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Abstract. Let V be a vector space over a field k. We call a subgroup G ⊂
GL(V ) a fixed-point subgroup if det(1− g) = 0 for all g ∈ G. Let q be a power

of a prime. In this paper we classify the fixed-point subgroups of GL3(q).

1. Introduction

1.1. Motivation. Let X/Q be a smooth, projective algebraic variety and ` a ra-
tional prime. Then there are `-adic representations

ρ` : Gal(Q/Q)→ Aut
(

Hi
ét

(
XQ,Q`

))
on the étale cohomology groups of X, and the image of such a representation can
have interesting consequences for the arithmetic of the variety X. For example,
when X is an elliptic curve and ρ` is the `-adic representation on the Tate module,
then the image of ρ` gives information on the `-power torsion structure of X(Q).
A concrete instance of this stems from a question of Lang, answered by Katz in
[10]. Namely, if X is an elliptic curve over Q such that for all but finitely many
primes p the numbers #Xp(Fp) are divisible by `n (where Xp denotes the reduction
of X modulo a good primes p), then it is true that at least one of the curves X ′

in the isogeny class of X has #X ′(Q) divisible by `n. By translating to Galois
representations, this result amounts to a classification of subgroups G of GL2(Z`)
such that det(1 − g) ≡ 0 (mod `n) for all g ∈ G. One can ask for a similar
classification of subgroups of symplectic similitude groups with a view towards
higher-dimensional abelian varieties with divisibilities on their number of points
mod p; we provided such classifications in dimensions 4 and 6 in [3, 4, 5, 6] for the
groups GSp4(F`) and GSp6(F`).

This raises a natural question: If k is a finite field, can one classify the irreducible
subgroups of GLn(k) such that every element has a fixed point? (By “irreducible
subgroup” we mean a subgroup G ⊂ GLn(k) that acts irreducibly on the underlying
vector space kn.) Let us call a subgroup G of GLn(k) a fixed-point subgroup if every
element fixes a point in its natural representation.

By an exercise of Serre [14, Ex. 1] there are no irreducible fixed-point subgroups
of GL2(k). One of the main results of [10] is that there are no irreducible fixed-point
subgroups of GSp4(F`), where F` is the field of ` elements. In [3, 4, 5] we classified
the fixed-point subgroups of GSp6(F`) and showed that none are irreducible. How-
ever, we recall an example of [5], originally communicated to us by Serre in [15]. If
L3(2) is the simple group of order 168, then the Steinberg representation

St : L3(2)→ Sp8(F2)

is absolutely irreducible and St(L3(2)) is a fixed-point subgroup of Sp8(F2). As an
application of this observation, if A is an abelian fourfold defined over a number
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field K such that the image of the mod 2 representation

ρ2 : Gal(K/K)→ Aut(A[2])

coincides with St(L3(2)), then A has the property that for all but finitely many
primes p, the number of points #Ap(Fp) on the reduction modulo p of A is even,
while no member of the isogeny class of A has an even number of K-rational torsion
points. An interesting related question is whether such a fourfold can be realized
over Q.

Leaving the case of abelian varieties and symplectic groups, we focus on three-
dimensional representations, which arise naturally in an arithmetic context as well.
Using [7] as motivation, one can consider modular forms for congruence subgroups
Γ0(N) of SL3(Z). Given a cuspidal eigenform f ∈ H3(Γ0(N),C), let Qf denote
the number field generated by the Hecke eigenvalues of f . Let λ ∈ Qf be a prime
dividing `. Then we have attached to f the λ-adic Galois representation

ρλ : Gal(Q/Q)→ GL3(Qf,λ).

(See [7, §3] for an explicit example of how such compatible families of represen-
tations arise.) The residual representation ρλ then provides a natural setting for
studying subgroups of GL3(k), where k is a finite field. In the aforementioned exam-
ple, if im ρλ is a fixed-point subgroup of GL3(k) then we get additional information
on congruence properties of the number of points on the variety modulo p, for all
but finitely many p, by the Chebatorev Density Theorem. For this reason, and the
ones mentioned above with respect to abelian varieties, the fixed-point subgroups
of linear groups have special arithmetic interest.

In this paper we continue our classification of fixed-point linear groups and de-
termine all fixed-point subgroups of GL3(k), where k is a finite field. Unlike the
classifications in [3, 4, 5] for the groups GSp4(F`) and GSp6(F`), the main theorem
of this paper allows for k to be an arbitrary finite field of any characteristic.

1.2. The Main Theorem. We postpone a review of notation until the next sec-
tion, except to remark that the maximal subgroups of a finite linear group fall into
8 geometric classes C1, . . . ,C8, together with a class S of exceptional subgroups; we
refer the reader to [1] for the details of the classification.

There are certain subgroups of GL3(q) that are easily identifiable as fixed-point
subgroups, for example those conjugate to(

1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
∈ GL3(q),

and we do not wish to include them in our classification. We therefore declare
a subgroup G of GL3(q) to be a trivial fixed-point group if the semisimplification
of the underlying 3-dimensional representation contains the trivial representation.
Henceforth we work exclusively with semisimple groups in this paper as these will
have the same fixed-point properties as the parabolic groups they lie in. Our main
theorem is as follows; see the following sections for all notational definitions.

Theorem 1.2.1. The maximal, nontrivial, semisimple fixed-point subgroups of
GL3(q) are as follows:
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Dimensions of Simple Factors Isomorphism Type Conditions
(1, 1, 1) C2 × C2 q odd
(2, 1) Dq−1 q odd

Dq+1 q odd
Sym4 q odd

Irreducible SO3(q) q odd
Alt5 5 ∈ F×2

q , p 6= 2, 3

Remark 1.2.2. As a corollary of our theorem we obtain that there are no irreducible
fixed-point subgroups of GL3(q) in characteristic 2. In particular, the groups SO3(q)
and Sym4, each of which is naturally a subgroup of GL3(q), fix a line in charac-
teristic 2 (for the former, see [1, Thm. 1.5.41] while the latter is deduced from the
Brauer Table of Sym4 in characteristic 2).

1.3. Notation and Setup. Let k be a finite field of characteristic p (we choose p
instead of ` for consistency in the group theory literature) and write k = Fq, where
q = pn. We follow the classification and notational scheme of [1] which is based on
Aschbacher’s original classification of the subgroups of the finite classical groups.

Since GL3(q) is not a fixed-point group itself, any fixed-point subgroup must
lie in a maximal subgroup of GL3(q) and hence in one of the 8 geometric classes
C1, . . . ,C8, or the exceptional class S. We use the standard notation from finite
group theory, basing much of our notational scheme on that of [1]. In particular,
we set

• Altn: The alternating group on n letters.
• Symn: The symmetric group on n letters.
• Cn: The cyclic group of order n.
• Eq: Elementary abelian group of exponent p and rank n.
• Am+n: If A is elementary abelian, then Am+n has elementary abelian nor-

mal subgroup Am and quotient An.
• p1+2n

+ : Extra-special p group of order p1+2n and exponent p.
• d: the center of SL3(q).
• Z(q): the center (scalar matrices) of GL3(q).
• Ln(q): The projective special linear group PSLn(q).
• A oB: The wreath product of A and B, where B ↪→ Perm(A× · · · ×A).
• N .Q denotes a non-split extension of Q by N .
• N : Q denotes a split extension of Q by N .
• N.Q denotes an arbitrary extension of Q by N .

Our strategy for proving Theorem 1.2.1 is roughly as follows. Given a subgroup
G of GL3(q), we intersect with SL3(q) and use the classification of maximal sub-
groups of SL3(q) outlined in [1, Chapter 2] to determine the fixed-point subgroups
of SL3(q). We then lift back to GL3(q) to find the maximal fixed-point subgroups.
The issue is that we may encounter novel subgroups – maximal subgroups M of
GL3(q) such that M ∩SL3(q) is not maximal in SL3(q). We will address any novel-
ties as they arise. Toward that end, we record the maximal subgroups of SL3(q) in
Table 1.3 below; see [1, Table 8.3] for complete details on the subgroup structure
of SL3(q).
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Remark. There is a typographical error in [1, Table 8.3]: in class C1, the group
labelled E3

q : GL2(q) should be E2
q : GL2(q). We have corrected this in Table 1.3.

We also note that the papers [9, 13] provide a classification of the ternary linear
groups over finite fields, from which one could recover [1, Table 8.3]; however, we
prefer to begin with the classification scheme of [1] due to the modern notation and
language.

Class Isomorphism Type
C1 E2

q : GL2(q), E1+2
q : (q − 1)2, GL2(q)

C2 (q − 1)2 : Sym3, q ≥ 5
C3 (q2 + q + 1).3, q 6= 4

C5 SL3(q0).
(
q−1
q0−1 , 3

)
if q = qr0, r prime.

C6 31+2
+ .Q8.

(q−1,9)
3 when p = q ≡ 1 (mod 3)

C8 d× SO3(q) when q is odd
(q0 − 1, 3)× SU3(q) when q = q2

0

S d× L2(7) when q = p ≡ 1, 2, 4 (mod 7), q 6= 2.
3.A6 when q = p ≡ 1, 4 (mod 15) or q = p2, p = 2, 3 (mod 5), p 6= 3

Figure 1. Maximal Subgroups of SL3(q)

The groups in class C1 are the parabolic subgroups of GL3(q) and we treat them
separately in the next section. We then focus the rest of the paper on the irreducible
fixed-point subgroups of GL3(q).

2. Parabolic Fixed-Point Subgroups of GL3(q)

Let G be a semisimple subgroup of GL3(q). We break the proof of Theorem 1.2.1
into two cases, depending on whether the action of G on k3 is reducible or irre-
ducible. In case of a reducible representation, G lies in a parabolic subgroup (Type
C1) of GL3(q), and the irreducible factors are either all one-dimensional, or consist
of a 2-dimensional and 1-dimensional factor. (In both cases, we replace the repre-
sentations with their semisimplifications.) Moreover, we require the classification
of subgroups of a direct product, given by Goursat’s Lemma [2, p. 864].

Theorem (Goursat’s Lemma). Let A and B be finite groups. The subgroups G
of A × B are in one-to-one correspondence with the tuples (G1, G2, G3, ψ) where
G1 ⊂ A, G2 ⊂ B, G3 C G2, and ψ : G1 → G2/G3 is a surjective homomorphism.

Beginning with the case where G is a subgroup of the diagonal subgroup C3
q−1 of

GL3(q), we write G ⊂ (Cq−1 × Cq−1)×Cq−1. We can describe G via two “Goursat-
tuples”:

(H1, H2, H3, ψ), where H1 ⊂ Cq−1 × Cq−1, H2 ⊂ Cq−1, and

(D1, D2, D3, φ), where D1 ⊂ Cq−1, D2 ⊂ Cq−1,

and (D1, D2, D3, φ) is the Goursat-tuple corresponding to H1 ⊂ Cq−1 × Cq−1.

Lemma 2.0.1. Suppose G, acting diagonally on F3
q, is a fixed-point subgroup that

does not fix a line. Then q is odd and G ' C2 × C2.
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Proof. With all notation as above, we assume G ⊂ (Cq−1 × Cq−1)× Cq−1 is given
by the Goursat-tuple (H1, H2, H3, ψ) where H1 ⊂ (Cq−1 × Cq−1), and H1 is given
by the Goursat-tuple (D1, D2, D3, φ). Let S be the subset of H1 consisting of pairs
(x, y) such that neither x nor y is 1. We will show that unless G is the group
specified in the statement of the Lemma, the size of S forces G to fix a line. We
make several elementary observations:

(1) S lies in kerψ (G is a fixed-point group).
(2) H3 is trivial (G contains the elements of the form (kerψ,H3), S ⊂ kerψ,

and G is a fixed-point group).
(3) Therefore ψ : H1 → H2 is a surjective homomorphism.

We will give several estimates of #S below, and so we set the following notation:

hi = #Hi, di = #Di, k = # kerψ, l = # kerφ.

Combining the observations we immediately see that

k = h1/h2 ≥ #S + 1,(2.0.2)

where the ‘+1’ is due to the identity of H1.
Since H1 is given by the Goursat-tuple (D1, D2, D3, φ), we can write h1 = d1d3.

We can estimate the size of S by writing #S = h1− the number of elements (x, y)
of H1 with at least one x or y trivial; that is:

#S = d1d3 − l − d3 + 1.

Comparing this to (2.0.2), we get our first estimate

d1d3/h2 ≥ d1d3 − l − d3 + 2.(2.0.3)

But since l ≤ d1, we can refine (2.0.3) to get our second estimate

d1d3/h2 ≥ d1d3 − d1 − d3 + 2 = (d1 − 1)(d3 − 1) + 1.(2.0.4)

It is easy to check that the only integer triples (d1, d3, h2) with d3 ≥ 1 and d1, h2 ≥ 2
(recallG is a non-trivial fixed-point group) satisfying (2.0.4) are of the form (d1, 2, 2)
or (2, d3, 2).

If q is even then there is no such subgroup of G since q− 1 is odd, so we suppose
q is odd. We will work through the details of the case (d1, 2, 2) and omit those of
the case (2, d3, 2) since they are nearly identical. Therefore we consider the group

H1 = {(g, φ(g)) | g ∈ D1 and φ : D1 → D2/{±1}}.
In general, there are 2d1/d2 + 1 pairs in H1 with a 1 in one of the components.

Therefore, there are

2d1 − (2d1/d2 + 1)

with both components nontrivial. We impose this condition on the estimate of k:

k ≥ 2d1 − (2d1/d2 + 1) + 1 = 2d1 − 2d1/d2.

Notice that if d2 > 2 then G would be a trivial fixed-point group since we would
have kerψ = H1 and so H2 would coincide with H3, which is trivial. Therefore we
may assume d2 = 2.

Since d2 = d3 = 2, this means D2 = D3 = {±1} and so H1 is a direct product:
H1 = D1 × {±1}. Including the identity, there are at least d1 elements of H1 that
must lie in kerψ:

(1, 1), (g,−1), . . . , (gd1−1,−1),
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where g is a generator of D1. Since kerψ is a subgroup of H1, it follows that
(g2, 1) ∈ kerψ as well. Unless g2 = 1, this forces kerψ = H1 and G to be a
trivial fixed-point group. We conclude that H1 = {±1} × {±1}. Together with
[H2 : H3] = 2 and H3 = 1 we get exactly the group C2 × C2 as claimed in the
Lemma, which is given explicitly in terms of matrices as(

ε1
ε2
ε1ε2

)
,

where εi ∈ {±1}. �

Next suppose that G ⊂ GL2(q) × GL1(q) is semisimple with irreducible pro-
jection onto GL2(q). Since G is a subgroup of a direct product, it is given by a
Goursat-tuple (H1, H2, H3, ψ), with H1 ⊂ GL2(q). As above, we only classify those
G which are not direct products, that is H2 6= H3.

Observation. If G ⊂ GL2(q)×GL1(q) is a fixed-point subgroup that does not fix
a line and is given by the Goursat-tuple (H1, H2, H3, ψ), then H3 is trivial. This
follows because any g ∈ H1 without a fixed point is paired via ψ with H3.

Lemma 2.0.5. With all notation as above, if G is a fixed-point subgroup of GL2(q)×
GL1(q) that does not fix a line, then H1 is a proper subgroup of GL2(q).

Proof. It is an elementary counting problem to show that more than half the el-
ements of GL2(q) do not have a fixed point once q > 2 – use the fact that there
are

• q2(q − 1)2/2 elements with eigenvalues in a quadratic extension
• q − 2 non-trivial central elements, and
• (q − 2)(q − 1)(q + 1) non-diagonalizable elements without a fixed point.

Dividing by the size of GL(2, q), we get

q2(q − 1)2/2 + (q − 2) + (q − 2)(q − 1)(q + 1)

q4 − q3 − q2 + q
=

q3 − 3q

2q3 − 2q2 − 2q + 2
>

1

2
.

Thus if H1 = GL2(q), then kerψ = GL2(q) and so H2 = H3. But since H3 is trivial
by the observation above, we have that H2 is trivial. When q = 2, H2 is trivial. �

By Lemma 2.0.5, H1 must lie in a proper subgroup of GL2(q) and hence lies in
a maximal subgroup of GL2(q). By [12, Thm. 2.3], the subgroups H of GL2(q) not
containing SL2(q) are described as follows (we use PH to denote the image of H
in PGL2(q)):

(1) If H contains an element of order q then either G lies in a Borel subgroup
or SL2(q) ⊂ H;

(2) PH is cyclic and H is contained in a Cartan group;
(3) PH is dihedral and H is contained in the normalizer of a Cartan group but

not in the Cartan subgroup itself;
(4) PH is is isomorphic to Alt4, Sym4, or Alt5.

Returning to our setup, if H1 lies in a Borel or a Cartan, then H1 is not irre-
ducible. We therefore focus only on cases (3) and (4) of the subgroup classification
of GL2(q). We recall from [16, §3] the explicit description of the normalizers of the
Cartan subgroups of GL2(q) and adopt that notation in what follows.

Let Cs(q) and Cns(q) denote the maximal split and nonsplit Cartan subgroups,
respectively. Then Cs(q) ' F×q ×F×q and Cns(q) ' F×q2 and each Cartan group has
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index 2 in its normalizer, which we denote by C+
s (q) and C+

ns(q), respectively, bor-
rowing the notation of [16]. Each normalizer has a distinguished dihedral subgroup,
Ds(q) and Dns(q), respectively, where

Ds(q) ∩ Cs(q) = Cs(q) ∩ SL2(q) and Dns(q) ∩ Cns(q) = Cns(q) ∩ SL2(q).

That is, the “rotation” group of Ds(q) (resp. Dns(q)) consists of the elements of
Cs(q) (resp. Cns(q)) of determinant (norm) 1. It follows that

Ds(q) ' Dq−1

Dns(q) ' Dq+1.

Each dihedral group admits a surjective homomorphism to C2 and when q is odd
we can realize that homomorphism in the Goursat-tuples

Dq−1 ' (Ds(q), {±1}, 1, ψ) and Dq+1 ' (Dns(q), {±1}, 1, ψ).

It is easy to check that both dihedral groups are fixed-point subgroups of GL2(q)×
GL1(q) with irreducible projection to GL2(q) that do not fix a line in F3

q. We will
show in Proposition 2.0.6 below that these are the only such groups. In preparation
for the proof we make some observations.

Observations. Let G ⊂ GL2(q) × GL1(q) have Goursat-tuple (H1, H2, H3, ψ)
and suppose H1 is an irreducible subgroup of GL2(q) that normalizes a Cartan
subgroup. Let G be a fixed-point group.

(1) The normalizer of the split Cartan group has exactly 3q − 4 elements with
a fixed point; by fixing a basis, we can write these elements explicitly as{(

x 0
0 y

)
| x or y = 1

}
∪
{(

0 z
z−1 0

)
| z 6= 0

}
(2) The normalizer of the non-split Cartan group has exactly q non-trivial

elements with a fixed point, all of which belong to the non-trivial coset of
the Cartan subgroup.

(3) If G does not fix a line, then H1 must contain at least

#H1 ·
#H2 − 1

#H2

elements with a fixed point.

Proposition 2.0.6. Let G ⊂ GL2(q)×GL1(q) be a fixed point group with Goursat-
tuple (H1, H2, H3, ψ) and suppose H1 normalizes a Cartan subgroup.

If q is even, then H2 is trivial and so G fixes a line in F3
q. If q is odd then

either H2 is trivial (and so G fixes a line), or G is dihedral with Goursat-data
(Ds(q), {±1}, 1, ψ) or (Dns(q), {±1}, 1, ψ).

Proof. We only sketch the proof since it comes down an exercise in matrix manipu-
lation. Suppose H2 is non-trivial. Because H1 normalizes a split Cartan subgroup,
its maximal order is 2(3q−4) in the split case and 2(q+ 1) in the non-split case, by
combining Observations (2) and (4) above. When q is odd, in order to create a sub-
group H1 (and not merely a subset) satisfying the hypotheses of the Proposition,
matrix manipulation shows that H1 must be a subgroup of Ds(q) in the split case
and Dns(q) in the non-split case and H2 = {±1}. When q is even, #H2 is odd and
so at least 2/3 of the elements of H1 must have a fixed point and H1 must admit
a cyclic odd-order quotient with all non-kernel elements having a fixed point. No
such subgroup exists. �
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We conclude this section by analyzing the subgroups of GL2(q) with projective
image Alt4, Sym4, and Alt5. Let PH ∈ {Alt4,Sym4,Alt5}. The central extensions
of PH are classified by the Schur multiplier. Neither Alt4 nor Alt5 has an ordinary
2-dimensional irreducible representation, hence any central extension H ⊂ GL2(q)
of PH must be non-trivial for these groups. When PH = Sym4, the trivial central
extensions of Sym4 do occur as subgroups of GL2(q).

In all cases, the Schur multiplier of PH has exponent 2, hence any central ex-
tension has the form 2.PH times a group of scalar matrices, the order of which can
be deduced from [16, Lemma 3.21]. The isomorphism types of 2.PH that occur as
subgroups of GL2(q) are as follows

2.Alt4 ' SL2(3)

2.Alt5 ' SL2(5)

2.Sym4 '


21.Sym4 ' Alt4 oC4

22.Sym4 ' SL2(3).C2 (nonsplit)

23.Sym4 ' GL2(3)

24.Sym4 ' C2 × Sym4

The complexity of the groups 2.Sym4 is due to the fact that the Schur multiplier
H2(Sym4, C2) ' C2 × C2. We now investigate the groups H for their fixed-point
properties.

2.1. Projective Image Alt4. Let q be coprime to 6. Let H be a subgroup of
GL2(q) such that PH ' Alt4. There are three inequivalent absolutely irreducible
ordinary representations σ1, σ2, and σ3 of SL2(3), with character values as follows
(ω denotes a fixed primitive 3rd root of unity):

Class 1 2 3A 3B 4 6A 6B
χ1 2 −2 −1 −1 0 1 1
χ2 2 −2 1 + ω −ω 0 ω −1− ω
χ3 2 −2 −ω 1 + ω 0 −1− ω ω

The representation σ1 is defined over Z and σ1(SL2(3)) ⊂ SL2(q), while σ2(SL2(3))
and σ3(SL2(3)) define subgroups of GL2(q) when q ≡ 1 (mod 3). In any of the
three representations, the only class with a fixed point is the identity.

Lemma 2.1.1. Let H be a maximal preimage of Alt4 in GL2(q). Let G ⊂ GL2(q)×
GL1(q) be a fixed point subgroup of GL3(q) with Goursat-tuple (H1, H2, H3, ψ).
Suppose H1 is an irreducible subgroup of H. Then H2 is trivial.

Proof. If H is a maximal preimage of Alt4, then it is a product of scalar matrices
and the non-trivial extension 2.Alt4 of Alt4. Since all elements of H without a
fixed point must belong to kerψ, it follows that 2.Alt4 is a subgroup of kerψ as
well as the group of scalar matrices. Thus ψ is the trivial homomorphism, whence
H2 is trivial. �

Now we consider the special cases of modular characteristic. If q is even then
any group H such that PH = Alt4 is not irreducible in GL2(q) [11, Lemma 6.1]. If
q is a power of 3 then the isomorphism 2.Alt4 ' SL2(3) shows that 2.Alt4 occurs
naturally as a subfield subgroup of GL2(q). The same counting argument of Lemma
2.0.5 shows that more than half the elements of H do not have a fixed point, and
hence H cannot give rise to a non-trivial fixed-point subgroup of GL3(q).
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2.2. Projective Image Alt5. Let q be coprime to 30. Then there are two inequiv-
alent ordinary absolutely irreducible representations σ1 and σ2 of SL2(5), with the
following character data.

class 1 2 3 4 5A 5B 6 10A 10B

χ1 2 −2 −1 0 −1+
√

5
2

−1−
√

5
2 1 1+

√
5

2
1−
√

5
2

χ2 2 −2 −1 0 −1−
√

5
2

−1+
√

5
2 1 1−

√
5

2
1+
√

5
2

In both representations the only element with a fixed point is the identity.

Lemma 2.2.1. Let H be a maximal preimage of Alt5 in GL2(q). Let G ⊂ GL2(q)×
GL1(q) be a fixed point subgroup of GL3(q) with Goursat-tuple (H1, H2, H3, ψ).
Suppose H1 is an irreducible subgroup of H. Then H2 is trivial.

Proof. The proof is identical to that of Lemma 2.1.1. �

In modular characteristic, if q is even then the isomorphism Alt5 ' SL2(4) =
PSL2(4) shows that Alt5 occurs as a subfield subgroup of SL2(q) (once q > 4). The
same counting argument of Lemma 2.0.5 shows that more than half the elements
of H do not have a fixed point, and hence H cannot give rise to a non-trivial fixed-
point subgroup of GL3(q). The same argument applies when q is a power of 5 via
the isomorphism 2.Alt5 ' SL2(5).

If q is a power of 3 then 2.Alt5 only occurs as a subgroup of GL2(q) when q is
an even power of 3, since it is required that 5 ∈ (F×q )2. And if q is an even power
of 3, then Fq contains F9, so it suffices to work in GL2(9). In GL2(9), the group
2.Alt5 has 15 elements without a fixed point, hence kerψ = 2.Alt5 and so H2 is
trivial.

2.3. Projective Image Sym4. Let q be coprime to 6. We consider the four groups
2i.Sym4 separately for i = 1, 2, 3, 4. The group 21.Sym4 has no faithful irreducible
degree 2 ordinary representations and we do not consider unfaithful representations
in this analysis for fixed-point subgroups.

The group 22.Sym4 has two faithful irreducible ordinary degree-2 representations
σ1, σ2 with character data:

Class 1 2 3 4A 4B 6 8A 8B

χ1 2 −2 −1 0 0 1
√

2 −
√

2

χ2 2 −2 −1 0 0 1 −
√

2
√

2

In the representations σ1 and σ2, the group 22.Sym4 has no non-trivial elements
with a fixed point.

Lemma 2.3.1. Let H be a maximal preimage of Sym4 in GL2(q) that contains
22.Sym4. Let G ⊂ GL2(q) × GL1(q) be a fixed point subgroup of GL3(q) with
Goursat-tuple (H1, H2, H3, ψ). Suppose H1 is an irreducible subgroup of H. Then
H2 is trivial.

Proof. The proof is identical to that of Lemma 2.1.1. �

The group 23.Sym4 has two faithful irreducible ordinary degree-2 representations
σ1, σ2 with character data:

Class 1 2A 2B 3 4 6 8A 8B

χ1 2 −2 0 −1 0 1 −
√
−2

√
−2

χ2 2 −2 0 −1 0 1
√
−2 −

√
−2

In both representations there are exactly 35 elements without a fixed point.
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Lemma 2.3.2. Let H be a maximal preimage of Sym4 in GL2(q) that contains
23.Sym4. Let G ⊂ GL2(q) × GL1(q) be a fixed point subgroup of GL3(q) with
Goursat-tuple (H1, H2, H3, ψ). Suppose H1 is an irreducible subgroup of H. Then
H2 is trivial.

Proof. Any element of 23.Sym4 without a fixed point belongs to kerψ, whence
kerψ contains 23.Sym4 and the scalar matrices. Thus kerψ = H1 and so H2 is
trivial. �

The group 24.Sym4 has two unfaithful irreducible degree-2 representations and
we do not consider unfaithful representations in this analysis.

We finish this section by considering the groups 22.Sym4 and 23.Sym4 in modu-
lar characteristic. If q is even then neither 22.Sym4 nor 23.Sym4 is irreducible [11,
Lemma 6.1]. If q is a power of 3 then the isomorphism 23.Sym4 ' GL2(3) shows
that H1 occurs as a subfield subgroup of GL2(q). The same counting argument
of Lemma 2.0.5 shows that more than half the elements of H do not have a fixed
point, and hence H cannot give rise to a non-trivial fixed-point subgroup of GL3(q).
Finally, 22.Sym4 contains SL2(3) as index-2 subgroup and the full group 22.Sym4

is contained in GL2(9). Again, the same counting argument of Lemma 2.0.5 shows
that there are no non-trivial fixed-point subgroups in this case.

3. The Irreducible Fixed-Point Subgroups of GL3(q)

In this section we complete the proof of Theorem 1.2.1 in a case-by-case analysis
based on the maximal subgroup classes.

3.1. Subgroups of Type C2. The maximal subgroup of GL3(q) of type C2 is
isomorphic to GL1(q) o Sym3 as long as q ≥ 5. If G is a subgroup of GL1(q) o Sym3,
then G fits into a split short exact sequence

1→ G0 → G→ P → 1,

where G0 is a subgroup of GL1(q)3 and P is subgroup of Sym3. If G is a fixed-point
subgroup of GL1(q) o Sym3, then so is G0. By Lemma 2.0.1, either G0 fixes a line
or G0 ' C2 × C2.

Lemma 3.1.1. Suppose G0 fixes a line. Then any lift G of G0 to GL1(q) o Sym3

fixes a line as well. Therefore there are no irreducible fixed-point subgroups of Type
C2 when q is even, or when G0 fixes a line.

Proof. If G0 fixes a line then consider the permutation group P . If P is trivial or
has order 2, then G is reducible and fixes a line. So we assume P contains a 3-cycle.
Choosing a basis with respect to which G0 fixes the first coordinate, we see that G
contains matrices of the form

M(α, β)
def
=
(

1 0 0
0 α 0
0 0 β

)
and s

def
=
(

0 1 0
0 0 1
1 0 0

)
.

In order for a matrix of the form M(α, β)s to have a fixed point, we must take
αβ = 1. Continuing, the product M(α, α−1)s2M(α, α−1)2s has a fixed point if and
only if α ∈ {±1}. Finally,

sM(−1,−1)s2 =
(−1 0 0

0 −1 0
0 0 1

)
,
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which shows G0 can only contain the identity matrix M(1, 1). But the full permu-
tation group Sym3 fixes a line in this representation. Thus, there are no irreducible
fixed-point subgroups G such that G0 fixes a line. �

Lemma 3.1.2. Let q be odd. Suppose G is an irreducible fixed-point subgroup of
GL1(q) o Sym3. Then G is isomorphic to Alt4 or Sym4.

Proof. By Lemmas 2.0.1 and 3.1.1, we can assume G0 ' C2 × C2, given explicitly
by {(

ε1
ε2
ε1ε2

)
: εi ∈ {±1}

}
.

An easy calculation shows that the full wreath product (C2×C2)oSym3 ' Sym4 is
an irreducible fixed-point subgroup of GL1(q) oS3, as well as its subgroup Alt4. �

Remarks. It remains to discuss what happens for q < 5. When q = 2, the
group of type C2 is not maximal in SL3(q), but belongs to the reducible maximal
subgroup class of type C1. When q = 3 the classes C2 and C8 coincide, in light of
the isomorphism SO3(3) ' Sym4, so this group can be considered as an irreducible
fixed-point subgroup of Type C8 as well. When q = 4, the group GL1(4) o Sym3 is
not a maximal subgroup of GL3(4) [1, Prop. 2.3.6].

3.2. Subgroups of Type C3. There are no irreducible fixed-point subgroups of
GL3(q) in this class, as we now show. The maximal subgroup of GL3(q) in this
class is isomorphic to GL1(q3).3, with outer automorphisms given by the Galois
group Gal(Fq3/Fq).

Remark. When q = 4 the restriction of GL1(4).3 to SL3(4) is not maximal (see
Table 1.3) in SL3(4), but GL1(4).3 is maximal in GL3(4).

Let G ⊂ GL1(q3).3 be a fixed-point subgroup. Then G fits into the short exact
sequence

1→ N → G→ Q→ 1,

where N is a cyclic group of order dividing q3−1 and Q is either trivial or isomorphic
to C3.

Let g be a generator for the group GL1(q3) and σ a generator of Gal(Fq3/Fq); in

this representation the eigenvalues of g have the form γ, γσ, γσ
2

. Because GL1(q3)

is cyclic, and because the eigenvalues of any power of g are powers of γ, γσ, and γσ
2

,
it follows that the only element of GL1(q3) with a fixed point is the identity. The
trivial group lifts to a cyclic group of order 3 inside GL1(q3).3, and every element
of such a C3 has a fixed point, but the group is not irreducible.

3.3. Subgroups of Type C5. These are the field-restriction subgroups of GL3(q).
That is, if we can write q = qr0, then GL3(q0) is naturally a subgroup of GL3(q).
When r is prime the group generated by GL3(q0) and the center Z(q) of GL3(q) is
the maximal subgroup of GL3(q) of type C5.

Suppose r is prime and let G = 〈GL3(q0), Z(q)〉. Let G be an irreducible fixed
point subgroup of G. Because no nontrivial element of Z(q) has a fixed point, it
follows that G is an irreducible fixed-point subgroup of GL3(q0). Since we seek
to classify the subgroups of Type C5, we may assume (by descent) that G is an
irreducible fixed-point subgroup of GL3(p), hence lies in a subgroup class other
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than C5. Therefore, the class C5 contains no irreducible fixed-point subgroups of
GL3(q) that are not already contained in another class.

3.4. Subgroups of Type C6. There are no irreducible, fixed-point subgroups of
GL3(q) in this class, as we now show. We first classify the fixed point subgroups
of SL3(q) in this class and then lift them to GL3(q). Recall from Table 1.3 that
q = p ≡ 1 (mod 3).

Lemma 3.4.1. Let G be a nontrivial fixed-point subgroup of 31+2
+ .Q8.

(q−1,9)
3 ⊂

SL3(q). Then G ' Q8 or G ' C3.

Proof. This is a finite computation, easily performed in Magma, and we omit the
details. The result is that there are, up to isomorphism, two fixed-point subgroups

of 31+2
+ .Q8.

(q−1,9)
3 : a cyclic group of order 3, and Q8. �

Lemma 3.4.2. There is no irreducible fixed-point subgroup of GL3(q) of Type C6

that restricts to Q8.

Proof. The group Q8 is normal in any subgroup of GL3(q) that restricts to Q8 ⊂
SL3(q). The three-dimensional representation ofQ8 decomposes into a 2-dimensional
factor and a 1-dimensional factor. By Clifford’s theorem, any lift of Q8 to GL3(q)
retains this decomposition, whence there are no irreducible subgroups of GL3(q)
restricting to Q8. �

Lemma 3.4.3. There is no irreducible fixed-point subgroup of GL3(q) of Type C6

that restricts to the fixed-point C3 ⊂ 31+2
+ .Q8.

(q−1,9)
3 ⊂ SL3(q).

Proof. Because q ≡ 1 (mod 3), the representation of the fixed-point C3 is com-
pletely reducible and decomposes into three 1-dimensional representations, one of
which is trivial. By Clifford’s theorem, the representation of any subgroup of GL3(q)
restricting to C3 is either a sum of three one-dimensional representations, or is ir-
reducible. If it were irreducible, the three one-dimensional representations of C3

(upon restriction) would be conjugate. Since only one of the three is trivial, and
a non-trivial representation cannot be conjugate to a trivial, it follows that the
representation of any overgroup C3.m of C3 is not irreducible. This proves the
lemma. �

3.5. Subgroups of Type C8. There are two isomorphism types of maximal sub-
groups of SL3(q) of Type C8, namely d×SO3(q) and (q0− 1, 3)×SU3(q0) if q = q2

0 .
Moreover, this class contains no novel subgroups. We first consider the case of
d× SO3(q).

The group SO3(q) is a fixed-point group [8, Prop. 6.10] and is irreducible in odd
characteristic. If q 6≡ 1 (mod 3) then SO3(q) is maximal in SL3(q), while if q ≡ 1
(mod 3) then d × SO3(q) is maximal, with d a scalar group of order 3. Because d
is scalar, the maximal fixed-point subgroup of d × SO3(q) is SO3(q). Thus, for all
q, the maximal fixed-point subgroup of SL3(q) of Type C8 is SO3(q).

It remains to determine whether there exist fixed-point groups H that fit into
the sequence

SO3(q) ⊂ H ⊂ GL3(q)

of proper containments. The groups of Type C8 are scalar-normalizing [1, Def. 4.4.4]
in the sense that any such group H has the presentation SO3(q)Z, where Z is a sub-
group of the scalars of GL3(q). Thus, any overgroup H properly containing SO3(q)
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is necessarily not a fixed-point group (some non-trivial element of Z multiplies the
identity of SO3(q)). We therefore have the following result.

Lemma 3.5.1. Let q be a power of an odd prime. The maximal irreducible fixed
point subgroup of GL3(q) containing SO3(q) is SO3(q).

Next we consider the case of the subgroup (q0 − 1, 3) × SU3(q0) of SL3(q) and
more generally the subgroup GU3(q0) of GL3(q). We will show that there are
no additional irreducible fixed-point subgroups arising in this class that have not
already been classified. First, the group GU3(q0) is not itself a fixed-point group
hence any irreducible fixed-point subgroup must lie in one of its maximal subgroups.
First we list the non-parabolic maximal subgroups of GU3(q0) and SU3(q0).

• Type C2: GU1(q0) o Sym3 is the maximal subgroup of GU3(q0) of Type
C2. The same argument as in Lemma 3.1.2 applies and shows the maximal
irreducible fixed-point subgroup is isomorphic to Sym4.
• Type C3: GU1(q3

0).3 is the maximal subgroup of GU3(q0) of Type C3. The
same argument as in Section 3.2 applies and shows there are no irreducible
fixed point subgroups in this class.

• Type C5: There are two subgroups of SU3(q0) in this class: SU3(q1).
(
q+1
q1+1 , 3

)
(if q0 = qr1 for prime r) and SO3(q).

• Type C6: There is one maximal subgroup of SU3(q0) in this class: 31+2
+ .Q8.

(q+1,9)
3 .

• Type S: There are four isomorphism classes of subgroups of Type S of
SU3(q):

– d × L2(7) (d conjugates; q = p ≡ 3, 5, 6 (mod 7), q 6= 5), where d =
gcd(q + 1, 3)

– 3. Alt6 (3 conjugates; q = p ≡ 11, 14 (mod 15))
– 3. Alt.6 23 (3 conjugates; q = 5)
– 3. Alt7 (3 conjugates; q = 5)

Many of the same arguments as in the previous sections apply here as well. In
particular:

• In Class C5 the same descent argument as in Section 3.3 shows that it is
enough to classify the maximal subgroups of SU3(p).

• In Class C6 the same argument as in Section 3.4 applies as well: the only

fixed-point subgroups of 31+2
+ .Q8.

(q+1,9)
3 are C3 and Q8 and, by the same

Clifford’s theorem argument, any lift to GU3(q) is reducible.

It remains to analyze the subgroups of Type S. We delay our treatment of
d×L2(7) and 3. Alt6 until the next section so that we can give a unified treatment
of these two groups; they occur as maximal subgroups of SL3(q) for certain q and
SU3(q) for others. We now consider the two subgroups 3. Alt6 .23 and 3. Alt7 of
SU3(5).

In both cases, we search in the subgroup lattices of 3. Alt6 .23 and 3. Alt7 for
fixed-point subgroups. One can check that the conjugacy classes of elements of
order 1, 2, 5 have fixed points, while some of the classes of order 3, 4, and 6 do as
well. The result of the search is that the following are the isomorphism types of
fixed-point subgroups of 3. Alt6 .23 and 3. Alt7:

{Cj}j=1,...,5, F20.

Setting aside the group C5, each of the fixed-point groups listed above is reducible
and the semisimplification of each representation consists of three 1-dimensional
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representations, one of which is trivial. The identical Clifford’s theorem argument
of Section 3.4 shows that none of these groups lifts to an irreducible fixed-point
subgroup of GL3(25). For the group C5, the semisimplification consists of three
trivial representations, so the Clifford’s theorem argument does not immediately
rule out an irreducible fixed-point subgroup of GL3(25). However, a search for all
subgroups of GL3(25) of the form C5.m that are irreducible fixed-point subgroups
reveals none. All computations for this section were performed in Magma.

3.6. Subgroups of Type S. We complete the classification of irreducible fixed-
point subgroups of GL3(q) with the groups of Type S, and we incorporate two of
the type S subgroups of GU3(q) into this section as well. We recall the conditions
under which each of these groups occur.

Subgroup of SL3(q) Conditions
(q − 1, 3)× L2(7) q = p ≡ 1, 2, 4 (mod 7), q 6= 2

3. Alt6 q = p ≡ 1, 4 (mod 15)
q = p2, p ≡ 2, 3 (mod 5), p 6= 3

Subgroup of SU3(q) Conditions
(q + 1, 3)× L2(7) q = p ≡ 3, 5, 6 (mod 7), q 6= 5

3. Alt6 q = p ≡ 11, 14 (mod 15)

The simple group L2(7) of order 168 has an absolutely irreducible 3-dimensional
representation over Fq when −7 ∈ (F×q )2 and the group 3. Alt6 has an absolutely

irreducible representation over Fq when −3, 5 ∈ (F×q )2. The conditions on q reflect
these requirements. We start with d× L2(7).

Lemma 3.6.1. Let G be a maximal, irreducible, fixed-point subgroup of (q−1, 3)×
L2(7) ⊂ SL3(q) or (q+ 1, 3)×L2(7) ⊂ SU3(q), subject to the conditions on q in the
tables above. Then G ' Sym4.

Proof. In either case, a fixed-point subgroup intersects the center trivially, hence
G ⊂ L2(7). The maximal subgroup Sym4 of L2(7) is an absolutely irreducible
fixed-point subgroup, so it remains to show that no element of order 7 has a fixed
point for any allowable q.

Fix a primitive 7th root of unity ω ∈ Fq. Then the characteristic polynomial on
either class of order 7, evaluated at 1 is given by

4

3
ω(ω − 1)(ω4 + 2ω3 + ω2 + 2ω + 1) 6= 0.

The inequality follows from the observation that if ω4 + 2ω3 + ω2 + 2ω + 1 = 0,
then the resultant

Res(ω4 + 2ω3 + ω2 + 2ω + 1, ω6 + ω5 + ω4 + ω3 + ω2 + ω + 1) = 72 = 0,

which is impossible since q is coprime to 7. �

Lemma 3.6.2. Let G be a maximal, irreducible, fixed-point subgroup of 3. Alt6 ⊂
SL3(q). Then G ' Alt4 or Alt5.

Proof. Since 3. Alt6 contains the center of SL3(q), any fixed-point subgroup must
be proper. There are five maximal subgroups of 3. Alt6:

31+2
+ .4, d×Alt4 (two copies), d×Alt5 (two copies).
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The group 31+2
+ .4 was analyzed previously in Section 3.4 and does not possess

any irreducible fixed-point subgroups. On the other hand, one can check that the
(centerless) groups Alt4 and Alt5 of the remaining cases are each irreducible, fixed-
point subgroups. �

The groups of Type S are scalar normalizing [1, 4.5.2] and so there are no irre-
ducible, fixed-point overgroups H ⊂ GL3(q) that properly contain the Alt4, Sym4,
or Alt5 of the Lemmas above. This completes the classification of nontrivial fixed-
point subgroups of GL3(q) stated in Theorem 1.2.1.

Acknowledgments. We would like to thank the referee for pointing out several
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References

[1] J.N. Bray, D.F. Holt, C.M. Roney-Dougal. The maximal subgroups of the low-dimensional

finite classical groups. With a foreword by Martin Liebeck. London Mathematical Society
Lecture Note Series, 407. Cambridge University Press, Cambridge, 2013.

[2] G. Butler and J. McKay, The transitive groups of degree up to eleven. Comm. Algebra. 11

(1983), 863-911
[3] J. Cullinan. Local-global properties of torsion points on three-dimensional abelian varieties.

J. Algebra. 311 (2007), 736-774

[4] J. Cullinan, Points of small order on three-dimensional abelian varieties; with an appendix
by Yuri Zarhin. J. Algebra 324 (2010), no. 3, 565-577.

[5] J. Cullinan, A computational approach to the 2-torsion structure of abelian threefolds. Math.

of Comp. 78 (2009), 1825-1836.
[6] J. Cullinan, Symplectic stabilizers with applications to abelian varieties. Int. J. Number

Theory 8 (2012), no. 2, 321-334.
[7] L. Dieulefait, N. Vila, On the images of modular and geometric three-dimensional Galois

representations. Amer. J. Math. 126 (2004), no. 2, 335-361.

[8] L.C. Grove, Classical Groups and Geometric Algebra, American Mathematical Society, 2002
[9] R.W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the

GF (2n). Ann. of Math. 27 (1925/6), 140-158.

[10] N.M. Katz, Galois properties of torsion points on abelian varieties. Invent. math. 62 (1981),
481-502

[11] C. Khare, J. Wintenberger, Jean-Pierre Serre’s modularity conjecture. I. Invent. Math. 178

(2009), no. 3, 485-504.
[12] S. Lang. Introduction to modular forms. Grundlehren der mathematischen Wissenschaften,

No. 222. Springer-Verlag, Berlin-New York, 1976.
[13] H.H. Mitchell, Determination of the ordinary and modular ternary linear groups. Trans.

Amer. Math. Soc. 12 (1911), 207-242.

[14] J-P. Serre, Abelian `-Adic Representations and Elliptic Curves, A.K. Peters, Ltd., 1998
[15] J-P. Serre. Letter to J. Cullinan, 2006

[16] A. Sutherland, Computing images of Galois representations attached to elliptic curves. Forum

Math. Sigma 4 (2016), e4, 79 pp.


	1. Introduction
	1.1. Motivation
	1.2. The Main Theorem
	1.3. Notation and Setup

	2. Parabolic Fixed-Point Subgroups of GL3(q)
	2.1. Projective Image Alt4
	2.2. Projective Image Alt5
	2.3. Projective Image Sym4

	3. The Irreducible Fixed-Point Subgroups of GL3(q)
	3.1. Subgroups of Type C2
	3.2. Subgroups of Type C3
	3.3. Subgroups of Type C5
	3.4. Subgroups of Type C6
	3.5. Subgroups of Type C8
	3.6. Subgroups of Type S

	References

