theorem 2.3.3. Let G be a group. The following are equivalent.

a. G is abelian.

b. (ab)*1 = a*1b*1 for all a, b À G.

c. aba*1b*1 = e for all a, b À G.

d. (ab)2 = a2b2 for all a, b À G.

Theorem 2.3.4 (Definition by Recursion). Let H be a set, let e À H and let

k: H ô H be a function. Then there is a unique function f : N ô H such that

f (1) = e, and that f (n + 1) = k(f (n)) for all n À N.
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Definition 2.3.5. Let G be a group and let a À G.

1. The element an À G is defined for all n À N by letting a1 = a, and an+1 =
a � an for all n À N.

2. The element a0 À G is defined by a0 = e. For each n À N, the element a*n
is defined by a*n = (an)*1.  

Lemma 2.3.6. Let G be a group, let a À G and let n,m À Z.

1. anam = an+m.

2. (an)*1 = a*n.

Definition 2.3.7. Let A be a set, and let < be a binary operation on A. An element
e À A is a left identity element for < if e < a = a for all a À A. If < has a left
identity element, the binary operation < satisfies the Left Identity Law.  

Definition 2.3.8. Let A be a set, and let < be a binary operation of A. Let e À A.
Suppose that e is a left identity element for <. If a À A, a left inverse for a is an
element a® À A such that a® < a = e. If every element in A has a left inverse, the
binary operation < satisfies the Left Inverses Law.  

Theorem 2.3.9. Let G be a set, and let < be a binary operation of A. If the pair

(G, <) satisfies the Associative Law, the Left Identity Law and the Left Inverses

Law, then (G, <) is a group.

Exercises

Exercise 2.3.1. LetH be a group, and let a, b, c À H . Prove that if abc = eH , then
bca = eH .

Exercise 2.3.2. Let G be a group. An element g À G is idempotent if g2 = g.
Prove that G has precisely one idempotent element.

Exercise 2.3.3. LetH be a group. Suppose that h2 = eH for all h À H . Prove that
H is abelian.

Exercise 2.3.4. Let G be a group, and let a, b À G. Prove that (ab)2 = a2b2 if and
only if ab = ba. (Do not use Theorem 2.3.3.)

Exercise 2.3.5. Let G be a group, and let a, b À G. Prove that (ab)*1 = a*1b*1 if
and only if ab = ba. (Do not use Theorem 2.3.3.)
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Exercise 2.3.6. Find an example of a group G, and elements a, b À G, such that
(ab)*1 ë a*1b*1.

Exercise 2.3.7. Let (H , <) be a group. Let ↵ be the binary operation onH defined
by a ↵ b = b < a for all a, b À H .

(1) Prove that (H , ↵) is a group.

(2) Prove that (H , <) and (H , ↵) are isomorphic.

Exercise 2.3.8. Let G be a group, and let g À G. Suppose that G is finite. Prove
that there is some n À N such that gn = eG.
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2.4 Subgroups

Fraleigh, 7th ed. – Section 5
Gallian, 7th ed. – Section 3
Judson, 2016 – Section 3.3

Definition 2.4.1. Let (G, <) be a group, and let H ” G be a subset. The subset H
is a subgroup of G if the following two conditions hold.

(a) H is closed under <.

(b) (H , <) is a group.

If H is a subgroup of G, it is denoted H f G.  

Lemma 2.4.2. Let G be a group, and let H f G.

1. The identity element of G is in H , and it is the identity element of H .

2. The inverse operation in H is the same as the inverse operation in G.

Theorem 2.4.3. Let G be a group, and let H ” G. Then H f G if and only if the

following three conditions hold.

(i) e À H .

(ii) If a, b À H , then a < b À H .

(iii) If a À H , then a*1 À H .

Theorem 2.4.4. Let G be a group, and let H ” G. Then H f G if and only if the

following three conditions hold.

(i) H ë Á.

(ii) If a, b À H , then a < b À H .

(iii) If a À H , then a*1 À H .

Theorem 2.4.5. Let G be a group, and let H ” G. Then H f G if and only if the

following two conditions hold.

(i) H ë Á.
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(ii) If a, b À H , then a < b*1 À H .

Lemma 2.4.6. Let G be a group, and let K ” H ” G. If K f H and H f G,

then K f G.

Lemma 2.4.7. Let G be a group, and let

�
Hi

�
iÀI be a family of subgroups of G

indexed by I . Then

∂
iÀI Hi f G.

Theorem 2.4.8. LetG andH be groups, and let f : G ô H be an isomorphism.

1. If A f G, then f (A) f H .

2. If B f H , then f*1

(B) f G.

Lemma 2.4.9. Let (G, <) and (H , ↵) be groups, and let f : G ô H be a function.

Suppose that f is injective, and that f (a < b) = f (a) ↵ f (b) for all a, b À G.

1. f (G) f H .

2. The map f : G ô f (G) is an isomorphism.

Exercises

Exercise 2.4.1. Let GL
2

(R) denote the set of invertible 2 ù 2 matrices with real
number entries, and let SL

2

(R) denote the set of all 2ù2 matrices with real number
entries that have determinant 1. Prove that SL

2

(R) is a subgroup of GL
2

(R). (This
exercise requires familiarity with basic properties of determinants.)

Exercise 2.4.2. Prove Theorem 2.4.5.

Exercise 2.4.3. Let n À N.

(1) Prove that (Zn,+) is an abelian group.

(2) Suppose that n is not a prime number. Then n = ab for some a, b À

N such that 1 < a < n and 1 < b < n. Prove that the set
{[0], [a], [2a],… , [(b * 1)a]} is a subgroup of Zn.

(3) Is (Zn * {[0]}, �) a group for all n? If not, can you find any conditions on n
that would guarantee that (Zn * {[0]}, �) is a group?

Exercise 2.4.4. Find all the subgroups of the symmetry group of the square.
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Exercise 2.4.5. Let G be a group, and let A,B ” G. Suppose that G is abelian.
Let AB denote the subset

AB = {ab › a À A and b À B}.

Prove that if A,B f G, then AB f G.

Exercise 2.4.6. Let G be a group, and let H ” G. Prove that H f G if and only
if the following two conditions hold.

(i) H ë Á.

(ii) If a, b À H , then a < b*1 À H .

Exercise 2.4.7. Let G be a group. Suppose that G is abelian. Let I denote the
subset

I = {g À G › g2 = eG}.

Prove that I f G.

Exercise 2.4.8. LetG be a group, and letH ” G. Suppose that the following three
conditions hold.

(i) H ë Á.

(ii) H is finite.

(iii) H is closed under <.

Prove that H f G.

Exercise 2.4.9. Let G be a group, and let s À G. Let Cs denote the subset

Cs = {g À G › gs = sg}.

Prove that Cs f G.

Exercise 2.4.10. Let G be a group, and let A ” G. Let CA denote the subset

CA = {g À G › ga = ag for all a À A}.

Prove that CA f G.
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3.1 Cyclic Groups

Fraleigh, 7th ed. – Section 6
Gallian, 7th ed. – Section 4
Judson, 2016 – Section 4.1

Lemma 3.1.1. Let G be a group and let a À G. Then

{an › n À Z} =

Ã
{H f G › a À H}. (3.1.1)

Definition 3.1.2. Let G be a group and let a À G. The cyclic subgroup of G
generated by a, denoted ÍaÎ, is the set in Equation 3.1.1.  

Definition 3.1.3. Let G be a group. Then G is a cyclic group if G = ÍaÎ for some
a À G; the element a is a generator of G.  

Definition 3.1.4. Let G be a group and let H f G. Then H is a cyclic subgroup
of G if H = ÍaÎ for some a À G; the element a is a generator of H .  

Definition 3.1.5. Let G be a group and let a À G. If ÍaÎ is finite, the order of a,
denoted a, is the cardinality of ÍaÎ. If ÍaÎ is infinite, then a has infinite order.

 

Theorem 3.1.6 (Well-Ordering Principle). LetA ” N be a set. IfA is non-empty,

then there is a unique m À A such that m f a for all a À A.

Theorem 3.1.7 (Division Algorithm). Let a, b À Z. Suppose that b ë 0. Then

there are unique q, r À Z such that a = qb + r and 0 f r < b.
Theorem 3.1.8. Let G be a group, let a À G and let m À N. Then a = m if and

only if am = e and ai ë e for all i À {1,… ,m * 1}.

Lemma 3.1.9. Let G be a group. If G is cyclic, then G is abelian.

Theorem 3.1.10. LetG be a group and letH f G. IfG is cyclic, thenH is cyclic.

Corollary 3.1.11. Every subgroup of Z has the form nZ for some n À N ‰ {0}.

Theorem 3.1.12. Let G be a group. Suppose that G is cyclic.

1. If G is infinite, then G ˆ Z.

2. If G = n for some n À N, then G ˆ Zn.

Definition 3.1.13. Let a, b À Z. If at least one of a or b is not zero, the greatest
common divisor of a and b, denoted (a, b), is the largest integer that divides both
a and b. Let (0, 0) = 0.  
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Lemma 3.1.14. Let a, b À Z. Then (a, b) exists and (a, b) g 0.

Definition 3.1.15. Let a, b À Z. The numbers a and b are relatively prime if
(a, b) = 1.  

Lemma 3.1.16. Let a, b À Z. Then there are m, n À Z such that (a, b) = ma+ nb.

Corollary 3.1.17. Let a, b À Z. If r is a common divisor of a and b, then r(a, b).
Corollary 3.1.18. Let a, b À Z. Then (a, b) = 1 if and only if there are m, n À Z
such that ma + nb = 1.

Corollary 3.1.19. Let a, b, r À Z. Suppose that (a, b) = 1. If abr then ar.
Theorem 3.1.20. Let G be a group. Suppose that G = ÍaÎ for some a À G, and

that G = n for some n À N. Let s, r À N.

1. as = n
(n,s)

.

2. ÍasÎ = ÍarÎ if and only if (n, s) = (n, r).
Corollary 3.1.21. Let G be a group. Suppose that G = ÍaÎ for some a À G, and

that G = n for some n À N. Let s À N. Then G = ÍasÎ if and only if (n, s) = 1.

Exercises

Exercise 3.1.1. Let C be a cyclic group of order 60. How many generators does
C have?
Exercise 3.1.2. List all orders of subgroups of Z

20

.
Exercise 3.1.3. Find all the subgroups of Z

36

.
Exercise 3.1.4. Let p, q À N be prime numbers. How many generators does the
group Zpq have?
Exercise 3.1.5. Let G be a group, and let g,h À G. Prove that if gh has order p
for some p À N, then hg has order p.
Exercise 3.1.6. Let G and H be groups, and let f , k: G ô H be isomorphisms.
Suppose that G = ÍaÎ for some a À G. Prove that if f (a) = k(a), then f = k.
Exercise 3.1.7. LetG be a group. Prove that ifG has a finite number of subgroups,
then G is finite.
Exercise 3.1.8. LetG be a group, and letA,B f G. Suppose thatG is abelian, and
that A and B are cyclic and finite. Suppose that A and B are relatively prime.
Prove that G has a cyclic subgroup of order A � B
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3.2 Finitely Generated Groups

Fraleigh, 7th ed. – Section 7

Lemma 3.2.1. Let G be a group and let S ” G.

1. {H f G › S ” H} ë Á.

2. ∂
{H f G › S ” H} f G.

3. If K f G and S ” K , then

∂
{H f G › S ” H} ” K .

Definition 3.2.2. Let G be a group and let S ” G. The subgroup generated by
S, denoted ÍSÎ, is defined by ÍSÎ = ∂

{H f G › S ” H}.  

Theorem 3.2.3. Let G be a group and let S ” G. Then

ÍSÎ = {(a
1

)

n
1

(a
2

)

n
2 5 (ak)

nk
› k À N, and a

1

,… , ak À S, and n
1

,… , nk À Z}.

Remark 3.2.4. In an abelian group, using additive notation, we would write the
result of Theorem 3.2.3 as

ÍSÎ = {n
1

a
1

+n
2

a
2

+5+nkak › k À N, and a
1

,… , ak À S, and n
1

,… , nk À Z}.
·

Definition 3.2.5. Let G be a group and let S ” G. Suppose ÍSÎ = G. The set S
generates G, and the elements of S are generators of G.  

Definition 3.2.6. Let G be a group. If G = ÍSÎ for some finite subset S ” G, then
G is finitely generated.  
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3.3 Dihedral Groups

Fraleigh, 7th ed. – Section 8
Gallian, 7th ed. – Section 1
Judson, 2016 – Section 5.2

Theorem 3.3.1. Let n À N. Suppose n g 3. For a regular n-gon, let 1 denote the

identity symmetry, let r denote the smallest possible clockwise rotation symmetry,

and let m denote a reflection symmetry.

1. rn = 1, and rk ë 1 for k À {1,… , n * 1}.

2. m2

= 1 and m ë 1.

3. rm = mr*1.

4. If p À Z, then rpm = mr*p.

5. If p À N, then rp = rk for a unique k À {0, 1,… , n * 1}.

6. If p, s À {0, 1,… , n * 1}, then rp = rs and mrp = mrs if and only if p = s.

7. If p À {0, 1,… , n * 1}, then m ë rp.

8. If p À {0, 1,… , n * 1}, then (rp)*1 = rn*p and (mrp)*1 = mrp.

Definition 3.3.2. Let n À N. Suppose n g 3. For a regular n-gon, let 1 denote the
identity symmetry, let r denote the smallest possible clockwise rotation symmetry,
and let m denote a reflection symmetry. The n-th dihedral group, denoted Dn, is
the group

Dn = {1, r, r2,… , rn*1,m,mr,mr2,… ,mrn*1}.  

Theorem 3.3.3. Let n À N. Suppose n g 3. Then there is a unique group with

generators a and b that satisfy the following three conditions.

(i) an = 1, and ak ë 1 for all k À {1,… , n * 1}.

(ii) b2 = 1 and b ë 1.

(iii) ab = ba*1.
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3.4 Permutations and Permutation Groups

Fraleigh, 7th ed. – Section 8
Gallian, 7th ed. – Section 5, 6

Judson, 2016 – Section 5.1

Definition 3.4.1. LetA be a non-empty set. A permutation ofA is a bijective map
A ô A. The set of all permutations of A is denoted SA. The identity permutation
Aô A is denoted ◆.  

Definition 3.4.2. Let A be a non-empty set. The composition of two permutations
of A is called permutation multiplication.  

Lemma 3.4.3. Let A be a non-empty set. The pair (SA, ˝) is a group.

Remark 3.4.4. In the group SA, we will usually write �⌧ as an abbreviation of
� ˝ ⌧. ·

Lemma 3.4.5. Let A and B be non-empty sets. Suppose that A and B have the

same cardinality. Then SA ˆ SB.

Definition 3.4.6. Let n À N, and let A = {1,… , n}. The group SA is denoted Sn.
The group Sn is the symmetric group on n letters.  

Proposition 3.4.7. Let A be a non-empty set. Then SA is abelian if and only if A
is finite and A f 2.

Theorem 3.4.8 (Cayley’s Theorem). LetG be a group. Then there is a setA such

that G is isomorphic to a subgroup of SA. If G is finite, a finite set A can be found.

Exercises

Exercise 3.4.1. Let �, ⌧ À S
5

be defined by

� =

0
1 2 3 4 5

2 3 1 5 4

1
and ⌧ =

0
1 2 3 4 5

4 2 1 5 3

1
.

Compute each of the following.

(1) �2.

(2) ⌧*1.

(3) ⌧�.
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(4) �⌧.

Exercise 3.4.2. Find all subgroups of S
3

.

Exercise 3.4.3. Let n À N. Suppose n g 3. Let � À Sn. Suppose that �⌧ = ⌧� for
all ⌧ À Sn. Prove that � = ◆.

Exercise 3.4.4. Let A be a non-empty set, and let P f SA. The subgroup P is
transitive on A if for each x, y À A, there is some � À P such that �(x) = y.

Prove that if A is finite, then there is a subgroup Q f SA such that Q is cyclic,
that Q = A, and that Q is transitive on A.
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3.5 Permutations Part II and Alternating Groups

Fraleigh, 7th ed. – Section 9
Gallian, 7th ed. – Section 5
Judson, 2016 – Section 5.1

Definition 3.5.1. LetA be a non-empty set, and let � À SA. LetÌ be the relation on
A defined by a Ì b if and only if b = �n(a) for some n À Z, for all a, b À A.  

Lemma 3.5.2. Let A be a non-empty set, and let � À SA. The relation Ì is an

equivalence relation on A.

Definition 3.5.3. Let A be a set, and let � À SA. The equivalence classes of Ì are
called the orbits of �.  

Definition 3.5.4. Let n À N, and let � À Sn. The permutation � is a cycle if it has
at most one orbit with more than one element. The length of a cycle is the number
of elements in its largest orbit. A cycle of length 2 is a transposition.  

Lemma 3.5.5. Let n À N, and let � À Sn. Then � is the product of disjoint cycles;

the cycles of length greater than 1 are unique, though not their order.

Corollary 3.5.6. Let n À N, and let � À Sn. Suppose n g 2. Then � is the product

of transpositions.

Theorem 3.5.7. Let n À N, and let � À Sn. Suppose n g 2. Then either all

representations of � as a product of transpositions have an even number of trans-

positions, or all have an odd number of transpositions.

Definition 3.5.8. Let n À N, and let � À Sn. Suppose n g 2. The permutation �
is even or odd, respectively, if it is the product of an even number or odd number,
respectively, of transpositions.  

Definition 3.5.9. Let n À N. Suppose n g 2. The set of all even permutations of
A is denoted An.  

Lemma 3.5.10. Let n À N. Suppose n g 2.

1. The set An is a subgroup of Sn.

2. An = n!
2

.

Definition 3.5.11. Let n À N. Suppose n g 2. The group An is the alternating
group on n letters.  
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Exercises

Exercise 3.5.1. Compute the product of cycles (1, 5, 2)(3, 4) as a single permuta-
tion in the following groups.

(1) In S
5

.

(2) In S
6

.

Exercise 3.5.2. Let � À S
7

be defined by

� =

0
1 2 3 4 5 6 7

2 5 7 1 4 3 6

1
.

(1) Write � as a product of cycles.

(2) Write � as a product of transpositions.

Exercise 3.5.3. Let n À N. Suppose n g 3. Let � À Sn.

(1) Prove that � can be written as a product of at most n * 1 transpositions.

(2) Prove that if � is not a cycle, it can be written as a product of at most n * 2

transpositions.

(3) Prove that if � is odd, it can be written as a product of 2n+3 transpositions.

(4) Prove that if � is even, it can be written as a product of 2n+8 transpositions.

Exercise 3.5.4. Let n À N. Suppose n g 2. Let K f Sn. Prove that either all the
permutations in K are even, or exactly half the permutations in K are even.

Exercise 3.5.5. Let n À N. Suppose n g 2. Let � À Sn. Suppose that � is odd.
Prove that if ⌧ À Sn is odd, then there is some ⌘ À An such that ⌧ = �⌘.

Exercise 3.5.6. Let n À N. Let � À Sn. Prove that if � is a cycle of odd length,
then �2 is a cycle.
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4.1 Direct Products

Fraleigh, 7th ed. – Section 11
Gallian, 7th ed. – Section 8
Judson, 2016 – Section 9.2

Definition 4.1.1. Let H and K be groups. The product binary operation on
H ù K is the binary operation defined by (h

1

, k
1

)(h
2

, k
2

) = (h
1

h
2

, k
1

k
2

) for all
(h

1

, k
1

), (h
2

, k
2

) À H ùK .  

Lemma 4.1.2. Let H and K be groups. The set H ù K with the product binary

operation is a group.

Definition 4.1.3. Let H and K be groups. The set H ùK with the product binary
operation is the direct product of the groups H and K .  

Lemma 4.1.4. Let H and K be groups. Then H ùK ˆ K ùH .

Lemma 4.1.5. Let H and K be groups. Suppose that H and K are abelian. Then

H ùK is abelian.

Theorem 4.1.6. Let m, n À N. The group Zm ù Zn is cyclic and is isomorphic to

Zmn if and only if m and n are relatively prime.

Definition 4.1.7. Let G be a group, and let A,B ” G. Let AB denote the subset
AB = {ab › a À A and b À B}.  

Lemma 4.1.8. Let H and K be groups. Let

ÑH = H ù {eK} and

ÑK = {eH}ùK .

1. ÑH , ÑK f H ùK .

2. ÑH ÑK = H ùK .

3. ÑH „

ÑK = {(eH , eK)}.

4. hk = kh for all h À

ÑH and k À

ÑK .

Lemma 4.1.9. Let G be a group, and let H ,K f G. Suppose that the following

properties hold.

(i) HK = G.

(ii) H „K = {e}.

(iii) hk = kh for all h À H and k À K .
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Then G ˆ H ùK .

Lemma 4.1.10. LetG be a group, and letH ,K f G. ThenHK = G andH„K =

{e} if and only if for every g À G there are unique h À H and k À K such that

g = hk.

Theorem 4.1.11. Let m
1

,… ,mr À N. The group

±r
i=1Zmi is cyclic and is isomor-

phic toZm
1

m
2

5mr if and only ifmi andmk are relatively prime for all i, k À {1,… , r}
such that i ë k.

Exercises

Exercise 4.1.1. List all the elements of Z
3

ùZ
4

, and find the order of each element.

Exercise 4.1.2. Find all the subgroups of Z
2

ù Z
2

ù Z
2

.

Exercise 4.1.3. Prove Lemma 4.1.8.

Exercise 4.1.4. Prove Lemma 4.1.9.
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4.2 Finitely Generated Abelian Groups

Fraleigh, 7th ed. – Section 11
Gallian, 7th ed. – Section 11
Judson, 2016 – Section 13.1

Theorem 4.2.1 (Fundamental Theorem of Finitely Generated Abelian Groups).
Let G be a finitely generated abelian group. Then

G = Z
(p

1

)

n
1

ù Z
(p

2

)

n
2

ù5 ù Z
(pk)nk ù Z ù Z ù5 ù Z

for some k À N, and prime numbers p
1

,… , pk À N, and n
1

,… , nk À N. This

direct product is unique up to the rearrangement of factors.

Exercises

Exercise 4.2.1. Find, up to isomorphism, all abelian groups of order 16.

Exercise 4.2.2. Find, up to isomorphism, all abelian groups of order 720.

Exercise 4.2.3. How many abelian groups are there, up to isomorphism, of order
24.

Exercise 4.2.4. Let G be a group. Suppose that G is finite and abelian. Prove that
G is not cyclic if and only if there is some prime number p À N such that G has a
subgroup isomorphic to Zp ù Zp.
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4.3 Infinite Products of Groups

Definition 4.3.1. Let I be a non-empty set, and let
�
Ai
�
iÀI be a family of sets

indexed by I . The product of the family of sets, denoted
±

iÀI Ai, is the set defined
by «

iÀI
Ai = {f À F (I ,

Õ
iÀI
Ai) › f (i) À Ai for all i À I}.

If all the sets Ai are equal to a single set A, the product
±

iÀI Ai is denoted by
AI .  

Theorem 4.3.2. Let I be a non-empty set, and let

�
Ai
�
iÀI be a family of non-empty

sets indexed by I . Then

±
iÀI Ai ë Á.

Definition 4.3.3. Let I be a non-empty set, and let
�
Gi
�
iÀI be a family of non-

empty groups indexed by I . Let f , g À

±
iÀI Gi.

1. Let fg: I ô
∑

iÀI Ai be defined by (fg)(i) = f (i)g(i) for all i À I .

2. Let f ®

: I ô
∑

iÀI Ai be defined by (f )(i) = [f (i)]*1 for all i À I .

3. Let Ñe: I ô
∑

iÀI Ai be defined by Ñe(i) = eGi for all i À I .  

Lemma 4.3.4. Let I be a non-empty set, and let

�
Gi
�
iÀI be a family of non-empty

groups indexed by I . Let f , g À

±
iÀI Gi.

1. fg À

±
iÀI Gi.

2. f ®

À

±
iÀI Gi.

3. Ñe À ±
iÀI Gi.

Lemma 4.3.5. Let I be a non-empty set, and let

�
Gi
�
iÀI be a family of non-empty

groups indexed by I . Then

±
iÀI Gi is group.



36 4. Basic Constructions

4.4 Cosets

Fraleigh, 7th ed. – Section 10
Gallian, 7th ed. – Section 7

Judson, 2016 – Section 6.1, 6.2

Definition 4.4.1. Let G be a group and letH f G. Let ÌL and ÌR be the relations
on G defined by a ÌL b if and only if a*1b À H for all a, b À G, and a ÌR b if and
only if ab*1 À H for all a, b À G.  

Lemma 4.4.2. Let G be a group and let H f G. The relations ÌL and ÌR are

equivalence relations on G.

Definition 4.4.3. Let G be a group, let H f G and let a À G. Let aH and Ha be
defined by

aH = {ah › h À H} and Ha = {ha › h À H}.  

Lemma 4.4.4. Let G be a group, let H f G and let a À G.

1. The equivalence class of a with respect to ÌL is aH .

2. The equivalence class of a with respect to ÌR is Ha.

Definition 4.4.5. Let G be a group, let H f G and let a À G. The left coset of a
(with respect to H) is the set aH . The right coset of a (with respect to H) is the
set Ha.  

Lemma 4.4.6. Let G be a group, let H f G and let a, b À G.

1. aH = bH if and only if a*1b À H .

2. Ha = Hb if and only if ab*1 À H .

3. aH = H if and only if a À H .

4. Ha = H if and only if a À H .

Lemma 4.4.7. Let G be a group and let H f G.

1. All left cosets of G with respect to H and all right cosets of G with respect

to H have the same cardinality as H .
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2. The family of all left cosets of G with respect to H has the same cardinality

as the family of all right cosets of G with respect to H .

Definition 4.4.8. Let G be a group, let H f G. The index of H in G, denoted
(G : H), is the number of left cosets of G with respect to H .  

Theorem 4.4.9. Let G be a group and let H f G. Suppose that G is finite. Then

G = H � (G : H).

Corollary 4.4.10 (Lagrange’s Theorem). Let G be a group and let H f G. Sup-

pose that G is finite. Then H divides G.
Corollary 4.4.11. Let G be a group and let a À G. Suppose that G is finite. Then

a divides G.
Corollary 4.4.12. Let G be a group. If G is a prime number, then G is cyclic.

Corollary 4.4.13. Let p À N be a prime number. The only group of order p, up to

isomorphism, is Zp.

Theorem 4.4.14. Let G be a group and let K f H f G. Suppose that (G : H)

and (H : K) are finite. Then (G : K) is finite, and (G : K) = (G : H) � (H : K).

Exercises

Exercise 4.4.1. Find all cosets of the group 2Z with respect to the subgroup 4Z.
Exercise 4.4.2. Find all cosets of the group Z

12

with respect to the subgroup Í4Î.
Exercise 4.4.3. Find (Z

24

: Í3Î).
Exercise 4.4.4. Let G be a group, and let p, q À N be prime numbers. Suppose
that G = pq. Prove that every proper subgroup of G is cyclic.
Exercise 4.4.5. Let G be a group, let H f G. Prove that there is a bijective map
from the set of all left cosets of G with respect to H to the set of all right cosets of
G with respect to H . (Note: the group G is not necessarily finite.)
Exercise 4.4.6. Prove Theorem 4.4.14.
Exercise 4.4.7. Let G be a group, let H f G. Suppose that G is finite, and that
(G : H) = 2. Prove that every left coset of G with respect to H is a right coset of
G with respect to H .
Exercise 4.4.8. Let G be a group. Suppose that G is finite. Let n = G. Prove that
if g À G, then gn = eG.
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Lemma 4.5.1. LetG be a group and letH f G. The formula (aH)(bH) = (ab)H
for all a, b À G gives a well-defined binary operation on the set of all left cosets

of G with respect to H if and only if gH = Hg for all g À G.

Lemma 4.5.2. Let G be a group and let H f G. The following are equivalent.

a. gHg*1 ” H for all g À G.

b. gHg*1 = H for all g À G.

c. gH = Hg for all g À G.

Definition 4.5.3. Let G be a group and let H f G. The subgroup H is normal if
any of the conditions in Lemma 4.5.2 are satisfied. If H is a normal subgroup of
G, it is denoted H ÿ G.  

Remark 4.5.4. Every subgroup of an abelian group is normal. ·

Definition 4.5.5. Let G be a group and let H ÿ G. The set of all left cosets of G
with respect to H is denoted G_H .  

Lemma 4.5.6. Let G be a group and let H ÿ G. The set G_H with the binary

operation given by (aH)(bH) = (ab)H for all a, b À G is a group.

Definition 4.5.7. Let G be a group and let H ÿ G. The set G_H with the binary
operation given by (aH)(bH) = (ab)H for all a, b À G is the quotient group
(also called factor group) of G by H .  

Corollary 4.5.8. Let G be a group and let H ÿ G. Suppose that G is finite. Then

G_H = (G : H) =

G
H .

Lemma 4.5.9. Let G be a group and let H f G. Suppose that G is abelian. Then

G_H is abelian.

Lemma 4.5.10. Let G be a group and let H f G. Suppose that G is cyclic. Then

G_H is cyclic.

Lemma 4.5.11. Let G be a group and let H f G. If (G : H) = 2, then H ÿ G.
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Lemma 4.5.12. Let G be a group and let H f G. Suppose that G is finite. If

H = 1

2

G, then H ÿ G.

Lemma 4.5.13. Let H and K be groups. Let G = H ùK .

1. H ù {eK} ÿ G and {eH} ùK ÿ G.

2. G_(H ù {eK}) ˆ K and G_({eH} ùK) ˆ H .

Lemma 4.5.14. Let G be a group, and let H ,K f G. Suppose that the following

properties hold.

(i) HK = G.

(ii) H „K = {e}.

Then H ,K ÿ G if and only if hk = kh for all h À H and k À K .

Definition 4.5.15. LetG be a group. The groupG is simple if it has no non-trivial
proper normal subgroups.  

Exercises

Exercise 4.5.1. Compute each of the following quotient groups; state what the
group is in the form given by the Fundamental Theorem of Finitely Generated
Abelian Groups.

(1) (Z
2

ù Z
4

)_Í(0, 2)Î.
(2) (Z

2

ù Z
4

)_Í(1, 2)Î.
(3) (Z

4

ù Z
4

ù Z
8

)_Í(1, 2, 4)Î.
(4) (Z ù Z)_Í(0, 1)Î.
(5) (Z ù Z ù Z)_Í(1, 1, 1)Î.

Exercise 4.5.2. Let G be a group and let H ÿ G. Suppose that (G : H) is finite.
Let m = (G : H). Prove that if g À G, then gm À H .

Exercise 4.5.3. LetG be a group, and let
�
Hi

�
iÀI be a family of normal subgroups

of G indexed by I . Prove that
∂

iÀI Hi ÿ G.

Exercise 4.5.4. Let G be a group and let S ” G.
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(1) Prove that {H ÿ G › S ” H} ë Á.

(2) Prove that
∂
{H ÿ G › S ” H} ÿ G.

(3) Prove that if K ÿ G and S ” K , then
∂
{H ÿ G › S ” H} ” K .

The normal subgroup generated byS, which is defined by
∂
{H f G › S ” H},

is the smallest normal subgroup of G that contains S.

Exercise 4.5.5. LetG be a group. A commutator inG is an element ofG that can
be expressed in the form aba*1b*1 for some a, b À G. The commutator subgroup
of G is the smallest normal subgroup of G that contains all the commutators in G;
such a subgroup exists by Exercise 4.5.4.

Let C denote the commutator subgroup of G. Prove that G_C is abelian.

Exercise 4.5.6. Let G be a group and let H f G. Suppose that no other subgroup
of G has the same cardinality as H . Prove that H ÿ G.

Exercise 4.5.7. Let G be a group, let H f G, and let N ÿ G.

(1) Prove that H „N ÿ H .

(2) Is H „N a normal subgroup of G? Give a proof or a counterexample.

Exercise 4.5.8. Let G be a group, and let m À N. Suppose that G has a subgroup
of order m. Let K =

∂
{H f G › H = m}. Prove that K ÿ G.
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5.1 Homomorphisms
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Definition 5.1.1. Let (G, <) and (H , ↵) be groups, and let f : G ô H be a func-
tion. The function f is a homomorphism (sometimes called a group homomor-
phism) if f (a < b) = f (a) ↵ f (b) for all a, b À G.  

Theorem 5.1.2. LetG andH be groups, and let f : G ô H be a homomorphism.

1. f (eG) = eH .

2. If a À G, then f (a*1) = [f (a)]*1, where the first inverse is in G, and the

second is in H .

3. If A f G, then f (A) f H .

4. If B f H , then f*1

(B) f G.

Theorem 5.1.3. Let G, H and K be groups, and let f : G ô H and j : H ô K
be homomorphisms. Then j ˝ f is a homomorphism.

Lemma 5.1.4. Let G andH be groups. Suppose that G is cyclic with generator a.

If b À H , there is a unique homomorphism f : G ô H such that f (a) = b.

Definition 5.1.5. Let G be a group. An endomorphism of G is a homomorphism
G ô G. An automorphism of G is an isomorphism G ô G.  

Definition 5.1.6. Let G be a group. An automorphism f : G ô G is an inner
automorphism if there is some g À G such that f (x) = gxg*1 for all x À G.  

Lemma 5.1.7. Let G be a group, and let H f G. Then H ÿ G if and only if

f (H) = H for all inner automorphisms of G.

Exercises

Exercise 5.1.1. Which of the following functions are homomorphisms? Which
of the homomorphisms are isomorphisms? The groups under consideration are
(R,+), and (Q,+), and ((0,ÿ), �).

(1) Let f : Q ô (0,ÿ) be defined by f (x) = 5

x for all x À Q.
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(2) Let k: (0,ÿ) ô (0,ÿ) be defined by k(x) = x*7 for all x À (0,ÿ).

(3) Let m: R ô R be defined by m(x) = x + 3 for all x À R.

(4) Let g: (0,ÿ) ô R be defined by g(x) = ln x for all x À (0,ÿ).

(5) Let h: R ô R be defined by h(x) = x for all x À R.

Exercise 5.1.2. Prove that the function det : GL
2

(R) ô R * {0} is a homomor-
phism, where the binary operation for both groups is multiplication.

Exercise 5.1.3.

(1) Let j : Z
4

ô Z
3

be defined by j([x]) = [x] for all [x] À Z
4

, where the
two appearances of “[x]” in the definition of j refer to elements in di�erent
groups. Is this function well-defined? If it is well-defined, is it a homomor-
phism?

(2) Let k: Z
6

ô Z
3

be defined by k([x]) = [x] for all [x] À Z
6

. Is this function
well-defined? If it is well-defined, is it a homomorphism?

(3) Can you find criteria on n,m À N that will determine when the function
r: Zn ô Zm defined by r([x]) = [x] for all [x] À Zn is well-defined and is
a homomorphism? Prove your claim.

Exercise 5.1.4. LetG andH be groups. Prove that the projection maps⇡
1

: G ùH ô
G and ⇡

2

: G ùH ô H are homomorphisms.

Exercise 5.1.5. Let G be a group, and let f : G ô G be defined by f (x) = x*1
for all x À G. Is g a homomorphism? Give a proof or a counterexample.

Exercise 5.1.6. Let G and H be groups, and let f , k: G ô H be homomor-
phisms. Suppose that G = ÍSÎ for some S ” G. Prove that if f (a) = k(a) for all
a À S, then f = k.
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5.2 Kernel and Image
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Definition 5.2.1. Let G and H be groups, and let f : G ô H be a homomor-
phism.

1. The kernel of f , denoted ker f , is the set ker f = f*1

({eH}).

2. The image of f , denoted im f , is the set im f = f (G).  

Remark 5.2.2. Observe that

ker f = {g À G › f (g) = eH}

and
im f = {h À H › h = f (g) for some g À G}. ·

Lemma 5.2.3. LetG andH be groups, and let f : G ô H be a homomorphism.

1. ker f f G.

2. im f f H .

Lemma 5.2.4. Let G and H be groups, and let f : G ô H be a homomorphism.

Then ker f ÿ G.

Theorem 5.2.5. LetG andH be groups, and let f : G ô H be a homomorphism.

The function f is injective if and only if ker f = {eG}.

Lemma 5.2.6. Let G and H be groups, and let f : G ô H be a homomorphism.

Let h À H . If a À f*1

({h}), then f*1

({h}) = a(ker f ).

Definition 5.2.7. Let G be a group and let N ÿ G. The canonical map for G and
N is the function � : G ô G_N defined by �(g) = gN for all g À G.  

Lemma 5.2.8. LetG be a group and letN ÿ G. The canonical map � : G ô G_N
is a surjective homomorphism, and ker � = N .

Theorem 5.2.9 (First Isomorphism Theorem). Let G and H be groups, and

let f : G ô H be a homomorphism. Then there is a a unique isomorphism

g: G_ ker f ô im f such that f = g ˝ � , where � : G ô G_ ker f is the canon-

ical map.
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Remark 5.2.10. The condition f = g ˝ � in the First Isomorphism Theorem is
represented by the following commutative diagram (discuss what that means).

G im f f H

G_ ker f

f

�
g

·

Corollary 5.2.11. Let G and H be groups, and let f : G ô H be a homomor-

phism.

1. G_ ker f ˆ imf .

2. If f is surjective, then G_ ker f ˆ H .

Exercises

Exercise 5.2.1. Find the kernel of each of the following homomorphisms.

(1) Let f : Z ô Z
15

be the unique homomorphism determined by f (1) = [10].

(2) Let g: Z ù Z ô Z be the unique homomorphism determined by g((1, 0)) =
2 and g((0, 1)) = 7.

Exercise 5.2.2. In Exercise 5.1.3, you found criteria on n,m À N that determine
when the function r: Zn ô Zm defined by r([x]) = [x] for all [x] À Zn is well-
defined and is a homomorphism. Find the kernel for those functions that are well-
defined and are homomorphisms.

Exercise 5.2.3. LetG andH be groups, and let f : G ô H be a homomorphism.
Prove that im f is abelian if and only if aba*1b*1 À ker f for all a, b À G.

Exercise 5.2.4. Let G be a group, and let g À G. Let f : Z ô G be defined by
f (n) = gn for all n À Z. Find ker f and im f .
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6.1 Group Actions

Fraleigh, 7th ed. – Section 16, 17
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Definition 6.1.1. Let X be a set and let G be a group. An action of G on X is a
function <: G ùX ô X that satisfies the following two conditions.

1. eGx = x for all x À X.

2. (ab)x = a(bx) for all x À X and a, b À G.  

Lemma 6.1.2. Let X be a set and let G be a group.

1. Let <: G ùX ô X be an action of G on X. Let �: G ô SX be defined

by �(g)(x) = gx for all g À G and x À X. Then � is well-defined and is a

homomorphism.

2. Let  : G ô SX be a homomorphism. Let ?: G ùX ô X be defined by

?((g, x)) =  (g)(x) for all g À G and x À X. Then ? is an action of G on

X.

Definition 6.1.3. LetX be a set and let G be a group. The setX is a G-set if there
is an action of G on X.  

Definition 6.1.4. Let X be a set and let G be a group. Suppose that X is a G-set.
Let g À G. The fixed set of g, denotedXg, is the setXg = {x À X › gx = x}.  

Definition 6.1.5. Let X be a set and let G be a group. Suppose that X is a G-set.

1. The group G acts faithfully on X if Xg ë X for all g À G * {eG}.

2. The group G acts transitively on X if for each x, y À X there is some
g À G such that gx = y.  

Definition 6.1.6. Let X be a set and let G be a group. Suppose that X is a G-set.
Let x À X. The isotropy subgroup of x (also called the stabilizer of x), denoted
Gx, is the set Gx = {g À G › gx = x}.  

Lemma 6.1.7. LetX be a set and let G be a group. Suppose thatX is a G-set. Let

x À X. Then Gx f G.
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Definition 6.1.8. Let X be a set and let G be a group. Suppose that X is a G-set.
Let Ì be the relation on X defined by x Ì y if and only if there is some g À G
such that gx = y for all x, y À X.  

Lemma 6.1.9. LetX be a set and letG be a group. Suppose thatX is aG-set. The

relations Ì is an equivalence relation on X.

Definition 6.1.10. Let X be a set and let G be a group. Suppose that X is a G-set.
Let x À X. The orbit of x (with respect to G), denoted Gx, is the set Gx = {gx ›

g À G}.  

Lemma 6.1.11. Let X be a set and let G be a group. Suppose that X is a G-set.

Let x À X.

1. Suppose Gx is finite. Then Gx = (G : Gx).

2. Suppose G is finite. Then G = Gx � Gx.
Theorem 6.1.12 (Burnside’s Formula). Let X be a set and let G be a group.

Suppose that X and G are finite, and that X is a G-set. Let r be the number of

orbits in X with respect to G. Then

r � G =
…
gÀG

Xg.

Exercises

Exercise 6.1.1. An action of (R,+) on the plane R2 is obtained by assigning to
each ✓ À R the rotation of the R2 about the origin counterclockwise by angle ✓.
Let P À R2. Suppose that P is not the origin.

(1) Prove that R2 is a R-set.

(2) Describe the orbit RP geometrically.

(3) Find the isotropy subgroup RP .

Exercise 6.1.2. Let X be a set and let G be a group. Suppose that X is a G-set.
Prove that G acts faithfully on X if and only if for each g,h À G such that g ë h,
there is some x À X such that gx ë hx.

Exercise 6.1.3. Let X be a set, let Y ” X, and let G be a group. Suppose that X
is a G-set. Let GY = {g À G › gy = y for all y À Y }. Prove that GY f G.
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Exercise 6.1.4. A five-pointed crown is to have each of it’s five points painted with
one of three available colors. How many di�erent ways can that be done?

Exercise 6.1.5. The four faces of a tetrahedral die are labeled with 1, 2, 3 and 4

dots, respectively. How many di�erent tetrahedral dice can be made?

Exercise 6.1.6. Each face of a cube is painted with one of eight colors; no two
faces can have the same color. How many di�erent cubes can be made?

Exercise 6.1.7. Each corner of a cube is painted with one of four colors; di�erent
corners may have the same color. How many di�erent cubes can be made?
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7.1 Rings

Fraleigh, 7th ed. – Section 18
Gallian, 7th ed. – Section 12
Judson, 2016 – Section 16.1

Definition 7.1.1. Let A be a set, and let + and � be binary operations on A.

1. The binary operations+ and � satisfy the Left Distributive Law (an alterna-
tive expression is that � is left distributive over+) if a�(b+c) = (a�b)+(a�c)
for all a, b, c À A.

2. The binary operations + and � satisfy the Right Distributive Law (an al-
ternative expression is that � is right distributive over +) if (b + c) � a =

(b � a) + (c � a) for all a, b, c À A.  

Definition 7.1.2. Let R be a non-empty set, and let and let + and � be binary
operations on R. The triple (R,+, �) is a ring if the following three properties
hold.

(i) (R,+) is an abelian group.

(ii) The binary operation � is associative.

(iii) The binary operation � is left distributive and right distributive over +.
 

Lemma 7.1.3. Let (R,+, �) be a ring, and let a, b À R.

1. 0 � a = 0 and a � 0 = 0.

2. a(*b) = (*a)b = *(ab).

3. (*a)(*b) = ab.

Definition 7.1.4. Let (R,+, �) be a ring, and let S ” R be a subset. The subset S
is a subring of R if the following two conditions hold.

(a) S is closed under + and �.

(b) (S,+, �) is a ring.

If S is a subring of R, it is denoted S f R.  
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Remark 7.1.5. Let (R,+, �) be a ring, and let S ” R be a subset.

1. If S is a subring of R, then S is an additive subgroup of R.

2. If S is an additive subgroup of R, it is not necessarily the case that S is a
subring of R. See Exercise 7.1.3.

·

Lemma 7.1.6. Let R be a ring, and let S f R.

1. The additive identity element of R is in S, and it is the additive identity

element of S.

2. The additive inverse operation in S is the same as the additive inverse op-

eration in R.

Theorem 7.1.7. Let R be a ring, and let S ” R. Then S f R if and only if the

following four conditions hold.

(i) 0 À S.

(ii) If a, b À S, then a + b À S.

(iii) If a À S, then *a À S.

(iv) If a, b À S, then ab À S.

Theorem 7.1.8. Let R be a ring, and let S ” R. Then S f R if and only if the

following four conditions hold.

(i) S ë Á.

(ii) If a, b À S, then a + b À S.

(iii) If a À S, then *a À S.

(iv) If a, b À S, then ab À S.

Theorem 7.1.9. Let R be a ring, and let S ” R. Then S f R if and only if the

following three conditions hold.

(i) S ë Á.

(ii) If a, b À S, then a + (*b) À S.
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(iii) If a, b À S, then ab À S.

Lemma 7.1.10. Let R be a ring, and let T ” S ” R. If T f S and S f R, then

T f R.

Lemma 7.1.11. Let R be a ring, and let

�
Si
�
iÀI be a family of subrings of R

indexed by I . Then

∂
iÀI Si f R.

Definition 7.1.12. LetR andS be rings. The product binary operations onRùS
are the binary operations + and � defined by (r

1

, s
1

) + (r
2

, s
2

) = (r
1

+ r
2

, s
1

+ s
2

)

and (r
1

, s
1

) � (r
2

, s
2

) = (r
1

� r
2

, s
1

� s
2

) for all (r
1

, s
1

), (r
2

, s
2

) À S ù R.  

Lemma 7.1.13. Let R and S be rings. The set R ù S with the product binary

operations is a ring.

Definition 7.1.14. Let R and S be rings. The set R ù S with the product binary
operations is the direct product of the rings R and S.  

Exercises

Exercise 7.1.1. For each of the following sets with two binary operations, state
whether the set with the binary operations is a ring.

(1) The set N, with the standard addition and multiplication.

(2) Let n À N. The set nZ, with the standard addition and multiplication.

(3) The set Z ù Z, with the standard addition and multiplication on each com-
ponent.

(4) The set 2ZùZ, with the standard addition and multiplication on each com-
ponent.

(5) The set {a+b
˘
2 › a, b À Z}, with the standard addition and multiplication.

(6) The set {a+b
˘
2 › a, b À Q}, with the standard addition and multiplication.

Exercise 7.1.2. Let (G,+) be an abelian group. Let a binary operation � on G be
defined by a � b = 0 for all a, b À G, where 0 is the identity element for +. Prove
that (G,+, �) is a ring.
Exercise 7.1.3. Find a ring R and a subset S ” R such that S is a subgroup of R,
but S is not a subring ofR. [Hint: TryR = R, and find a subset S ” R that is non-
empty, closed under addition and negation, but not closed under multiplication.]
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Exercise 7.1.4. Let R be a ring, and let a À R. An element a À R is idempotent
if a2 = a.

Find all the idempotent elements of Z
6

ù Z
1

2.

Exercise 7.1.5. Let R be a ring, and let a À R. Let Sa = {r À R › ar = 0}. Prove
that Sa is a subring of R.

Exercise 7.1.6. Prove Theorem 7.1.9.
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7.2 Various Types of Rings

Fraleigh, 7th ed. – Section 18
Gallian, 7th ed. – Section 12, 13

Judson, 2016 – Section 16.1, 16.2

Definition 7.2.1. Let (R,+, �) be a ring.

1. The ring R is commutative if the binary operation � satisfies the Commu-
tative Law.

2. The ring R is a ring with unity if the binary operation � has an identity
element (usually denoted 1).  

Lemma 7.2.2. Let (R,+, �) be a ring with unity. Then 0 = 1 if and only ifR = {0}.

Definition 7.2.3. Let (R,+, �) be a ring with unity, and let a À R. Then a is a unit
if there is some b À R such that ab = 1 and ba = 1.  

Lemma 7.2.4. Let (R,+, �) be a ring with unity.

1. The unity is unique.

2. Let a À R. If there is some b À R such that ab = 1 and ba = 1, then b is

unique.

Definition 7.2.5. Let (R,+, �) be a ring with unity, and let a À R. Suppose a is a
unit. The multiplicative inverse of a is the element b À R such that ab = 1 and
ba = 1. The multiplicative inverse of a is denoted a*1.  

Lemma 7.2.6. Let (R,+, �) be a ring with unity, and let a, b, c À R.

1. If 0 ë 1, then 0 is not a unit.

2. If a is a unit and ab = ac, then b = c.

3. If a is a unit and ba = ca, then b = c.

4. If a is a unit, then a*1 is a unit and (a*1)*1 = a.

5. If a and b are units, then ab is a unit and (ab)*1 = b*1a*1.

6. Suppose R is commutative. If a or b is not a unit, then ab and ba are not

units.
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Definition 7.2.7. Let (R,+, �) be a ring.

1. The ring R is a division ring (also called a skew field) if it is a ring with
unity, if 0 ë 1, and if every non-zero element is a unit.

2. The ring R is a field if it is a commutative ring with unity, if 0 ë 1, if
every non-zero element is a unit, and if the binary operation � satisfies the
Commutative Law.  

Lemma 7.2.8. Let (R,+, �) be a ring. If R is a field, it is a division ring.

Exercises

Exercise 7.2.1. Let R be a ring, and let
�
Si
�
iÀI be a family of subrings of R

indexed by I . We saw in Lemma 7.1.11 that
∂

iÀI Si is a subring of R.

(1) Suppose that Si is a commutative ring for all i À I . Prove that
∂

iÀI Si is a
commutative ring.

(2) Suppose that Si is a ring with unity for all i À I . Suppose further that∂
iÀI Si has at least one element that is a unit in R. Prove that

∂
iÀI Si is a

ring with unity.

(3) Suppose that Si is a field for all i À I . Prove that
∂

iÀI Si is a field.

Exercise 7.2.2. Let R and S be rings.

(1) Suppose that R and S are commutative rings with unity. Prove that R ù S
is a commutative ring with unity.

(2) Suppose that R and S are fields. Prove that R ù S is a field.

Exercise 7.2.3. Let (R,+, �) be a ring with unity. Let U be the set of all the units
of R. Prove that (U , �) is a group.

Exercise 7.2.4. Let (R,+, �) be a ring. Prove that a2 * b2 = (a + b)(a * b) for all
a, b À R if and only if R is commutative.

Exercise 7.2.5. Let (R,+, �) be a ring. An element a À R is idempotent if a2 = a.
Suppose that R is commutative. Let P be the set of all the idempotent elements

of R. Prove that P is closed under multiplication.
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Exercise 7.2.6. Let (R,+, �) be a ring. An element a À R is nilpotent if an = 0

for some n À N.
Suppose thatR is commutative. Let c, d À R. Prove that if c and d are nilpotent,

then c + d is nilpotent.

Exercise 7.2.7. Let (R,+, �) be a ring. The ring R is a Boolean Ring if a2 = a
for all a À R (that is, if every element of R is idempotent). Prove that if R is a
Boolean ring, then R is commutative.

Exercise 7.2.8. Let A be a set. Let P(A) denote the power set of A. Let binary
operations + and � on P(A) be defined by

X + Y = (X ‰ Y ) * (X „ Y ) and X � Y = X „ Y

for all X, Y À P(A). Prove that (P(A),+, �) is a Boolean ring (as defined in Exer-
cise 7.2.7); make sure to prove first that it is a ring.
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7.3 Integral Domains

Fraleigh, 7th ed. – Section 19
Gallian, 7th ed. – Section 13
Judson, 2016 – Section 16.2

Definition 7.3.1. Let (R,+, �) be a ring, and let a À R. The element a is a zero
divisor if a ë 0 and if there is some b À R such that b ë 0 and ab = 0.  

Lemma 7.3.2. Let n À N, and let a À Zn. Then a is a zero divisor if and only if

a ë 0 and (a, n) ë 1.

Corollary 7.3.3. Let p À N. If p is a prime number, then Zp has no zero divisors.

Lemma 7.3.4. Let (R,+, �) be a ring. The following are equivalent.

a. The ring R has no zero divisors.

b. ab = 0 implies a = 0 or b = 0, for all a, b À R.

c. a ë 0 and ab = ac imply b = c, for all a, b, c À R.

d. a ë 0 and ba = ca imply b = c, for all a, b, c À R.

Definition 7.3.5. Let (R,+, �) be a ring. The ring R is an integral domain if it is
a commutative ring with unity, if it has no zero divisors, and if 0 ë 1.  

Lemma 7.3.6. Let (R,+, �) be a ring. If R is a division ring (and in particular if

R is a field), then it is an integral domain.

Lemma 7.3.7. Let n À N. Then Zn is an integral domain if and only if n is a prime

number.

Theorem 7.3.8. Let (R,+, �) be a ring. If R is finite and an integral domain, then

it is a field.

Corollary 7.3.9. Let n À N. Then Zn is a field if and only if n is a prime number.

Lemma 7.3.10. Let (R,+, �) be a ring with unity. Suppose R is finite. Let

G = {a À R › a is not a zero divisor}.

Then G is a group under multiplication.
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Definition 7.3.11. Let (R,+, �) be a ring. The characteristic of R is a number in
N ‰ {0} that is defined as follows. If there exists some n À N such that n � a = 0

for all a À R, then the characteristic of R is the least such n; if there is no such
n, then characteristic of R is 0.  

Lemma 7.3.12. Let (R,+, �) be a ring with unity.

1. Suppose that n � 1 ë 0 for all n À N. Then the characteristic of R is 0.

2. Suppose that n � 1 = 0 for some n À N. Then the characteristic of R is the

smallest m À N such that m � 1 = 0.

Exercises

Exercise 7.3.1. LetR = M
2ù2

(Z), and let A =

⌅
1 2

2 4

⇧
. Show that A is a zero divisor

in R.

Exercise 7.3.2. LetR be a ring. Suppose thatR has at least two elements. Suppose
that for each a À R, there is a unique b À R such that aba = a.

(1) Prove that R has no zero divisors.

(2) Let a À R, and let b À R be the unique element of R such that aba = a.
Prove that bab = b.

(3) Prove that R is a ring with unity.

(4) Prove that R is a division ring.

Exercise 7.3.3. Let D be an integral domain. Let S = {n � 1 › z À Z}.

(1) Prove that S f D.

(2) Prove that if T f D, then S ” T .

Exercise 7.3.4. Prove Lemma 7.3.10
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7.4 More on Zn

Fraleigh, 7th ed. – Section 20

Lemma 7.4.1. Let (F ,+, �) be a field. Let F <

be the set of all non-zero elements of

F . Then (F <, �) is a group.

Theorem 7.4.2 (Fermat’s Little Theorem). Let p À N be a prime number. Let

a À Z. Suppose a ì 0 (mod p). Then ap*1 í 1 (mod p).

Corollary 7.4.3. Let p À N be a prime number. Let a À Z. Then ap í a (mod p).

Corollary 7.4.4. Let a À Z. Then a33 * a is divisible by 15.

Definition 7.4.5. The Euler phi-function is the function ': N ô N defined as
follows. Let n À N. Then let '(n) be the cardinality of the set {x À N › x <
n and (x, n) = 1}.  

Theorem 7.4.6 (Euler’s Theorem). Let n À N. Let a À Z. Suppose (a, n) = 1.

Then a'(n) í 1 (mod n).

Exercises

Exercise 7.4.1. Use Fermat’s Little Theorem to find the remainder of 347 when it
is divided by 23.

Exercise 7.4.2. Use Fermat’s Little Theorem to find the remainder of 3749 when
it is divided by 7.

Exercise 7.4.3. Let p À N be a prime number. Find '(p2).

Exercise 7.4.4. Let p, q À N be prime numbers. Find '(pq).
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7.5 Ring Homomorphisms

Fraleigh, 7th ed. – Section 26
Gallian, 7th ed. – Section 15
Judson, 2016 – Section 16.3

Definition 7.5.1. Let (R,+, �) and (S,+, �) be rings, and let f : Rô S be a func-
tion.

1. The function f is a ring homomorphism (sometimes called a homomor-
phism) if f (a+ b) = f (a) +f (b) and f (a � b) = f (a) �f (b) for all a, b À R.

2. The function f is a ring isomorphism (sometimes called an isomorphism)
if it is a ring homomorphism and bijective.

3. The rings (R,+, �) and (S,+, �) are isomorphic if there is a ring isomor-
phism Rô S.  

Theorem 7.5.2. Let R and S be rings, and let f : R ô S be a ring homomor-

phism.

1. f (0) = 0.

2. If a À R, then f (*a) = *f (a).

3. If A f R, then f (A) f S.

4. If B f S, then f*1

(B) f R.

5. If R is a ring with unity, where the unity is denoted 1, then f (R) is a ring

with unity, where the unity is f (1).

Theorem 7.5.3. Let R, S and T be rings, and let f : R ô S and j : S ô T be

ring homomorphisms. Then j ˝ f is a ring homomorphism.

Theorem 7.5.4. Let R, S and T be rings, and let f : R ô S and j : S ô T be

ring isomorphisms.

1. The identity map 1R: Rô R is a ring isomorphism.

2. The function f*1

is a ring isomorphism.

3. The function j ˝ f is a ring isomorphism.
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Lemma 7.5.5. Let R and S be rings. Suppose that R and S are isomorphic.

1. The ring R is commutative if and only if the ring S is commutative.

2. The ring R is a ring with unity if and only if the ring S is a ring with unity.

3. The ring R is an integral domain if and only if the ring S is an integral

domain.

Theorem 7.5.6. Let m, n À N. The ring Zm ù Zn is ring isomorphic to Zmn if and

only if m and n are relatively prime.

Definition 7.5.7. Let R and S be rings, and let f : R ô S be a ring homomor-
phism.

1. The kernel of f , denoted ker f , is the set ker f = f*1

({0}).

2. The image of f , denoted im f , is the set im f = f (R).  

Remark 7.5.8. Observe that

ker f = {r À R › f (r) = 0}

and
im f = {s À S › s = f (r) for some r À R}. ·

Lemma 7.5.9. Let R and S be rings, and let f : R ô S be a ring homomor-

phism.

1. ker f f R.

2. im f f S.

Theorem 7.5.10. Let R and S be rings, and let f : R ô S be a ring homomor-

phism. The function f is injective if and only if ker f = {0}.

Lemma 7.5.11. Let R and S be rings, and let f : R ô S be a ring homomor-

phism. Let s À S. If r À f*1

({s}), then f*1

({s}) = r + ker f .

Exercises

Exercise 7.5.1. Prove Lemma 7.5.5 (1) and (3).
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Exercise 7.5.2. Let R = {a + b
˘
2 › a, b À Z}, and let S = {

⌅
a 2b
b a

⇧
À M

2ù2

(Z) ›
a, b À Z}.

(1) Prove that R is a subring of R.

(2) Prove that S is a subring of M
2ù2

(Z).
Prove that R and S are isomorphic.

Exercise 7.5.3. Let T = {

⌅
a b
*b a

⇧
À M

2ù2

(R) › a, b À R}

(1) Prove that T is a subring of M
2ù2

(R).

(2) Let �: C ô T be defined by �(a + bi) =
⌅
a b
*b a

⇧
for all a + bi À C. Prove

that � is a ring isomorphism.

Exercise 7.5.4. LetR and S be ring, and let f : Rô S be a ring homomorphism.
Suppose thatR is a ring with unity, thatS ë {0} and that f is surjective. Let u À R
be a unit. Prove that f (u) is a unit of S.
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7.6 Ideals and Quotient Rings

Fraleigh, 7th ed. – Section 26
Gallian, 7th ed. – Section 14
Judson, 2016 – Section 16.3

Definition 7.6.1. Let R be a ring, and let S f R. The subring S is an ideal if
rS ” S and Sr ” S for all r À R.  

Theorem 7.6.2. Let R be a ring, and let S ” R. Then S is an ideal if and only if

the following three conditions hold.

(i) S ë Á.

(ii) If a, b À S, then a + (*b) À S.

(iii) If a À S and r À R, then ar À S and ra À S.

Definition 7.6.3. Let R be a ring, and let S be an ideal of R. The ideal S is the
trivial ideal if S = {0}; the ideal S is the improper ideal if S = R; the ideal S
is a proper nontrivial ideal if {0} ô S ô R.  

Lemma 7.6.4. LetR be a ring with unity, and let S be an ideal ofR. If S contains

a unit, then S = R.

Corollary 7.6.5. Let F be a field. The only ideals of F are {0} and F .

Theorem 7.6.6. Let R and S be rings, and let f : R ô S be a ring homomor-

phism.

1. If A is an ideal of R, then f (A) is an ideal of f (R).

2. If B is an ideal of f (R) or of S, then f*1

(B) is an ideal of R.

Lemma 7.6.7. Let R and S be rings, and let f : R ô S be a homomorphism.

Then ker f is an ideal of R.

Lemma 7.6.8. Let R be a group and let S be a subring of R. The formulas (a +
S) + (b + S) = (a + b) + S and (a + S)(b + S) = ab + S for all a, b À R give

well-defined binary operations on the set of all additive cosets ofR with respect to

S if and only if S is an ideal of R.

Lemma 7.6.9. Let R be a ring and let S be an ideal of R. The set of additive

cosets R_S with binary operations given by (a + S) + (b + S) = (a + b) + S and

(a + S)(b + S) = ab + S for all a, b À R for all a, b À R is a ring.
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Definition 7.6.10. Let R be a group and let S be an ideal of R. The set of additive
cosets R_S with binary operations given by (a + S) + (b + S) = (a + b) + S and
(a + S)(b + S) = ab + S for all a, b À R is the quotient ring (also called factor
ring) of R by S.  

Lemma 7.6.11. Let R be a ring and let S be an ideal of R.

1. If R is commutative, then R_S is commutative.

2. If R is a ring with unity, then R_S is a ring with unity.

Definition 7.6.12. Let R be a ring and let S be an ideal of R. The canonical map
forR and S is the function � : Rô R_S defined by �(r) = rS for all r À R.  

Lemma 7.6.13. Let R be a ring and let S be an ideal of R. The canonical map

� : Rô R_S is a surjective ring homomorphism, and ker � = S.

Theorem 7.6.14 (First Isomorphism Theorem). Let R and S be rings, and

let f : R ô S be a homomorphism. Then there is a a unique isomorphism

g: R_ ker f ô im f such that f = g ˝ � , where � : R ô R_ ker f is the canon-

ical map.

Exercises

Exercise 7.6.1. Find all the ideals of Z
12

.
Exercise 7.6.2. LetR be a group, and let

�
Si
�
iÀI be a family of ideals ofR indexed

by I . Prove that
∂

iÀI Si is an ideal of R.
Exercise 7.6.3. Let R be a commutative ring, and let a À R. Let Sa = {r À R ›

ar = 0}. Prove that Sa is an ideal of R.
Exercise 7.6.4. Let (R,+, �) be a ring. An element a À R is nilpotent if an = 0

for some n À N.
Suppose that R is commutative. Let N = {c À R › c is nilpotent}. Prove that

N is an ideal of R.
Exercise 7.6.5. Prove Theorem 7.6.6.
Exercise 7.6.6. Find an example of ringsR andS, a ring homomorphism f : Rô
S, and an ideal N of R, such that f (N) is not an ideal of S.
Exercise 7.6.7. All parts of this exercise are about the quotient ring 2Z_8Z.

(1) List the elements of 2Z_8Z.
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(2) Make an addition table and a multiplication table for 2Z_8Z.

(3) Are 2Z_8Z and Z
4

ring isomorphic?
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7.7 Polynomials

Fraleigh, 7th ed. – Section 22
Gallian, 7th ed. – Section 16
Judson, 2016 – Section 17.1

Definition 7.7.1. Let R be a ring. The set of polynomials over R, denoted R[x],
is the set

R[x] = {f : N ‰ {0} ô R › there is some N À N ‰ {0} such that
f (i) = 0 for all i À N ‰ {0} such that i > N}.  

Definition 7.7.2. Let R be a ring.

1. Let 0: N ‰ {0} ô R be defined by 0(i) = 0 for all i À N ‰ {0}.

2. Suppose that R has a unity. Let 1: N ‰ {0} ô R be defined by 1(0) = 1

and 1(i) = 0 for all i À N.  

Definition 7.7.3. Let R be a ring, and let f À R[x]. Suppose that f ë 0. The
degree of f , denoted deg f , is the smallestN À N‰ {0} such that f (i) = 0 for all
i À N ‰ {0} such that i > N .  

Definition 7.7.4. LetR be a ring, and let f , g À R[x]. Let f + g, fg,*f : N ‰ {0} ô
R be defined by (f + g)(i) = f (i) + g(i), and (fg)(i) =

≥i
k=0 f (k)g(i * k), and

(*f )(i) = *f (i) for all i À N ‰ {0}.  

Lemma 7.7.5. Let R be a ring, and let f , g À R[x]. Suppose f ë 0 and g ë 0.

1. *f À R[x]. If f ë 0, then deg (*f ) = degf .

2. f + g À R[x]. If f ë 0, and g ë 0 and f + g ë 0, then deg (f + g) f
max{deg f , deg g}.

3. fg À R[x]. If f ë 0, and g ë 0 and fg ë 0, then deg (fg) f deg f+deg g;

ifR is an integral domain, and if f ë 0 and g ë 0, then deg (fg) = degf +

deg g.

Lemma 7.7.6. Let R be a ring.

1. (R[x],+, �) is a ring.

2. If R is commutative, then R[x] is commutative.
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3. If R has a unity, then R[x] has a unity.

4. If R is an integral domain, then R[x] is an integral domain.

Remark 7.7.7.

1. Let R be an integral domain. Then the formula deg (fg) = deg f + deg g
tell us that polynomials of degree greater than 0 cannot have multiplicative
inverses. Hence, the units in R[x] are precisely the polynomials of degree
zero, meaning the constant polynomials other than the zero polynomial.

2. Even if F is a field, then the units in F [x] are still the constant polynomials
other than the zero polynomial, and hence F [x] is not a field (though it is
still an integral domain).

·

Definition 7.7.8. LetR be a ring, let f À R[x] and let r À R. Let rf : N ‰ {0} ô
R be defined by (rf )(i) = rf (i) for all i À N ‰ {0}.  

Lemma 7.7.9. Let R be a ring, let f À R[x] and let r À R. Then rf À R[x].

Definition 7.7.10. Let R be a ring, and let n À N ‰ {0}. Let

Rn[x] = {f À R[x] › degf f n}.  

Lemma 7.7.11. Let R be a ring, and let n À N ‰ {0}.

1. The set (Rn[x],+) is a subgroup of (R[x],+).

2. The set (R
0

[x],+, �) is a subring of (R[x],+, �).

Lemma 7.7.12. LetR be a ring. Then there is a ring isomorphism : Rô R
0

[x].

Definition 7.7.13. Let R be an integral domain. Let x: N ‰ {0} ô R be defined
by x(1) = 1 and x(i) = 0 for all i À N ‰ {0} * {1}.  

Lemma 7.7.14. Let R be an integral domain, and let n À N. Then xn(n) = 1 and

x(i) = 0 for all i À N ‰ {0} * {n}, for all n À N.

Definition 7.7.15. Let R be an integral domain. Let x0 be defined by x0 = 1.  

Lemma 7.7.16. LetR be a commutative ring with unity, let f À R[x], and let n À
N‰{0}. If f ë 0, suppose that n g deg f . Then there are unique a

0

, a
1

,… , an À R
such that f = a

0

1 + a
1

x +5 + anxn.
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Definition 7.7.17. Let R be a commutative ring with unity, let S ” R be a com-
mutative subring with unity, and let ↵ À R. The evaluation map with respect
to ↵ is the function �↵ : S[x] ô R defined by �↵(a0 + a

1

x + 5 + anxn) =

a
0

+ a
1

↵ +5 + an↵n for all a
0

+ a
1

x +5 + anxn À S[x].  

Lemma 7.7.18. Let R be a commutative ring with unity, let S ” R be a commu-

tative subring with unity, and let ↵ À R.

1. The evaluation map �↵ : S[x] ô R is a ring homomorphism.

2. �↵(x) = ↵.

3. The function �↵S is the inclusion map S ô R.

Definition 7.7.19. LetR be a commutative ring with unity, letS ” R be a commu-
tative subring with identity, and let f À S[x]. The polynomial function induced
by f is the function Çf : Rô R defined by Çf (↵) = �↵(f ) for all ↵ À R.  

Definition 7.7.20. Let R be a commutative ring with unity, let S ” R be a com-
mutative subring with identity, and let f À S[x]. A zero of f is any ↵ À R such
that Çf (↵) = 0.  

Exercises

Exercise 7.7.1. List all the polynomials inZ
3

[x] that have degree less than or equal
to 2.

Exercise 7.7.2. Let f À Z
6

[x] be f = x2 + [3]x + [2]. Find all the zeros of f .

Exercise 7.7.3. Let g À Z
4

[x] be g = [2]x + [1]. Show that g is a unit in Z
4

.

Exercise 7.7.4. Find the units in each of the following rings.

(1) Z[x].

(2) Z
5

[x].

Exercise 7.7.5. Let D be an integral domain. Describe the units in D[x].

Exercise 7.7.6. LetF be a field. A function� À F (F ,F ) is a polynomial function
if there is some f À F [x] such that �(a) = f (a) for all a À F . Let FP = {g ÀF (F ,F ) › g is a polynomial function}.

(1) Prove that FP is a subring of F (F ,F ).
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(2) Find an example of a field F such that FP is not isomorphic to F [x]. [Hint:
look at finite fields, and find an example where FP and F [x] do not have the
same cardinality.
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8.1 Unique Factorization Domains

Fraleigh, 7th ed. – Section 45
Gallian, 7th ed. – Section 18
Judson, 2016 – Section 18.2

Definition 8.1.1. Let D be an integral domain, and let a, b À D. The element a
divides the element b, written ab, if there is some q À D such that aq = b. If a
divides b, we also say that b is divisible by a.  

Remark 8.1.2. LetD be an integral domain, and let a À D. Then a is a unit if and
only if a1. ·

Definition 8.1.3. Let D be an integral domain, and let a, b À D. The elements a
and b are associates if there is some unit u À D such that au = b.  

Remark 8.1.4. Let D be an integral domain, and let a, b À D. Suppose a and b
are associates.

1. Observe in Definition 8.1.3 that if au = b, then a = bu*1, and so it doesn’t
matter which of a and b is the one multiplied by the unit.

Because integral domains are commutative, we can write au = b or ua = b,
whichever is more convenient.

·

Lemma 8.1.5. Let D be an integral domain, and let a, b À D. Suppose a ë 0 and

b ë 0. Then ab and ba if and only if a and b are associates.

Definition 8.1.6. Let p À N. Suppose p > 1.

1. The number p is a prime number if the only positive integers that divide p
are 1 and p.

2. The number p is a composite number if it is not a prime number.  

Definition 8.1.7. Let D be an integral domain, and let p À D. Suppose that p is
not a unit. The element p is irreducible if p = ab for some a, b À D implies that
a or b is a unit.  

Lemma 8.1.8. Let D be an integral domain, and let p À D. If p is irreducible,

then any associate of p is irreducible.
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Definition 8.1.9. Let D be an integral domain, and let p À D. Suppose that p is
not a unit. The element p is prime if p(ab) for some a, b À D implies that pa or
pb.  

Lemma 8.1.10. Let D be an integral domain, and let p À D. If p is prime, then p
is irreducible.

Definition 8.1.11. Let d À Z. Suppose that d ë 1, and that d is not divisible by
p2 for any prime p À Z. The set Z[d] is defined by

Z[d] = {a + b
˘
d › a, b À Z}.  

Definition 8.1.12. Let d À Z. Suppose that d ë 1, and that d is not divisible by
p2 for any prime p À Z. The norm of Z[d] is the function N : Z[d] ô N ‰ {0}

defined by
N(a + b

˘
d) = a2 * b2d

for all a + b
˘
d À Z[d].  

Lemma 8.1.13. Let d À Z. Suppose that d ë 1, and that d is not divisible by p2
for any prime p À Z. Let x, y À Z[d].

1. N(x) = 0 if and only if x = 0.

2. N(xy) = N(x)N(y).

3. N(x) = 1 if and only if x is a unit.

4. If N(x) is prime in Z, then x is irreducible in Z[d].

Lemma 8.1.14. Let d À Z. Suppose that d ë 1, and that d is not divisible by p2
for any prime p À Z. Then Z[d] is an integral domain.

Definition 8.1.15. LetD be an integral domain. The integral domainD is a unique
factorization domain (abbreviated UFD) if the following holds. Let a À D. Sup-
pose a is not 0 and is not a unit. Then a can be uniquely factored into irreducible,
as follows.

1. The element a can be written as the product of finitely many irreducibles of
D.

2. If a = p
1

p
2

5 pr = q
1

q
2

5 qs, where p
1

, p
2

,… pr, q1, q2,… qs are irre-
ducibles, then r = s, and the order of q

1

, q
2

,… qs can be rewritten so that qi
is an associate of pi for all i À {1, 2,… , r}.  
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Exercises

Exercise 8.1.1. Prove Lemma 8.1.13 (1), (2) and (4). The proof of each part can
use any of the previous parts of the lemma.

Exercise 8.1.2. All parts of this exercise are about Z[*1].

(1) Show that 1 * i is irreducible.

(2) Show that 3 is irreducible.

(3) Show that 2 is not irreducible.

Exercise 8.1.3. In Z[*5], find two di�erent ways to factor 21 into a product of
irreducibles. You must show that the irreducibles you use are actually irreducible.

Exercise 8.1.4. Let a+bi À Z[*1], Suppose that a2 +b2 is a prime number. Prove
that a + bi is irreducible.
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8.2 Principal Ideal Domains

Fraleigh, 7th ed. – Section 45
Gallian, 7th ed. – Section 16
Judson, 2016 – Section 18.2

Lemma 8.2.1. Let R be a commutative ring with unity, and let a À R.

1. The set {ar › r À R} is an ideal of R.

2. The set {ar › r À R} contains a.

Definition 8.2.2. Let R be a commutative ring with unity.

1. Let a À R. The principal ideal generated by a, denoted ÍaÎ, is the ideal

ÍaÎ = {ar › r À R}.

2. Let S be an ideal ofR. The ideal S is a principal ideal if S = ÍcÎ for some
c À R.  

Lemma 8.2.3. Let D be an integral domain, and let a, b À D.

1. Prove that ÍaÎ ” ÍbÎ if and only if ba.

2. Prove that ÍaÎ = ÍbÎ if and only if a and b are associates.

Lemma 8.2.4. Let S be an ideal of Z. Then there is some m À Z such that S =

mZ = ÍmÎ.
Definition 8.2.5. LetD be an integral domain. The integral domainD is a princi-
pal ideal domain (abbreviated PID) if every ideal in D is a principal ideal.  

Lemma 8.2.6. Let D be a PID, and let p À D. Then p is prime if and only if p is

irreducible.

Corollary 8.2.7. Let D be a PID, and let p, a
1

,… , an À D, for some n À N.

Suppose p is irreducible. If p(a
1

a
2

5 an) then there is some i À {1, 2,… , n} such

that pai.
Lemma 8.2.8. Let R be a commutative ring, and let S

1

” S
2

” S
3

” 5 of R be

an ascending chain of ideals. Then

∑
ÿ

i=1 Si is an ideal of R.
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Definition 8.2.9. Let R be a ring. The ring R is satisfies the ascending chain
condition (abbreviated ACC) if every ascending chain of ideals S

1

” S
2

” S
3

”
5 of R, there is some p À N such that t À N and t g p imply St = Sp.  

Lemma 8.2.10. Let D be a PID. Then D satisfies ACC.

Theorem 8.2.11. Let D be a PID, and let d À D. Suppose that d ë 0 and that

d is not a unit. Then there are a
1

,… , an À D such that a
1

,… , an are irreducible

and d = a
1

a
2

5 an.

Theorem 8.2.12. Let D be a PID. Then D is a UFD.

Corollary 8.2.13 (Fundamental Theorem of Arithmetic). The ring Z is a UFD.

Exercises

Exercise 8.2.1. Prove Lemma 8.2.1.

Exercise 8.2.2. Prove Lemma 8.2.3.
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8.3 Euclidean Domains

Fraleigh, 7th ed. – Section 46
Gallian, 7th ed. – Section 18
Judson, 2016 – Section 18.2

Definition 8.3.1. Let R be a ring. The set R< is defined to be R<

= R* {0}.  

Definition 8.3.2. Let D be an integral domain. A Euclidean norm (also called
Euclidean valuation) on D is a function ⌫ : D< ô N ‰ {0} that satisfies the fol-
lowing two conditions. Let a, b À D.

1. Suppose b ë 0. Then there are q, r À D such that a = bq + r and that r = 0

or ⌫(r) < ⌫(b).

2. Suppose a ë 0 and b ë 0. Then ⌫(a) f ⌫(ab).  

Definition 8.3.3. Let D be an integral domain. The integral domain D is a Eu-
clidean domain (abbreviated ED) if D has a Euclidean norm.  

Corollary 8.3.4. Let D be a ED. Then D is a PID.

Corollary 8.3.5. Let D be a ED. Then D is a UFD.

Exercises

Exercise 8.3.1. Let �: Z< ô N ‰ {0} defined by �(a) = a2 for all a À Z<. Prove
that � is a Euclidean norm.

Exercise 8.3.2. Let �: Q< ô N ‰ {0} defined by �(a) = 17 for all a À Q<. Prove
that � is a Euclidean norm.

Exercise 8.3.3. Let D be a ED with Euclidean norm ⌫, and let a, b À D. Suppose
that a and b are associates. Prove that ⌫(a) = ⌫(b).

Exercise 8.3.4. Let F be a field. Prove that F is a ED.

Exercise 8.3.5. Let D be a ED with Euclidean norm ⌫, and let e À Z. Suppose
that ⌫(1) + e > 0. Let �: D< ô N ‰ {0} be defined by �(a) = ⌫(a) + e for all
a À D<. Prove that � is a Euclidean norm on D.
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9.2 Factorization of Polynomials over a Field

Fraleigh, 7th ed. – Section 23
Gallian, 7th ed. – Section 18
Judson, 2016 – Section 18.2

Theorem 9.2.1. Let F be a field. Then then the function ⌫ : F [x]< ô N ‰ {0}

defined by ⌫(f ) = degf for all f À F [x]< is a Euclidean norm.

Corollary 9.2.2. Let F be a field. Then F [x] is a PID.

Corollary 9.2.3. Let F be a field. Then F [x] is a UFD.

Theorem 9.2.4. Let F be a field, let f À F [x] and let r À F . Then r is a zero of

f if and only if x * r is a factor of f .

Corollary 9.2.5. Let F be a field, let f À F [x]. Suppose f ë 0. Let n = deg f .

Then f has at most n zeros.

Exercises

Exercise 9.2.1. Let a, b À Z
7

[x] be a = x6 + [3]x5 + [4]x2 * [3]x + [2] and
b = x2 + [2]x * [3]. Find q, r À Z

7

[x] such that a = bq + r, and r = 0 or
deg r < deg b.

Exercise 9.2.2. Let f À Z
11

[x] be f = [2]x3 + [3]x2 * [7]x * [5]. Factor f into
irreducibles.
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9.3 Prime Ideals and Maximal Ideals

Fraleigh, 7th ed. – Section 27
Gallian, 7th ed. – Section 14
Judson, 2016 – Section 16.4

Definition 9.3.1. Let R be a ring, and let M be an ideal of R. The ideal M is a
maximal ideal if M ô R, and if there is no ideal S of R such that M ô S ô
R.  

Theorem 9.3.2. Let R be a commutative ring with unity, let S be an ideal of R.

Then R_S is a field if and only if S is a maximal ideal.

Corollary 9.3.3. Let R be a commutative ring with unity. Then R is a field if and

only if the only ideals of R are {0} and R.

Lemma 9.3.4. Let D be a PID, and let n À D. Then ÍnÎ is a maximal ideal if and

only if n is irreducible.

Definition 9.3.5. LetR be a ring, and let P be an ideal ofR. The ideal P is a prime
ideal if P ô R, and if ab À P implies a À P or b À P for all a, b À R.  

Theorem 9.3.6. Let R be a commutative ring with unity, let S be an ideal of R.

Then R_S is an integral domain if and only if S is a prime ideal.

Corollary 9.3.7. Let R be a commutative ring with unity, and let S be an ideal of

R. If S is a maximal ideal, then S is a prime ideal.

Corollary 9.3.8. Let R be a commutative ring with unity, and let S be an ideal of

R. Suppose R is finite. Then S is a maximal ideal if and only if S is a prime ideal.

Lemma 9.3.9. LetR be a ring with unity, and let �: Z ô R be defined by �(m) =
m � 1 for all m À Z. Then � is a ring homomorphism.

Corollary 9.3.10. Let R be a ring with unity.

1. If R has positive characteristic n, then R contains a subring isomorphic to

Zn.

2. If R has characteristic 0, then R contains a subring isomorphic to Z.

Corollary 9.3.11. Let F be a field.

1. If F has positive characteristic, then the characteristic is a prime number

p, and F contains a subfield isomorphic to Zn.
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2. If F has characteristic 0, then F contains a subfield isomorphic to Q.

Exercises

Exercise 9.3.1. Find all the maximal ideals and all the prime ideals of Z
6

.

Exercise 9.3.2. Prove Corollary 9.3.8.

Exercise 9.3.3. Let F be a field. Let S be an ideal of F [x]. Prove that if S is
non-trivial and a prime ideal, then S is a maximal ideal.

Exercise 9.3.4. Let R = F (R,R). Then R is a ring. Let S = {f À R › f (2) = 0}.
Prove that S is a maximal ideal of R.

Exercise 9.3.5. Let S = 2Z. Observe that S is a maximal ideal of Z. Prove that
S[x] is not a maximal ideal of Z[x].
Exercise 9.3.6. Let R be a commutative ring with unity, and let S be an ideal of
R. Suppose that a2 = a for all a À R. Suppose that S is a prime ideal. Prove that
R_S has two elements.

Exercise 9.3.7. Let R be a commutative ring with unity, and let S be an ideal of
R. Suppose that S ë R. Suppose that if a À R * S, then a is a unit. Prove that S
is the unique maximal ideal of R.
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9.4 Extension Fields

Fraleigh, 7th ed. – Section 29
Gallian, 7th ed. – Section 20
Judson, 2016 – Section 21.1

Definition 9.4.1. Let F be a field. An extension field of F is any field E such that
F ” E.  

Theorem 9.4.2. Let F be a field, let f À F [x]. Suppose deg f g 1. Then there is

an extension field E of F such that f has a zero in E.

Definition 9.4.3. Let F be a field, let E be an extension field of F , and let ↵ À E.
The extension field obtained by adjoining ↵ to F , denoted F (↵), is defined by

F (↵) = {S ” E › S is a subfield of E and F ” S and ↵ À S}.  

Lemma 9.4.4. Let F be a field, let E be an extension field of F , and let ↵ À E.

1. {S ” E › S is a subfield of E and F ” S and ↵ À S} ë Á.

2. F (↵) is a subfield of E.

3. F ” F (↵) and ↵ À F (↵).

4. If K is a subfield of E such that F ” K and ↵ À K , then F (↵) ” K .

Definition 9.4.5. Let F be a field, letE be an extension field of F , and let ↵ À E.

1. The element ↵ is algebraic over F if there is some f À F [x] such that ↵ is
a zero of f .

2. The element ↵ is transcendental over F if it is not algebraic.  

Theorem 9.4.6. Let F be a field, let E be an extension field of F , and let ↵ À E.

Suppose ↵ is algebraic over F .

1. There is irreducible polynomial p À F [x] such that ↵ is a zero of p.

2. The polynomial p is unique up to multiplication by elements of F .

3. If h À F [x] and ↵ is a zero of h, then ph.
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4. The polynomial p has minimal degree among all polynomials in F [x] that

have ↵ as a zero.

Theorem 9.4.7. Let F be a field, let E be an extension field of F , and let ↵ À E.

Suppose ↵ is algebraic over F . Let p À F [x] be an irreducible polynomial such

that ↵ is a zero of p.

1. The field F (↵) is isomorphic to F [x]_Íp(x)Î.
2. Let n = deg p. If d À F (↵), then there are unique c

0

, c
1

,… , cn*1 À F such

that

d = c
0

+ c
1

↵ +5 + cn*1↵
n*1.

Corollary 9.4.8. Let F be a field, let E be an extension field of F , and let ↵ À E.

Suppose ↵ is algebraic over F . Let p À F [x] be an irreducible polynomial such

that ↵ is a zero of p. Let n = deg p. Then

F (↵) = {c
0

+ c
1

↵ +5 + cn*1↵
n*1

› c
0

, c
1

,… , cn*1}.

Exercises

Exercise 9.4.1. Show that each of the following numbers in R are algebraic over
Q.

(1) 1 +

˘
2.

(2)
˘
2 +

˘
3.

Exercise 9.4.2. Describe the elements of each of the following extension fields
over Q.

(1) Q(1 + i).

(2) Q(

t
1 +

3̆

2).

Exercise 9.4.3. Let F be a field, let E be an extension field of F , and let ↵, � À E.
Prove that [F (�)](↵) = [F (↵)](�).

Exercise 9.4.4. Are Q(

˘
3) and Q(

˘
*3) isomorphic? Prove your claim.
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