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Abstract
Fix a prime number ` > 2 and let V be a 4-dimensional F`-vector space. We classify subgroups G of

Sp(V ) with the property that every g ∈ G stabilizes a 1-dimensional subspace of V , yet G itself is not of
parabolic type. This classification is motivated by its application to the mod ` representation of abelian
surfaces, following a program outlined by Sutherland.
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1 Introduction
Let K be a number field and fix a prime number `. Sutherland has recently shown [10] that if E is an elliptic
curve defined over K that admits a local-` isogeny almost everywhere, then E admits a local-` isogeny over
an extension K ′ of K of degree ≤ 2. He arrives at this result by analyzing the subgroup structure of GL2(F`)
and comparing it with the possible images of the mod ` representation attached to E. In particular, he finds
an example of an elliptic curve over Q that admits a local-7 isogeny almost everywhere but not globally
and shows it is the only (up to isomorphism) counterexample over Q. In this paper, we are interested in
extending these results to higher-dimensional abelian varieties.

Let A be a d-dimensional (d > 0) abelian variety defined over K and let

ρ` : Gal(K/K) −→ Aut(A[`])

be the associated mod ` representation. Let S be a set of good primes p for A of density 1 and let Ap

denote the reduction of A modulo p. Suppose Ap admits an `-isogeny over the residue field Fp for all p ∈ S.
Group-theoretically, this means that every g ∈ Aut(A[`]) stabilizes a line in A[`], viewed as a 2d-dimensional
F`-vector space. Equivalently, the characteristic polynomial of g has an F`-rational root. On the other hand,
in order that A admit an `-isogeny over K, it is necessary that Gal(K/K) stabilize a line in A[`], i.e. that
im ρ` be contained in an appropriate parabolic subgroup of Aut(A[`]).

It is a more difficult problem to determine whether there exists an abelian variety defined over K with the
specified mod ` representation. For example, let E be an elliptic curve over Q and take ` = 13. The subgroup
2.A4 ' SL2(F3) of GL2(F13) has the property that all of its elements have characteristic polynomials which
split over F13, yet the mod 13 Galois representation is absolutely irreducible. However, there exists no elliptic
curve defined over Q with the specified mod 13 Galois action since 2.A4 ⊂ SL2(F13) and the determinant
map det : im ρ` −→ F×` must be surjective for elliptic curves defined over Q.

For the prime number ` = 2, some results are known in higher dimensions. In order that every g ∈ im ρ2
have an F2-rational eigenvalue it must be the case that det(g − 1) = 0 in F2 for all g ∈ im ρ2. The global
condition is that the Jordan-Hölder series of A[2] as a Gal(K/K)-module contain a trivial factor. Katz
has shown [5] that this local-global principal holds for abelian surfaces, and in [3] it was shown to hold
for threefolds. However, an example due to Serre [3] shows that the Steinberg representation of the simple
group L3(2) gives rise to an absolutely irreducible subgroup of GSp8(F2) for which every element has 1 as
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an eigenvalue. We do not know whether there exists an abelian variety defined over Q with this mod 2
representation.

In this paper we take V to be a four-dimensional F`-vector space and classify the non-parabolic subgroups
of GSp(V ) for which every element has an F`-rational eigenvalue. Our main results are given in the following
theorem (where “Type” refers to the classification scheme of [7]); the notations will be explained in the
corresponding subsections of Section 3.

Theorem 1. Let ` > 2 be a prime number. The maximal irreducible subgroups G of Sp4(F`) with the
property that every g ∈ G have an F`-rational eigenvalue are given in the following table:

Type Group Condition
C2 NGL2(F`)(Cs) ` ≡ 1(4)

(`− 1)/2.SL2(F3).2 ` ≡ 1(24)
(`− 1)/2.GL2(F3).2 ` ≡ 1(24)
(`− 1)/2.Ŝ4.2 ` ≡ 1(24)
(`− 1)/2.SL2(F5).2 ` ≡ 1(60)
D(`−1)/2 o S2
SL2(F3) o S2 ` ≡ 1(48)
Ŝ4 o S2 ` ≡ 1(48)
SL2(F5) o S2 ` ≡ 1(120)

C6 21+4
− .O−4 (2) ` ≡ 1(120)

21+4
− .3 ` ≡ 5(24)

21+4
− .5 ` ≡ 5(40)

21+4
− .S3 ` ≡ 5(24)

S 2.S6 ` ≡ 1(120)
SL2(F5) ` ≡ 1(30)
SL2(F3) ` ≡ 1(24)

As stated above, one application of this group-theoretic classification is to abelian surfaces for which a
certain local-global principle does not hold. It would be interesting to create “natural” examples of such
surfaces (as opposed to starting with a surface with full Galois image and extending the field of definition).
Examples of abelian fourfolds with O+

8 Galois image have been constructed in [11] and [12].

2 Symplectic Groups and Abelian Varieties
As above, let A be a d-dimensional abelian variety defined over a number field K. Choosing a K-polarization
on A, one gets a Galois-equivariant alternating form on the Tate module T`(A) with values in Z`(1) :=
lim←−n µ`n(K); under reduction modulo `, these values lie in µ`(K). If the reduction of the alternating form
is non-degenerate on A[`], then the image of ρ` is contained in the group of symplectic similitudes of A[`].
If the reduction is degenerate, then the kernel is an even-dimensional subspace W of A[`] and there exists a
non-degenerate alternating form on the quotient A[`]/W . For details, see [4, 9].

We take d = 2 so that for non-degenerate parings, a choice of basis for A[`] yields im ρ` ⊂ GSp4(F`) and
for degenerate parings im ρ` ⊂ GL2(F`)×GL2(F`). We will not consider the case of degenerate pairings in
this paper. Group theoretically, this case has essentially been analyzed in [10]. For the rest of this section,
we take A to be principally-polarized.

The image of the mod ` representation

ρ` : Gal(K/K) −→ Aut(A[`])

then defines a subgroup G of GSp4(F`). Suppose that for a set S of good primes p of OK for A of density
1, it is true that A mod p admits a local `-isogeny over the residue field Fp. Then G has the property that
every element g ∈ G has an F`-rational eigenvalue [10]. If, in addition, A[`] is an irreducible F`[G ]-module,
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then G is not contained in a parabolic subgroup of GSp4(F`). We are interested in classifying subgroups of
this type. The subgroup G ∩ Sp4(F`) corresponds via Galois theory to enlarging the field K to contain the
`th roots of unity. By enlarging K in this way, however, ` will be ramified.

If V is a 4-dimensional symplectic vector space, then any element of Sp(V ) has eigenvalues of the form
a±1, b±1. Moreover, any element of GSp(V ) has eigenvalues of the form α, β, λα−1, λβ−1. In terms of Galois
reresentations, this is characterized by the fact that det ρ` = χ`

2, where χ` is the mod ` cyclotomic character.
Thus, if H ⊂ Sp4(F`) consists entirely of elements with an F`-rational eigenvalue, so does any overgroup of
H contained in GSp4(F`). We will henceforth turn our attention to subgroups of Sp4(F`).

To begin enumerating the possibilities of G , we will appeal to the subgroup structure of Sp4(F`). Indeed,
consider the intersection G ∩ Sp4(F`). In terms of Galois theory, this amounts to replacing the underlying
number fieldK withK(µ`(K)). By Clifford’s theorem, A[`] is either an irreducible F`[G∩Sp4(F`)]-module, or
is completely reducible and equipped with a transitive G /G ∩Sp4(F`)-action on the irreducible components.
It is not true that every element of Sp4(F`) has an F`-rational eigenvalue, so we will require the subgroup
structure of Sp4(F`). The non-parabolic maximal subgroups of Sp4(F`) are given in the following table,
using the notation of [6] and [7]:

Table 1: Non-parabolic maximal subgroups of Sp4(F`)
Type Group Conditions #Conjugates
C2 SL2(F`) o S2 ` ≥ 3 1

GL2(F`).2 ` ≥ 5 1
C3 SL2(F`2).2 1

GU2(F`).2 ` ≥ 5 1
C6 21+4

− .Ω−4 (2) ` ≡ ±3(8) 1
21+4
− .O−4 (2) ` ≡ ±1(8) 2

S SL2(F`) ` ≥ 7 1
2.S6 ` ≡ ±1(12) 2
2.A6 ` ≡ ±5(12) 1

We are interested in subgroups of Sp4(F`) with the following Property:

(L): Every g ∈ G has an F`-rational eigenvalue.

In the next section we enumerate the maximal irreducible subgroups of Sp4(F`) for which (L) holds.

3 Irreducible subgroups of Sp4(F`)
We split this section into subsections based on the type of the subgroup according to the classification scheme
of [6, 7] and outlined in the table above.

3.1 Subgroups of Type C2

The subgroups of Sp4(F`) occurring in this subsection are the stabilizers of certain subspace decompositions
of the symplectic vector space A[`]. The decompositions can be non-degenerate or totally-singular. In
dimension 4, each corresponds to a decomposition into two 2-dimensional subspaces. In the non-degenerate
case, the stabilizer is isomorphic to SL2(F`) o S2 and in the totally singular case it is GL2(F`).2.

The subgroup GL2(F`).2 fits into the split exact sequence

1 // GL2(F`) // GL2(F`).2
π // S2 // 1

and, upon choosing a suitable basis, embeds into Sp4(F`) in the following block form:{(
A 0
0 At−1

)
,
(

0 B
−Bt−1 0

) ∣∣∣∣ A,B ∈ GL2(F`)
}
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We set the following notation: for any subgroup G of GL2(F`).2, define G0 := G ∩ kerπ. Thus G0 defines a
subgroup of GL2(F`), whence G0 either has order divisible by `, is contained in the normalizer of a Cartan
subgroup, or has projective image A4, S4, or A5. We do not have to analyze the case where G0 is contained
in a non-split Cartan subgroup (since the eigenvalues are necessarily defined over a quadratic extension) or
the case where G0 is contained in a Borel subgroup, since then the action of G is reducible. The remainder
of the cases are covered in the following Proposition.

Proposition 1. The maximal irreducible subgroups G of GL2(F`).2 satisfying (L) are the following:

NGL2(F`)(Cs).2, ` ≡ 1(4)
(`− 1)/2.SL2(F3).2, ` ≡ 1(24)
(`− 1)/2.GL2(F3).2, ` ≡ 1(24)

(`− 1)/2.Ŝ4.2, ` ≡ 1(24)
(`− 1)/2.SL2(F5).2, ` ≡ 1(60).

Proof. If A[`] is an irreducible F`[G]-module, then by Clifford’s theorem A[`] is a direct sum of two irreducible
F`[G0]-modules or remains irreducible upon restriction; due the embedding described above, the former
occurs. Upon choosing a basis as above, this means that the projection of G0 onto the plane spanned by the
first two basis vectors defines an irreducible F`[G0]-module. Furthermore, the condition that G satisfy (L)
implies that G0 does so also. Thus G0 defines a subgroup of GL2(F`) satisfying (L) whose natural action is
irreducible.

As remarked above, it suffices to assume that G0 does not normalize a non-split Cartan subgroup and
that the order of G0 is coprime to `. So, suppose G0 normalizes a split Cartan subgroup. Let F×` = 〈α〉 and
invoke the notation of [10, Prop. 3]: define

A(i, j) =
(
αi 0
0 αj

)
, B(i, j) =

(
0 αi

αj 0

)
.

Then G is partitioned into four subsets of the following type

G =
{(

A(i,j) 0
0 A(i,j)t−1

)}
∪
{(

0 A(i,j)
−A(i,j)t−1 0

)}
∪
{(

B(i,j) 0
0 B(i,j)t−1

)}
∪
{(

0 B(i,j)
−B(i,j)t−1 0

)}
In order that the subset consisting of diagonal-block matrices of type B(i, j) satisfy Property (L), it is nec-
essary that i, j have the same parity. Moreover, every such B(i, j) has F`-rational eigenvalues. For the
off-diagonal subsets to have F`-rational eigenvalues, it is necessary that ` ≡ 1(4). Altogether, this yields a
maximal irreducible subgroup of Sp4(F`) of order 2(`− 1)2 satisfying Property (L).

For any subgroup H of GL2(F`), let PH be the image in PGL2(F`) of the reduction of H modulo scalars.
We now analyze the cases where PG0 is isomorphic to A4, S4 or A5. The Schur Multiplier of each group
has order 2, so we may consider the lifts to GL2(F`) in two stages: first a degree-2 lift, followed by a trivial
central extension.

In each of these cases, the representation of G0 that we are considering decomposes as a sum of a degree-2
representation and its dual. In this situation, the character of the induced representation of G is the fusion
join [1, p. xxix] of the two degree-2 characters. The character values of the fusion join are simply the sums
of the two character values that are being fused on the classes of G0 and 0 on the classes of G \G0. By first
lifting PG0 by a degree-2 central extension, and then noting that any further central extension is trivial, we
can deduce the characteristic polynomials and eigenvalues of the conjugacy classes. The maximal subgroups
of GL2(F`) that arise in this manner that also satisfy Property (L) are given by:

(`− 1)/2.SL2(F3) ` ≡ 1(24)
(`− 1)/2.GL2(F3) ` ≡ 1(24)

(`− 1)/2.Ŝ4 ` ≡ 1(24)
(`− 1)/2.SL2(F5) ` ≡ 1(60)
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A further lift to GL2(F`).2 preserves Property (L). If ` does not have the congruence properties listed
above, then the maximal subgroups satisfying Property (L) are reducible. This completes the proof of the
Proposition.

The other maximal subgroup of Sp4(F`) of type C3 is isomorphic to SL2(F`) o S2 and is the stabilizer
of the decomposition of symplectic 4-space into two hyperbolic planes. With respect to a suitable basis,
the embedding of SL2(F`) o S2 is in block-matrix form, with the diagonal blocks representing the index-2
subgroup SL2(F`) × SL2(F`). We adopt the notation of above: for any subgroup G of SL2(F`) o S2, let
G0 = G ∩ kerπ, where π is the projection SL2(F`) o S2 → S2. The following Proposition classifies the
maximal irreducible subgroups of SL2(F`) o S2 satisfying Property (L). We will invoke Goursat’s Lemma [2,
p. 864] on the subgroups of a direct product, which we now recall.

Lemma 1 (Goursat’s Lemma). Let A and B be finite groups. The subgroups G of A×B are in one-to-one
correspondence with the tuples (G1, G2, G3, ψ) where G1 ≤ A, G2 ≤ B, G3 C G2, and ψ : G1 −→ G2/G3 is
a surjective homomorphism.

Proposition 2. The maximal irreducible subgroups of SL2(F`) o S2 ⊂ Sp4(F`) satisfying Property (L) are
the following:

D(`−1)/2 o S2

SL2(F3) o S2 (` ≡ 1(48))

Ŝ4 o S2 (` ≡ 1(48))
SL2(F5) o S2 (` ≡ 1(120)).

Proof. The maximal subgroups of SL2(F`) o S2 are, up to isomorphism:

B o S2, D`−1 o S2, D`+1 o S2, E o S2, G, SL2(F`)× SL2(F`),

where B is the maximal Borel subgroup of SL2(F`); D`±1 are the dihedral groups of orders 2(` ± 1),
respectively; E is any subgroup of SL2(F`) with projective image A4, S4, or A5; and G is the subgroup such
that G0 corresponds to the quadruple

(SL2(F`),SL2(F`), {±I}, π),

where {±I} is the center of SL2(F`) and π is the projection SL2(F`) → PSL2(F`), afforded by Goursat’s
Lemma.

Of those maximal subgroups, we do not consider B o S2 and SL2(F`) × SL2(F`) since the associated
representation is reducible. Moreover, the subgroup D`+1 o S2 is primarily comprised of elements without
F`-rational eigenvalues (the non-trivial elements of the maximal cyclic subgroup of D`+1 do not have F`-
rational eigenvalues). The maximal subgroups of D`+1 o S2 satisfying (L) are reducible. This leaves the
groups D`−1 o S2, E o S2, and G.

One can check, using an argument similar to the one in Proposition 1, that the maximal irreducible
subgroup of D`−1 o S2 satisfying (L) is isomorphic to D(`−1)/2 o S2, where the index-2 dihedral groups are
required to ensure that every element have an F`-rational eigenvalue.

Next, let G ⊂ E o S2 and define G0 ⊂ E × E via G0 := G ∩ kerπ, where π is the natural projection
E o S2 → S2. We have seen that the congruences ` ≡ 1(24), ` ≡ 1(24), and ` ≡ 1(60) are necessary
and sufficient to ensure that the subgroups of SL2(F`) in this category (E ' SL2(F3), Ŝ4, and SL2(F5),
respectively) satisfy (L). Any element g ∈ G \G0 has characteristic polynomial of the form

x4 + bx2 + 1,

with roots ±λ±1. Such a polynomial is reducible over F`, for all ` [8, Lemme 2.6]. To further ensure that
all characteristic polynomials split, note that g2 ∈ G0 has eigenvalues λ±2, each with multiplicity 2. Thus,
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for each group E, we must determine which congruences yield the largest subgroups satisfying (L). One
can check that in the cases where E ' SL2(F3), Ŝ4, the congruence ` ≡ 1(48) is necessary and sufficient
for all elements of E o S2 to have an F`-rational eigenvalue and that if ` 6≡ 1(48) the maximal subgroups
satisfying (L) are reducible. Similarly, in the case E ' SL2(F5), taking ` ≡ 1(120) ensures that Property
(L) is satisfied.

Finally, consider the subgroup G of SL2(F`)oS2 described above. In this case G0 can be identified with the
pairs (g,±g), for g ∈ SL2(F`), acting on the natural decomposition of symplectic 4-space into two hyperbolic
planes. Clearly not every element has F`-rational eigenvalues. Moreover any maximal subgroup G of G is a
subgroup of D`−1 o S2, D`+1 o S2, or E o S2, with the property that G0 := G ∩ G0 is the restriction of π to
D`−1, D`+1, or E. All of these subgroups have been subsumed by the cases above. This completes the proof
of the Proposition.

3.2 Subgroups of Type C3

The two maximal subgroups of Sp4(F`) in this section are the so-called field extension subgroups of Sp4(F`).
Combining the field-extension embedding F×`2 ↪→ GL2(F`) with the symplectic transformations on a 4-
dimensional vector space, one obtains maximal subgroups that fit into the middle of the short exact sequence

1 −→ G0 −→ G0.2 −→ Gal(F`2/F`) −→ 1,

where G0 ' SL2(F`2) or GU2(F`); for details, see [7, Section 4.3]. The associated representation of G0.2
is absolutely irreducible, but the restriction to the index-2 subgroup G0 is not. The representation of G0

decomposes over F`2 into a direct sum of the natural representation of G0 and its Galois-conjugate. The
character values of the four-dimensional representation of G0 are the sums of the values of the conjugate
representations defined over F`2 . From these, we can determine the characteristic polynomials of the con-
jugacy classes. We will now show that the groups occurring in this subsection do not give rise to any new
irreducible subgroups of Sp4(F`) satisfying (L).

We start with the case G0 ' SL2(F`2). There are elements of G0 that do not have F`-rational eigenvalues,
hence any subgroup G of SL2(F`2) satisfying (L) must have G0 a subgroup of a Borel subgroup; D`2±1; a
degree-2 central extension of A4, S4, or A5; or isomorphic to SL2(F`).2.

The Jordan-Hölder factors of this four-dimensional representation of the Borel subgroup of SL2(F`2)
are all one-dimensional over F`, hence the four-dimensional representation of G is reducible over F`. The
rotational subgroups of the dihedral groups only have F`-rational eigenvalues when those rotational subgroups
are defined over F`. For D`2−1, this means the maximal subgroups satisfying (L) have previously been
analyzed in the proof of Propositions 1 and 2; for D`2+1, the only elements with F`-rational eigenvalues
are contained in the intersection with D`2−1. When G0 is an exceptional subgroup of SL2(F`2) the four-
dimensional representation splits into a direct sum of irreducible 2-dimensional representations over F`.
These have been analyzed in Proposition 2.

This leaves the subgroup SL2(F`).2 of SL2(F`2). We can write SL2(F`).2 = SL2(F`)∪σ SL2(F`) for some
σ ∈ SL2(F`2). Over F`2 there exists a basis with respect to which SL2(F`).2 ⊂ Sp4(F`) has the following
form: {( g 0

0 g
)
,
(
σg 0
0 σg

)
| g ∈ SL2(F`)

}
,

where σ denotes the Galois-conjugate of σ. This is because the modular character of natural representation
of SL2(F`) splits (in the sense of [1, p. xxviii]) for the group SL2(F`).2. Moreover, the eigenvalues of any
representative σ as above are not in F`. Combining this with the facts that there are elements of SL2(F`)
without F`-rational eigenvalues and that eigenvalues of this 4-dimensional representation are simply the
eigenvalues of the natural module with multiplicity 2, we conclude that this group will not yield any new
examples of irreducible subgroups of Sp4(F`) satisfying (L).

The other subgroup of Sp4(F`) of type C3 that occurs is isomorphic to GU2(F`).2. Recall that GU2(F`)
is the isometry group of a 2-dimensional unitary space defined over F`2 . Moreover, SU2(F`) ' SL2(F`)
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and detGU2(F`) is a cyclic subgroup of F×`2 of order ` + 1. If δ is a generator of det GU2(F`), then
GU2(F`) ' SU2(F`):〈δ〉 [7, p. 23].

As with SL2(F`2), the 4-dimensional representation of GU2(F`) that occurs here decomposes over F`2

as direct sum of the natural representation of GU2(F`) and its Galois-conjugate. Therefore, to determine
the rationality of the eigenvalues of the 4-dimensional representation, it suffices to work with the standard
representation only. Let δ̃ ∈ GL2(F`) denote a preimage of δ. Choose a basis and fix δ̃ = ( α 0

0 1 ). Then one
can write

GU2(F`) =
⋃̀
n=0

δ̃n SU2(F`).

It is not difficult to check that given g ∈ SU2(F`), the eigenvalues of δ̃g will not be F`-rational unless g is
triangular. Moreover, SU2(F`) contains elements whose eigenvalues are not F`-rational. Thus, if G0 contains
an element of order `, it will be contained in the Borel subgroup of SU2(F`) and the resulting representation
of G will be reducible. Moreover, if G0 ∩ SU2(F`) contains any non-triangular element, then G0 (and hence
G) will not satisfy (L). Altogether, this shows that any subgroup of type C3 does not give rie to any new
irreducible subgroups satisfying (L).

3.3 Subgroups of Type C6

The subgroups of Sp4(F`) of type C6 are the normalizers of symplectic-type 2-groups. In this case, the
symplectic-type 2-group is of type

21+4
− ' D4 ◦Q8,

with normalizer isomorphic to 21+4
− .Ω−4 (2) when ` ≡ ±3 (5) and 21+4

− .O−4 (2) when ` ≡ ±1(8). Recall the
isomorphisms Ω−4 (2) ' A5 and O−4 (2) ' S5. We classify the irreducible subgroups having Property (L) in
the following Proposition.

Proposition 3. The maximal irreducible subgroups G of Sp4(F`) of type C6 that satisfy Property (L) are
given by:

1. G ' 21+4
− .O−4 (2) when ` ≡ 1(120)

2. G ' 21+4
− .3 when ` ≡ 5(24)

3. G ' 21+4
− .5 when ` ≡ 5(40)

4. G ' 21+4
− .S3 when ` ≡ 5(24)

Proof. Suppose first that ` ≡ ±1(8) so that the maximal Type-C6 subgroup of Sp4(F`) is 21+4
− .O−4 (2). The

group 21+4
− .O−4 (2) has 25 conjugacy classes, consisting of elements of order 1, 2, 3, 4, 5, 6, 8, 10, 12, and

24. The congruence conditions on ` that ensure an F`-rational root of the characteristic polynomial of those
classes are:

` ≡ 1(2), ` ≡ 1(3), ` ≡ 1(4), ` ≡ 1(5), ` ≡ ±1(24).

For example, the characteristic polynomials of the two classes of elements of order 24 are

x4 −
√

2x3 + x2 −
√

2x+ 1 and x4 +
√

2x3 + x2 +
√

2x+ 1,

where
√

2 denotes a fixed square-root of 2 modulo `. Imposing the condition ` ≡ 1(120) means that all char-
acteristic polynomials have an F`-rational root. Moreover, this 4-dimensional representation of the group
21+4
− .O−4 (2) is absolutely irreducible.

When ` ≡ ±3(8), we look to maximal subgroups of 21+4
− .Ω−4 (2). The conditions ` ≡ 1(4), ` ≡ 1(8),

` ≡ 1(12) which are necessary for the elements of order 4, 8, and 12 to have F`-rational eigenvalues are
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incompatible with ` ≡ ±3(8). In particular, when ` ≡ 3(8) a subgroup with Property (L) will not have
elements of order 4, 8, or 12; when ` ≡ 5(8), they will not have elements of order 8.

There are four maximal subgroups of 21+4
− .Ω−4 (2):

SL2(F5), 21+4
− .S3, 21+4

− .D5, 21+4
− .A4.

The 4-dimensional representation of the subgroup SL2(F5) is not irreducible – it is a direct sum over F` of
two 2-dimensional representations, the other three maximal subgroups act irreducibly.

One can check that any subgroup of 21+4
− .S3 that omits elements of order 4, 8, and 12 when ` ≡ 3(8) or

omits elements of order 8 when ` ≡ 5(8) is either abelian or dihedral and the associated representation is
reducible.

The group 21+4
− .D5 has elements of order 8, so we look to its maximal subgroups. There are three

maximal subgroups: 2.D5, 21+4.2, and 21+4
− .5. The first is reducible and the second contains elements of

order 8. The third contains no elements of order 8, but does contain elements of order 4.
The group 21+4

− .A4 contains elements of order 4, 8, and 12. There are three maximal subgroups: 21+4
− .3,

21+4
− .22, and 21+4

− .S3. The first and third groups do not contain elements of order 8. The second group does
contain elements of order 8 and its maximal subgroup without such elements is isomorphic to 21+4

− . In every
case, the maximal subgroups without elements of order 4 are reducible. The congruence conditions on the
groups then follow.

3.4 Subgroups of Type S
According to the table in Section 2 above, the subgroups 2.A6, 2.S6 and SL2(F`) are those of type S occurring
in the classification in [6, 7]. We begin with the groups 2.A6 and 2.S6. In Atlas notation, there are two
irreducible, symplectic characters of 2.A6, labeled χ8 and χ9. Each of these characters induces two distinct
characters on 2.S6 whose values on 2.S6 \ 2.A6 are negatives of each other (this is defined as a splitting
of characters [1, p. xxviii]). However, only χ8 splits into symplectic characters, while χ9 splits into two
characters of indicator 0. The symplectic characters of 2.S6 will be labeled χ0

8 and χ1
8 using Atlas notation.

The characteristic polynomials of the conjugacy classes are given in Tables 2 and 3 (for the conjugacy classes
6B0 and 6B1 of 2.S6,

√
3 denotes a fixed square root of 3, guaranteed to exist since ` ≡ ±1(12)).

Lemma 2. The group 2.A6 contains no irreducible subgroups with Property (L).

Proof. In order that 2.A6 occur as a maximal subgroup of Sp4(F`), it must be the case that ` ≡ ±5(12). On
the other hand, in order that each characteristic polynomial above have an F`-rational root, it is necessary
that ` ≡ 1(120), and these two sets of primes are disjoint. In light of this observation, it suffices to examine
proper subgroups of 2.A6 with the property that they have no elements of order 3 when ` ≡ 5(12) and no
elements of order 4 when ` ≡ 7(12).

If ` ≡ 5(12), then the maximal non-cyclic subgroups of 2.A6 of order dividing 80 are Z/5 o Z/4 and
Q8.2 (the Sylow-2 subgroup of 2.A6). The group Z/5 o Z/4 satisfies (L) for any such `, but the Jordan
Hölder series of the associated representation consists of four 1-dimensional factors. Imposing the additional
condition ` ≡ 1(8) is necessary for Q8.2 to satisfy (L), but in that case the representation splits into two
absolutely-irreducible 2-dimensional factors.

Next suppose that ` ≡ 7(12) and recall that 2.A6 ' SL2(F9). The maximal subgroups of 2.A6 are (up to
isomorphism):

Z/9 o Z/8, SL2(F3).2, SL2(F5).
The maximal subgroup of Z/9 o Z/8 that does not contain elements of order 4 is simply Z/9 o Z/2. Any
4-dimensional representation of this group will split into a direct sum of two modules of dimension 2 (and
possibly further) over F` and so we do not consider it. We may similarly recursively dismiss the groups
SL2(F3).2 and SL2(F5). This completes the proof of the Proposition.

Lemma 3. When ` ≡ 1(120) the group 2.S6 satisfies Property (L). When ` ≡ −1(12), then no irreducible
subgroup of 2.S6 satisfies (L).
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Proof. The group 2.S6 is a maximal subgroup of Sp4(F`) when ` ≡ ±1(12). First, note that the condition
` ≡ 1(120) is necessary for all characteristic polynomials to have an F`-rational eigenvalue, and 2.S6 is
absolutely irreducible.

When ` ≡ −1(12), then the cyclotomic polynomials ϕ3(x), ϕ4(x), ϕ6(x), do not have an F`-rational
root. Moreover, the square of any element of order 8 has characteristic polynomial ϕ4(x)2. Therefore,
any subgroup satisfying (L) must have order dividing 160 and contain no elements of order 4. The only
such subgroup of 2.S6 is cyclic of order 10. Moreover, if we impose the condition ` ≡ 1(5) to ensure that
every element have an F`-rational eigenvalue, then this group is reducible. This completes the proof of the
Lemma.

Table 2: Characteristic Polynomials of 2.A6

Conjugacy Class of 2.A6 χ9 χ8

1A0 ϕ1(x)4 ϕ1(x)4

1A1 ϕ2(x)4 ϕ2(x)4

2A0 ϕ4(x)2 ϕ4(x)2

3A0 ϕ3(x)2 ϕ3(x)2

3A1 ϕ6(x)ϕ2(x)2 ϕ6(x)2

3B0 ϕ3(x)2 ϕ1(x)2ϕ3(x)
3B1 ϕ6(x)2 ϕ6(x)ϕ2(x)2

4A0 ϕ8(x) ϕ8(x)
4A1 ϕ8(x) ϕ8(x)
5A0 ϕ5(x) ϕ5(x)
5A1 ϕ10(x) ϕ10(x)
5B0 ϕ5(x) ϕ5(x)
5B1 ϕ10(x) ϕ10(x)

Table 3: Characteristic Polynomials of 2.S6

Conjugacy Class χ0
8 χ1

8
of 2.S6

1A0 ϕ1(x)4 ϕ1(x)4

1A1 ϕ2(x)4 ϕ2(x)4

2A0 ϕ4(x)2 ϕ4(x)2

3A0 ϕ3(x)2 ϕ3(x)2

3A1 ϕ6(x)ϕ2(x)2 ϕ6(x)2

3B0 ϕ3(x)2 ϕ1(x)2ϕ3(x)
3B1 ϕ6(x)2 ϕ6(x)ϕ2(x)
4A0 ϕ8(x) ϕ8(x)
5A0 ϕ5(x) ϕ5(x)
5A1 ϕ10(x) ϕ10(x)
2B ϕ1(x)2ϕ2(x)2 ϕ1(x)2ϕ2(x)2

2C ϕ4(x)2 ϕ4(x)2

4B ϕ8(x) ϕ8(x)
6A0 ϕ3(x)ϕ6(x) ϕ3(x)ϕ6(x)
6A1 ϕ3(x)ϕ6(x) ϕ3(x)ϕ6(x)
6B0 ϕ4(x)(x2 −

√
3x+ 1) ϕ4(x)(x2 +

√
3x+ 1)

6B1 ϕ4(x)(x2 +
√

3x+ 1) ϕ4(x)(x2 −
√

3x+ 1)

Proposition 4. The maximal irreducible subgroups of SL2(F`) satisfying (L) are SL2(F5) when ` ≡ 1(30)
and SL2(F3) when ` ≡ 1(24).

Proof. The embedding SL2(F`) ↪→ Sp4(F`) is via the symmetric-power representation Sym3. Of the ` + 4
conjugacy classes of SL2(F`), (` − 3)/2 of them (consisting of elements of order ` + 1) have eigenvalues
defined over a quadratic extension of F`. If an element g ∈ SL2(F`) has eigenvalues λ±1, then Sym3(g) has
eigenvalues λ±3,±1. It follows that if the eigenvalues of g are not defined over F`, then neither are those of
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Sym3(g). Therefore, the exceptional group SL2(F`) does not satisfy the hypothesis that all of its elements
stabilize a line in F4

` , for any `.
If we turn to the subgroup structure of SL2(F`), we can omit parabolic subgroups from our analysis since

the symmetric power representation will take a parabolic subgroup of SL2(F`) to one of Sp4(F`). Moreover,
if G is dihedral then Sym3(G) decomposes into a direct sum of two-dimensional irreducible representations
for G and these have been analyzed previously in [10]. This leaves the exceptional groups 2.A4, 2.S4 and
2.A5.

Again, we exploit the isomorphisms 2.A4 ' SL2(F3) and 2.A5 ' SL2(F5). The representation Sym3 is
reducible for SL2(F3) and absolutely irreducible for SL2(F5). Thus, it suffices to consider only SL2(F5),
which occurs as a maximal subgroup of SL2(F`) when ` ≡ ±1(10).

If ` ≡ 1(10), then imposing the additional condition that ` ≡ 1(3) is necessary and sufficient for all char-
acteristic polynomials to split over F`. The absolute irreducibility of Sym3 SL2(F5) gives us an obstruction.
On the other hand, if ` ≡ −1(10), then no element of SL2(F5) of order 5 has F`-rational eigenvalues. The
maximal subgroups of SL2(F5) of index divisible by 5 are Z/5 o Z/4, D6, and SL2(F3), and Sym3 of each
of these groups is reducible.

This leaves the subgroup 2.S4 ' SL2(F3).2 ⊂ SL2(F`). This group has one absolutely irreducible 4-
dimensional representation and it is precisely the symmetric-power representation Sym3. The group 2.S4 is
a maximal subgroup of SL2(F`) when ` ≡ ±1(8). If ` ≡ 1(8) and we impose the additional condition that
` ≡ 1(3), then every characteristic polynomial splits over F`. On the other hand, if ` ≡ −1(8), then the
characteristic polynomials of the elements of order 8 do not split over F` and any subgroup with no elements
of order 8 is reducible under Sym3. This proves the Proposition.

Acknowledgements. We would like to thank Yuri Zarhin for helpful comments.
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