Proofs Strategies For

PROOFS AND FUNDAMENTALS

February 9, 2017

1. Prove if P then Q — via Direct Proof Theorem. Let P and Q be statements. ... (hypotheses) ... Prove if P then Q. Symbols: $P \rightarrow Q$ Proof. Suppose that P is true. : (argumentation) : Then Q is true.

2. Prove if P then Q — via Proof by Contrapositive Theorem. Let P and Q be statements. ... (hypotheses) ... Prove if P then Q. Symbols: $P \rightarrow Q$ Proof. Suppose that Q is false. : (argumentation) : Then P is false.

```
3. Prove if P then Q — via Proof by Contradiction

Theorem. Let P and Q be statements. ... (hypotheses) ... Prove if P then Q.

Symbols: P \rightarrow Q

Proof. Suppose that P is true. Suppose that Q is false.

:

(argumentation)

:

We have reached a contradiction. Therefore Q must be true.
```

4. Prove if P, then A or B Theorem. Let P, A and B be statements. ... (hypotheses) ... Prove if P, then A or B. Symbols: $P \rightarrow (A \lor B)$ Proof. Suppose that P is true. Suppose that A is false. : (argumentation) : Then B is true.

5. Prove if A or B, then Q Theorem. Let A, B and Q be statements. ... (hypotheses) ... Prove if A or B, then Q. Symbols: $(A \lor B) \rightarrow Q$ Proof. Suppose that A or B are true. Case 1: Suppose that A is true. \vdots (argumentation) \vdots Then Q is true. Case 2: Suppose that B is true. \vdots (argumentation) \vdots Then Q is true.

6. Prove *P* if and only if *Q*

Theorem. Let P and Q be statements. ... (hypotheses) ... Prove P if and only if Q.

Symbols: $P \leftrightarrow Q$

Proof. \Rightarrow Suppose that *P* is true.

(argumentation)

:

Then Q is true. \Leftarrow Suppose that Q is true.

(argumentation)

 \vdots Then *P* is true.

7. Prove a Statement with a For All Quantifier

Theorem. Let P(x) be a statement with free variable x, and let U be a collection of possible values of x. ... (hypotheses) ... Prove that for all x in U, the statement P(x) holds.

Symbols: $(\forall x \text{ in } U)P(x)$

Proof. Let c be in U.

. (argumentation)

:

Then P(c) is true.

8. Prove a Statement with a There Exists Quantifier

Theorem. Let P(x) be a statement with free variable x, and let U be a collection of possible values of x. ... (hypotheses) ... Prove that there exists some x in U such that the statement P(x) holds.

Symbols: $(\exists x \text{ in } U)P(x)$

Proof. Let $c = \dots$ [Only one example of c is needed.]

(argumentation)

Then c is in U.

: (argumentation)

Then P(c) is true.

9. Prove an Existence and Uniqueness Statement

Theorem. Let P(x) be a statement with free variable x, and let U be a collection of possible values of x. ... (hypotheses) ... Prove that there exists a unique x in U such that the statement P(x) holds.

Symbols: $(\exists !x \text{ in } U)P(x)$

Proof. Uniqueness: Let *a* and *b* be in *U*. Suppose that P(a) and P(b) are true. : (argumentation) : Then a = b. Existence: Let $c = \dots$ [Only one example of *c* is needed.] : (argumentation) : Then *c* is in *U*. : (argumentation) : Then *p*(*c*) is true.

10. Prove a Statement with Two Quantifiers — For All and There Exists

Theorem. Let P(x, y) be a statement with free variables x and y, let U be a collection of possible values of x and let V be a collection of possible values of y. ... (hypotheses) ... Prove that for each x in U there exists some y in V such that the statement P(x, y) holds.

```
Symbols: (\forall x \text{ in } U)(\exists y \text{ in } V)P(x, y)

Proof. Let c be in U.

:

(argumentation)

:

Let d = \dots [Note that d can depend upon c.]

:

(argumentation)

:

Then d is in V.

:

(argumentation)

:

Then P(c, d) is true.
```

11. Prove a Statement with Two Quantifiers — There Exists and For All

Theorem. Let P(x, y) be a statement with free variables x and y, let U be a collection of possible values of x and let V be a collection of possible values of y. ... (hypotheses) ... Prove that there is some x in U such that for each y in V, the statement P(x, y) holds.

Symbols: $(\exists x \text{ in } U)(\forall y \text{ in } V)P(x, y)$

Proof. Let $c = \dots$ [Only one example of c is needed.]

(argumentation)

:

Then c is in U.

. (argumentation)

Let *d* be in *V*. [Note that *d* is independent of *c*.]

```
:
```

```
(argumentation)
```

Then P(c, d) is true.

12. Prove that One Set is a Subset of Another Set

Theorem. Let A and B be sets. ... (hypotheses) ... Prove that $A \subseteq B$. **Symbols:** $(\forall x \in A)(x \in B)$ *Proof.* Let $x \in A$. : (argumentation) : Then $x \in B$. Hence $A \subseteq B$.

13. Prove that Two Sets are Equal

Theorem. Let A and B be sets. ... (hypotheses) ... Prove that A = B.

Symbols: $(\forall x \in A)(x \in B) \land (\forall x \in B)(x \in A)$

Proof. Let $x \in A$. : (argumentation) : Then $x \in B$. Hence $A \subseteq B$. Next, Let $y \in B$. : (argumentation) : Then $y \in A$. Hence $B \subseteq A$. We conclude that A = B.

14. Prove that Two Functions are Equal

Theorem. Let $f : A \to B$ and $g : C \to D$ be functions. ... (hypotheses) ... Prove that f = g. **Symbols:** $A = C \land B = D \land (\forall x \in A)(f(x) = g(x))$ *Proof.* (Argumentation) \vdots Therefore A = C. Hence f and g have the same domain. \vdots (argumentation) \vdots Therefore B = D. Hence f and g have the same codomain. Let $a \in A = C$. \vdots (argumentation) \vdots Then f(a) = g(a). Therefore f = g.

15. Prove that a Functions has a Right Inverse. Theorem. Let f: A → B be a function. ... (hypotheses) ... Prove that f has a right inverse. Symbols: (∃g: B → A)(∀x ∈ B)(f(g(x)) = x) Proof. Let g: B → A be defined by [Only one example of g is needed.] Let y ∈ B. i (Argumentation) i Then f(g(y)) = y. Hence f ∘ g = 1_B. Therefore g is a right inverse of f.

16. Prove that a Functions has a Left Inverse.

Theorem. Let $f : A \to B$ be a function. ... (hypotheses) ... Prove that f has a left inverse. **Symbols:** $(\exists g : B \to A)(\forall x \in A)(g(f(x)) = x)$ **Proof.** Let $g : B \to A$ be defined by [Only one example of g is needed.] Let $x \in A$ (Argumentation) ... Then g(f(x)) = x. Hence $g \circ f = 1_A$. Therefore g is a left inverse of f.

17. Prove that a Functions has an Inverse. **Theorem.** Let $f : A \rightarrow B$ be a function. ... (hypotheses) ... Prove that f has an inverse. **Symbols:** $(\exists g : B \to A)[(\forall x \in A)(g(f(x)) = x) \land (\forall x \in B)(f(g(x)) = x)]$ **Proof.** Let $g: B \to A$ be defined by Let $x \in B$. (Argumentation) : Then f(g(x)) = x. Hence $f \circ g = 1_B$. Therefore g is a right inverse of f. Let $x \in A$. : (Argumentation) Then g(f(x)) = x. Hence $g \circ f = 1_A$. Therefore g is a left inverse of f. We conclude that g is an inverse of f.

18. Prove that a Function is Injective

Theorem. Let A and B be sets, and let $f : A \to B$ be a function. ... (hypotheses) ... Prove that f is injective. **Symbols:** $(\forall x, y \in A)(f(x) = f(y) \to x = y)$ **Proof.** Let $x, y \in A$. Suppose that f(x) = f(y). \vdots (argumentation) \vdots Then x = y. Hence f is injective.

19. Prove that a Function is Surjective

Theorem. Let A and B be sets, and let $f : A \rightarrow B$ be a function. ... (hypotheses) ... Prove that f is surjective.

Symbols: $(\forall b \in B)(\exists a \in A)(f(a) = b)$ *Proof.* Let $b \in B$. : Let $a = \dots$: (argumentation) : Then f(a) = b. Hence f is surjective.

20. Prove that a Function is Bijective

Theorem. Let A and B be sets, and let $f : A \to B$ be a function. ... (hypotheses) ... Prove that f is injective. **Symbols:** $(\forall x, y \in A)(f(x) = f(y) \to x = y) \land (\forall b \in B)(\exists a \in A)(f(a) = b)$ **Proof.** Let $x, y \in A$. Suppose that f(x) = f(y). \vdots (argumentation) \vdots Then x = y. Hence f is injective. Let $b \in B$. \vdots Let $a = \dots$ \vdots (argumentation) \vdots Then f(a) = b. Hence f is surjective. We conclude that f is bijective.

21. Prove that Two Relations are Equal

Theorem. Let A and B be sets, and let R and S be relations from A to B. ... (hypotheses) ... Prove that R = S.

Symbols: $(\forall x, y \in A)(x \ R \ y \longleftrightarrow x \ S \ y)$

Proof. Let $x \in A$ and $y \in B$. First, suppose that x R y.

(argumentation)

Then x S y. Second, suppose that x S y.

i (argumentation) i Then x R y.

Therefore R = S.

22. Prove that a Relation is Reflexive

Theorem. Let A be a set, and let R be a relation on A. ... (hypotheses) ... Prove that R is reflexive.

Symbols: $(\forall x \in A)(x \ R \ x)$ *Proof.* Let $x \in A$. : (argumentation) : Then $x \ R \ x$. Hence R is reflexive.

23. Prove that a Relation is Symmetric

Theorem. Let A be a set, and let R be a relation on A. ... (hypotheses) ... Prove that R is symmetric.

Symbols: $(\forall x, y \in A)(x \ R \ y \rightarrow y \ R \ x)$

Proof. Let $x, y \in A$. Suppose that x R y. : (argumentation)

Then y R x. Hence R is symmetric.

24. Prove that a Relation is Transitive

Theorem. Let A be a set, and let R be a relation on A. ... (hypotheses) ... Prove that R is transitive.

Symbols: $(\forall x, y, z \in A)([x \ R \ y \land y \ R \ z] \rightarrow x \ R \ z)$

Proof. Let $x, y, z \in A$. Suppose that x R y and y R z.

(argumentation)

Then x R z. Hence R is transitive.

25. Prove that a Relation is an Equivalence Relation

Theorem. Let A be a set, and let R be a relation on A. ... (hypotheses) ... Prove that R is an equivalence relation.

Symbols: $(\forall x, y, z \in A)([x R x] \land [x R y \rightarrow y R x] \land [(x R y \land y R z) \rightarrow x R z])$ *Proof.* Let $x, y, z \in A$. : (argumentation) : Then x R x. Hence R is reflexive. Suppose that x R y. : (argumentation) : Then y R x. Hence R is symmetric. Suppose that x R y and y R z. : (argumentation) : Then x R z. Hence R is transitive. We conclude that R is an equivalence relation. \Box

26. Prove a Statement Using Mathematical Induction.

Theorem. Let P(n) be a statement with free variable n, where n is a natural number. ... (hypotheses) ... Prove that for all n in \mathbb{N} , the statement P(n) holds.

Symbols: $P(1) \land (\forall n \in \mathbb{N})(P(n) \rightarrow P(n+1))$

Proof. (Argumentation) : Then P(1) is true. Let $n \in \mathbb{N}$. Suppose that P(n) is true. : (argumentation) : Then P(n + 1) is true.

27. Prove that Two Sets Have the Same Cardinality via Bijectivity. **Theorem.** Let A and B be sets. ... (hypotheses) ... Prove that $A \sim B$. Symbols: $(\exists f : A \to B)[(\forall x, y \in A)(f(x) = f(y) \to x = y) \land (\forall b \in B)(\exists a \in A)(f(a) = x))$ *b*)] **Proof.** Let $f : A \to B$ be defined by [Only one example of f is needed.] Let $x, y \in A$. Suppose that f(x) = f(y). (argumentation) Then x = y. Hence f is injective. Let $b \in B$. ÷ Let $a = \dots$ (argumentation) Then f(a) = b. Hence f is surjective. We conclude that f is bijective. It follows that $A \sim B$.

28. Prove that Two Sets Have the Same Cardinality via Inverse Functions. **Theorem.** Let A and B be sets. ... (hypotheses) ... Prove that $A \sim B$. **Symbols:** $(\exists f : A \to B)(\exists g : B \to A)[(\forall x \in A)(g(f(x)) = x) \land (\forall x \in B)(f(g(x)) = x)]$ **Proof.** Let $f : A \to B$ be defined by [Only one example of f is needed.] Let $g: B \to A$ be defined by Let $y \in B$. (Argumentation) ÷ Then f(g(y)) = y. Hence $f \circ g = 1_B$. Therefore g is a right inverse of f. Let $x \in A$. (Argumentation) Then g(f(x)) = x. Hence $g \circ f = 1_A$. Therefore g is a left inverse of f. We conclude that g is an inverse of f. Therefore f is bijective. It follows that $A \sim B$.