
Summary of Series Convergence Tests

1. Harmonic Series

1. The harmonic series is the series
∞
∑

n=1

1
n
= 1

1
+ 1

2
+ 1

3
+⋯ .

2. The harmonic series is divergent.

2. Geometric Series

1. A geometric series is any series of the form
∞
∑

n=1
arn−1 = a + ar + ar2 +⋯ ,

where a, r ∈ ℝ.

2. A geometric series converges to a
1 − r

if |r| < 1, and is divergent if |r| ≥ 1.

3. Divergence Test
Let

∑∞
n=1 an be a series.

1. If lim
n→∞

an ≠ 0, then the series
∞
∑

n=1
an is divergent.

2. Caution: If lim
n→∞

an = 0, you CANNOT conclude that the series
∞
∑

n=1
an is convergent.

4. Integral Test
Let

∑∞
n=1 an be a series, and let f ∶ [1,∞) → ℝ be function that satisfies the following four proper-

ties:

(1) f (n) = an for all n.

(2) f (x) is continuous on [1,∞).

(3) f (x) > 0 on [1,∞).

(4) f (x) is decreasing on [1,∞).

Then
∑∞

n=1 an is convergent if and only if ∫

∞

1
f (x) dx is convergent.
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5. Remainder Estimate for the Integral Test
Let

∑∞
n=1 an be a series.

1. Suppose that
∑∞

n=1 an is convergent by the Integral Test. Let m ∈ ℕ.

m
∑

i=1
ai + ∫

∞

m+1
f (x) dx ≤

∞
∑

n=1
an ≤

m
∑

i=1
ai + ∫

∞

m
f (x) dx.

2. An approximate value for the sum of the series is the average of the upper bound and the lower
bound in the above inequalities. The difference between this approximate value and the actual
sum of the series is at most half the distance between the upper bound and the lower bound.

6. p-Series

1. A p-series is any series of the form
∞
∑

n=1

1
np

= 1
1p

+ 1
2p

+ 1
3p

+⋯ ,

where p ∈ ℝ.

2. A p-series is convergent if p > 1, and is divergent if p ≤ 1.

7. Comparison Test
Let

∑∞
n=1 an and

∑∞
n=1 bn be series. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ ℕ. Suppose that

an ≤ bn for all n ∈ ℕ.

1. If
∞
∑

n=1
bn is convergent, then

∞
∑

n=1
an is convergent.

2. If
∞
∑

n=1
an is divergent, then

∞
∑

n=1
bn is divergent.

3. Caution: If
∞
∑

n=1
an is convergent or if

∞
∑

n=1
bn is divergent, you CANNOT conclude anything about

the other series by the Comparison Test.
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8. Limit Comparison Test
Let

∑∞
n=1 an and

∑∞
n=1 bn be series. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ ℕ. Suppose that

lim
n→∞

bn
an

= L,

for some L ∈ ℝ or L = ∞.

1. Suppose that 0 < L < ∞. Then either both
∑∞

n=1 an and
∑∞

n=1 bn are convergent, or both
∑∞

n=1 an
and

∑∞
n=1 bn are divergent.

2. Suppose that L = 0. If
∞
∑

n=1
an is convergent, then

∞
∑

n=1
bn is convergent.

3. Suppose that L = ∞. If
∞
∑

n=1
an is divergent, then

∞
∑

n=1
bn is divergent.

9. Alternating Series Test
Let

∑∞
n=1 (−1)

n−1an be an alternating series, where an > 0 for all n ∈ ℕ.

1. Suppose that the alternating series satisfies the following two properties:

(a) the sequence
{

an
}∞
n=1 is decreasing.

(b) lim
n→∞

an = 0.

Then the alternating series is convergent.

1. The same result holds for alternating series of the form
∑∞

n=1 (−1)
nan.

10. Remainder Estimate for the Alternating Series Test
Let

∑∞
n=1 (−1)

n−1an be an alternating series, where an > 0 for all n ∈ ℕ. Let m ∈ ℕ.

1. The mth remainder of the alternating series, denoted Rm, is defined by

Rm =
∞
∑

n=1
(−1)n−1an − sm =

∞
∑

n=m+1
(−1)nan.

2. Suppose that the alternating series satisfies the hypotheses of the Alternating Series Test, and
hence is convergent. Then |Rm| ≤ am+1.

3. The same result holds for alternating series of the form
∑∞

n=1 (−1)
nan.
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11. Ratio Test
Let

∑∞
n=1 an be a series. Suppose that an ≠ 0 for all n ∈ ℕ. Suppose that

lim
n→∞

|

|

|

|

an+1
an

|

|

|

|

= L,

for some L ∈ ℝ or L = ∞.

1. If L < 1, then
∑∞

n=1 an is absolutely convergent.

2. If L > 1, then
∑∞

n=1 an is divergent.

3. Caution: If L = 1, you CANNOT conclude conclude that
∑∞

n=1 an is either convergent or
divergent by the Ratio Test.
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