Proofs Strategies For

PROOFS AND FUNDAMENTALS

February 9, 2017

1. Prove if P then $Q \quad-\quad$ via Direct Proof

Theorem. Let P and Q be statements. ... (hypotheses) ... Prove if P then Q.
Symbols: $P \rightarrow Q$
Proof. Suppose that P is true.
(argumentation)
\vdots
Then Q is true.

2. Prove if P then $Q \quad-\quad$ via Proof by Contrapositive

Theorem. Let P and Q be statements. ... (hypotheses) ... Prove if P then Q.
Symbols: $P \rightarrow Q$
Proof. Suppose that Q is false.
(argumentation)
!
Then P is false.

3. Prove if P then $Q \quad$ - via Proof by Contradiction

Theorem. Let P and Q be statements. ... (hypotheses) ... Prove if P then Q.
Symbols: $P \rightarrow Q$
Proof. Suppose that P is true. Suppose that Q is false.
(argumentation)
!
We have reached a contradiction. Therefore Q must be true.

4. Prove if P, then A or B

Theorem. Let P, A and B be statements. ... (hypotheses) ... Prove if P, then \mathbf{A} or B.
Symbols: $P \rightarrow(A \vee B)$
Proof. Suppose that P is true. Suppose that A is false.
(argumentation)
!
Then B is true.

5. Prove if A or B, then Q

Theorem. Let A, B and Q be statements. ... (hypotheses) ... Prove if A or B, then Q.
Symbols: $(A \vee B) \rightarrow Q$
Proof. Suppose that A or B are true.
Case 1: Suppose that A is true.
!
(argumentation)
:
Then Q is true.
Case 2: Suppose that B is true.
!
(argumentation)
:
Then Q is true.

6. Prove P if and only if Q

Theorem. Let P and Q be statements. ... (hypotheses) ... Prove P if and only if Q.
Symbols: $P \longleftrightarrow Q$
Proof. \Rightarrow Suppose that P is true.
;
(argumentation)
:
Then Q is true.
\Leftarrow Suppose that Q is true.
:
(argumentation)
:
Then P is true.

7. Prove a Statement with a For All Quantifier

Theorem. Let $P(x)$ be a statement with free variable x, and let U be a collection of possible values of x. ... (hypotheses) ... Prove that for all x in U, the statement $P(x)$ holds.

Symbols: $(\forall x$ in $U) P(x)$
Proof. Let c be in U.
(argumentation)
:
Then $P(c)$ is true.

8. Prove a Statement with a There Exists Quantifier

Theorem. Let $P(x)$ be a statement with free variable x, and let U be a collection of possible values of x. ... (hypotheses) ... Prove that there exists some x in U such that the statement $P(x)$ holds.

Symbols: $(\exists x$ in $U) P(x)$
Proof. Let $c=\ldots$. [Only one example of c is needed.]
!
(argumentation)
:
Then c is in U.
!
(argumentation)
:
Then $P(c)$ is true.

9. Prove an Existence and Uniqueness Statement

Theorem. Let $P(x)$ be a statement with free variable x, and let U be a collection of possible values of x.... (hypotheses) ... Prove that there exists a unique x in U such that the statement $P(x)$ holds.

Symbols: $(\exists!x$ in $U) P(x)$
Proof. Uniqueness:
Let a and b be in U. Suppose that $P(a)$ and $P(b)$ are true.
:
(argumentation)
:
Then $a=b$.
Existence:
Let $c=\ldots$. [Only one example of c is needed.]
!
(argumentation)
:
Then c is in U.
!
(argumentation)
:
Then $P(c)$ is true.

10. Prove a Statement with Two Quantifiers - For All and There Exists

Theorem. Let $P(x, y)$ be a statement with free variables x and y, let U be a collection of possible values of x and let V be a collection of possible values of y.... (hypotheses) ... Prove that for each x in U there exists some y in V such that the statement $P(x, y)$ holds.

Symbols: $(\forall x$ in $U)(\exists y$ in $V) P(x, y)$
Proof. Let c be in U.
(argumentation)
\vdots
Let $d=\ldots$. [Note that d can depend upon c.]
!
(argumentation)
:
Then d is in V.
!
(argumentation)
\vdots
Then $P(c, d)$ is true.

11. Prove a Statement with Two Quantifiers - There Exists and For All

Theorem. Let $P(x, y)$ be a statement with free variables x and y, let U be a collection of possible values of x and let V be a collection of possible values of y. ... (hypotheses) ... Prove that there is some x in U such that for each y in V, the statement $P(x, y)$ holds.

Symbols: $(\exists x$ in $U)(\forall y$ in $V) P(x, y)$
Proof. Let $c=\ldots$. [Only one example of c is needed.]
(argumentation)
!
Then c is in U.
!
(argumentation)
:
Let d be in V. [Note that d is independent of c.]
!
(argumentation)
:
Then $P(c, d)$ is true.

12. Prove that One Set is a Subset of Another Set

Theorem. Let A and B be sets. ... (hypotheses) ... Prove that $A \subseteq B$.
Symbols: $(\forall x \in A)(x \in B)$
Proof. Let $x \in A$.
:
(argumentation)
!
Then $x \in B$. Hence $A \subseteq B$.

13. Prove that Two Sets are Equal

Theorem. Let A and B be sets. ... (hypotheses) ... Prove that $A=B$.
Symbols: $(\forall x \in A)(x \in B) \wedge(\forall x \in B)(x \in A)$
Proof. Let $x \in A$.
(argumentation)
\vdots
Then $x \in B$. Hence $A \subseteq B$.
Next, Let $y \in B$.
!
(argumentation)
!
Then $y \in A$. Hence $B \subseteq A$.
We conclude that $A=B$.

14. Prove that Two Functions are Equal

Theorem. Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be functions. ... (hypotheses) ... Prove that $f=g$.

Symbols: $A=C \wedge B=D \wedge(\forall x \in A)(f(x)=g(x))$
Proof. (Argumentation)
Therefore $A=C$. Hence f and g have the same domain.
:
(argumentation)
\vdots
Therefore $B=D$. Hence f and g have the same codomain.
Let $a \in A=C$.
(argumentation)
:
Then $f(a)=g(a)$.
Therefore $f=g$.

15. Prove that a Functions has a Right Inverse.

Theorem. Let $f: A \rightarrow B$ be a function. ... (hypotheses) ... Prove that f has a right inverse.

Symbols: $(\exists g: B \rightarrow A)(\forall x \in B)(f(g(x))=x)$
Proof. Let $g: B \rightarrow A$ be defined by [Only one example of g is needed.]
Let $y \in B$.
:
(Argumentation)
:
Then $f(g(y))=y$. Hence $f \circ g=1_{B}$.
Therefore g is a right inverse of f.

16. Prove that a Functions has a Left Inverse.

Theorem. Let $f: A \rightarrow B$ be a function. ... (hypotheses) ... Prove that f has a left inverse.
Symbols: $(\exists g: B \rightarrow A)(\forall x \in A)(g(f(x))=x)$
Proof. Let $g: B \rightarrow A$ be defined by [Only one example of g is needed.]
Let $x \in A$.
\vdots
(Argumentation)
:
Then $g(f(x))=x$. Hence $g \circ f=1_{A}$.
Therefore g is a left inverse of f.

17. Prove that a Functions has an Inverse.

Theorem. Let $f: A \rightarrow B$ be a function. ... (hypotheses) ... Prove that f has an inverse.
Symbols: $(\exists g: B \rightarrow A)[(\forall x \in A)(g(f(x))=x) \wedge(\forall x \in B)(f(g(x))=x)]$
Proof. Let $g: B \rightarrow A$ be defined by \ldots
Let $x \in B$.
!
(Argumentation)
:
Then $f(g(x))=x$. Hence $f \circ g=1_{B}$.
Therefore g is a right inverse of f.
Let $x \in A$.
:
(Argumentation)
!
Then $g(f(x))=x$. Hence $g \circ f=1_{A}$.
Therefore g is a left inverse of f.
We conclude that g is an inverse of f.

18. Prove that a Function is Injective

Theorem. Let A and B be sets, and let f:A B be a function. ... (hypotheses) ... Prove that f is injective.

Symbols: $(\forall x, y \in A)(f(x)=f(y) \rightarrow x=y)$
Proof. Let $x, y \in A$. Suppose that $f(x)=f(y)$.
:
(argumentation)
:
Then $x=y$. Hence f is injective.

19. Prove that a Function is Surjective

Theorem. Let A and B be sets, and let $f: A \rightarrow B$ be a function. ... (hypotheses) ... Prove that f is surjective.

Symbols: $(\forall b \in B)(\exists a \in A)(f(a)=b)$
Proof. Let $b \in B$.
Let $a=\ldots$
\vdots
(argumentation)
:
Then $f(a)=b$. Hence f is surjective.

20. Prove that a Function is Bijective

Theorem. Let A and B be sets, and let f:A B be a function. ... (hypotheses) ... Prove that f is injective.

Symbols: $(\forall x, y \in A)(f(x)=f(y) \rightarrow x=y) \wedge(\forall b \in B)(\exists a \in A)(f(a)=b)$
Proof. Let $x, y \in A$. Suppose that $f(x)=f(y)$.
(argumentation)
\vdots
Then $x=y$. Hence f is injective.
Let $b \in B$.
\vdots
Let $a=\ldots$.
!
(argumentation)
:
Then $f(a)=b$. Hence f is surjective.
We conclude that f is bijective.

21. Prove that Two Relations are Equal

Theorem. Let A and B be sets, and let R and S be relations from A to B. ... (hypotheses)
... Prove that $R=S$.
Symbols: $(\forall x, y \in A)(x R y \longleftrightarrow x S y)$
Proof. Let $x \in A$ and $y \in B$. First, suppose that $x R y$.
(argumentation)
:
Then $x S y$.
Second, suppose that $x S y$.
!
(argumentation)
\vdots
Then $x R y$.
Therefore $R=S$.

22. Prove that a Relation is Reflexive

Theorem. Let A be a set, and let R be a relation on $A . \ldots$ (hypotheses) ... Prove that R is reflexive.

Symbols: $(\forall x \in A)(x R x)$
Proof. Let $x \in A$.
(argumentation)
:
Then $x R x$. Hence R is reflexive.

23. Prove that a Relation is Symmetric

Theorem. Let A be a set, and let R be a relation on A... (hypotheses) ... Prove that R is symmetric.

Symbols: $(\forall x, y \in A)(x R y \rightarrow y R x)$
Proof. Let $x, y \in A$. Suppose that $x R y$.
(argumentation)
:
Then $y R x$. Hence R is symmetric.

24. Prove that a Relation is Transitive

Theorem. Let A be a set, and let R be a relation on A. ... (hypotheses) ... Prove that R is transitive.

Symbols: $(\forall x, y, z \in A)([x R y \wedge y R z] \rightarrow x R z)$
Proof. Let $x, y, z \in A$. Suppose that $x R y$ and $y R z$.
(argumentation)
\vdots
Then $x R z$. Hence R is transitive.

25. Prove that a Relation is an Equivalence Relation

Theorem. Let A be a set, and let R be a relation on A... (hypotheses) ... Prove that R is an equivalence relation.

Symbols: $(\forall x, y, z \in A)([x R x] \wedge[x R y \rightarrow y R x] \wedge[(x R y \wedge y R z) \rightarrow x R z])$
Proof. Let $x, y, z \in A$.
(argumentation)
:
Then $x R x$. Hence R is reflexive.
Suppose that $x R y$.
!
(argumentation)
:
Then $y R x$. Hence R is symmetric.
Suppose that $x R y$ and $y R z$.
:
(argumentation)
:
Then $x R z$. Hence R is transitive.
We conclude that R is an equivalence relation.

26. Prove a Statement Using Mathematical Induction.

Theorem. Let $P(n)$ be a statement with free variable n, where n is a natural number. ... (hypotheses) ... Prove that for all n in \mathbb{N}, the statement $P(n)$ holds.

Symbols: $P(1) \wedge(\forall n \in \mathbb{N})(P(n) \rightarrow P(n+1))$
Proof. (Argumentation)
:
Then $P(1)$ is true.
Let $n \in \mathbb{N}$. Suppose that $P(n)$ is true.
!
(argumentation)
\vdots
Then $P(n+1)$ is true.

27. Prove that Two Sets Have the Same Cardinality - via Bijectivity.

Theorem. Let A and B be sets. ... (hypotheses) ... Prove that A ~B.
Symbols: $(\exists f: A \rightarrow B)[(\forall x, y \in A)(f(x)=f(y) \rightarrow x=y) \wedge(\forall b \in B)(\exists a \in A)(f(a)=$ b)]

Proof. Let $f: A \rightarrow B$ be defined by [Only one example of f is needed.]
Let $x, y \in A$. Suppose that $f(x)=f(y)$.
(argumentation)
:
Then $x=y$. Hence f is injective.
Let $b \in B$.
:
Let $a=\ldots$
!
(argumentation)
:
Then $f(a)=b$. Hence f is surjective.
We conclude that f is bijective. It follows that $A \sim B$.

28. Prove that Two Sets Have the Same Cardinality - via Inverse Functions.

Theorem. Let A and B be sets. ... (hypotheses) ... Prove that A \sim B.
Symbols: $(\exists f: A \rightarrow B)(\exists g: B \rightarrow A)[(\forall x \in A)(g(f(x))=x) \wedge(\forall x \in B)(f(g(x))=x)]$
Proof. Let $f: A \rightarrow B$ be defined by [Only one example of f is needed.]
Let $g: B \rightarrow A$ be defined by \ldots...
Let $y \in B$.
(Argumentation)
:
Then $f(g(y))=y$. Hence $f \circ g=1_{B}$.
Therefore g is a right inverse of f.
Let $x \in A$.
\vdots
(Argumentation)
:
Then $g(f(x))=x$. Hence $g \circ f=1_{A}$.
Therefore g is a left inverse of f.
We conclude that g is an inverse of f. Therefore f is bijective. It follows that $A \sim B$.

