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Abstract. Let φ(x) be a rational function of degree > 1 defined over a number field K and let Φn(x, t) =

φ(n)(x)− t ∈ K(x, t) where φ(n)(x) is the nth iterate of φ(x). We give a formula for the discriminant of the

numerator of Φn(x, t) and show that, if φ(x) is postcritically finite, for each specialization t0 of t to K, there
exists a finite set St0 of primes of K such that for all n, the primes dividing the discriminant are contained

in St0 .

1. Introduction

Let K be a number field and fix a rational self-map φ of P1 defined over K. In concrete terms, choosing
a coordinate function x on P1, i.e. choosing a generator for the function field of P1 over K, φ is a rational
function φ(x) = g(x)/h(x) where g(x), h(x) ∈ K[x] have no common roots in K. We choose and fix an
integral model of φ(x) for the rest of the paper (so g(x), h(x) ∈ OK [x]). Let φ(n)(x) = φ ◦ φ(n−1)(x) be
the nth iterate of φ(x) and write φ(n)(x) = gn(x)/hn(x) where gn(x) and hn(x) are coprime polynomials in
OK [x]. Define Φn(x, t) := φ(n)(x)− t.

The purpose of this paper is to give a formula for the discriminant discx(gn(x)− thn(x)) thereby general-
izing the discriminant formula for polynomials found in [1]. The main number-theoretic consequence is that
it gives a bound on the primes which ramify in characteristic-0 function field extensions. The formula also
allows for analysis of ramification for all specializations of t to K.

In the special case where φ is postcritically finite, i.e. if the union of all forward orbits of the critical
points of φ is a finite set, then the tower of all iterates of φ is geometrically finitely ramified, in the sense
that only finitely many places of the base are ramified in the tower of ramified coverings by the iterates of φ.
The arithmetic question which then arises is: if we specialize this tower at some particular value t = t0 ∈ K,
will it also be finitely ramified? We answer this question in the affirmative. Further number-theoretic appli-
cations are discussed in the final section of the paper.

Acknowledgements. We would like to thank Rafe Jones for his careful reading of an early draft of the
paper and the referee for many helpful suggestions and comments.

2. Background and Setup

We recall a few facts about the discriminant and resultant of polynomials. For a polynomial P (x) =∑n
i=0 aix

i ∈ K[x], where K is a number field, we let `(P ) = an be the leading term of P . For P,Q ∈ K[x], if
we factor Q(x) = `(Q)

∏degQ
j=1 (x− θj), with θj ∈ K, the resultant Res(P,Q) of P and Q is defined as follows:

Res(P,Q) = (−1)degP degQ`(Q)degP

degQ∏
j=1

P (θj).

It should be noted (though it is not obvious from this definition) that if P,Q ∈ OK [x] then Res(P,Q) ∈ OK .
This follows from the definition of the resultant in terms of a determinant involving only the coefficients of
the polynomials. See [4, Ch. 2.4] for more details. The following formulas are well-known and will be used
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extensively:

Res(P,Q) = (−1)degP degQ Res(Q,P )(1)

Res(P,QR) = Res(P,Q) · Res(P,R)(2)

disc(P ) = (−1)d(d−1)/2`(P )−1 Res(P, P ′),(3)

where P ′ denotes the derivative of P . In addition, we will make use of the following elementary result.

Lemma 1. Let a, b, c, d be polynomials. Then

Res(a− bc, d− b) =
[
(−1)deg(d−b)`(d− b)

](deg(a−bc)−deg(a−dc))
Res(a− dc, d− b).

Proof. The lemma says that, up to a simple factor, we may replace d by b in the first argument since,
according to the second argument, d “is” b. We compute

Res(a− bc, d− b) = (−1)deg(a−bc) deg(d−b)`(d− b)deg(a−bc)
∏

d(θj)=b(θj)

(a− bc)(θj)

= (−1)deg(a−bc) deg(d−b)`(d− b)deg(a−bc)
∏

d(θj)=b(θj)

(a− dc)(θj)

=
(−1)deg(a−bc) deg(d−b)`(d− b)deg(a−bc) Res(a− dc, d− b)

(−1)deg(a−dc) deg(d−b)`(d− b)deg(a−dc)

= (−1)[deg(a−bc)−deg(a−dc)] deg(d−b)`(d− b)deg(a−bc)−deg(a−dc) Res(a− dc, d− b)

=
[
(−1)deg(d−b)`(d− b)

](deg(a−bc)−deg(a−dc))
Res(a− dc, d− b).

�

Recall that we write φ(x) = g(x)/h(x) where g(x), h(x) ∈ OK [x] and Res(g(x), h(x)) 6= 0. We now set
some notation:

g(x) =
δ∑
r=0

arx
r,

h(x) =
ε∑
s=0

bsx
s,

` = `x(g(x)− th(x)),
D = `(h(x)g′(x)− g(x)h′(x)),

and note that D, ` ∈ OK . Let m be the degree (in x) of g(x)− th(x) (we will soon reduce to the case where
m = δ) and let q be the degree of hg′ − gh′.

It may be the case that g(x) has repeated roots, which will complicate our discriminant formulæ below.
To prepare for that possibility, we use the OK-factorization g(x) =

∏T
j=1 gj(x)ej into powers of irreducibles

of degree dj and with leading terms `j . We introduce a related polynomial that will be used extensively
below. Define P (x) by the following:

h(x)g′(x)− h′(x)g(x) =
T∏
i=1

gi(x)ei−1 ×

h(x)
T∑
j=1

ejg1(x) · · · g′j(x) · · · gT (x)− h′(x)
T∏
i=1

gi(x)


︸ ︷︷ ︸

P (x)

and set d = degP (x) and L = `(P ).
We will soon restrict attention to a special class of rational functions and so we recall some of the notation

of [1] and interpret it in the context of rational functions. Let

Rφ := {r ∈ K : (hg′ − gh′)(r) = 0} and Bφ := {φ(r) : r ∈ Rφ}
be the sets of ramification points and branch points of φ, respectively. In particular, Rφ consists of the roots
of h(x)g′(x) − g(x)h′(x) counted without multiplicity. For any r ∈ Rφ, we define mr to be its multiplicity
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as a root of h(x)g′(x)− g(x)h′(x) and Mβ as the corresponding multiplicity in Bφ. A rational function φ is
said to be postcritically finite if the forward orbit of the critical points under all iterations is a finite set. In
other words, if

Bφ(n) = Bφ ∪ φ(Bφ) ∪ · · · ∪ φ(n−1)(Bφ)

is the set of branch points of φ(n) then φ is postcritically finite if
⋃∞
n=1 Bφ(n) is finite.

Proposition 1. With all notation as above, we have

discx(g(x)− th(x)) = ±
`d+m−q−2DmL−δ

`(h)m−δ

0@ TY
i=1

t
ei−1

1A0@ TY
j=1

`
−d(ej−1)
j Res(gj , h)

ej−1

1A×
0@ TY
j=1

[`
2−δj
j disc(gj)]

ej

1A
0BBB@
TY
i=1

TY
j=1
j 6=i

[`
−δj
i Res(gi, gj)]

ei

1CCCA
0@ Y
{µ : P (µ)=0}

(1− t/φ(µ))

1A .

Remarks.

(1) When disc g 6= 0 and δ > ε, the formula of Proposition 1 reduces to

discx(g(x)− th(x)) = ±disc(g)
∏
β∈Bφ

(1− t/β)Mβ .

(2) The product
∏
µ(1− t/φ(µ)) ∈ K[t] since the roots of P (x) are in the same Galois-orbit.

(3) Another way to view Proposition 1 is that if f(x) and g(x) are coprime polynomials then we give
exactly the set of c such that f(x)− cg(x) has no repeated roots; the exceptional set is precisely the
set of values of f(r)/g(r) as r runs over the roots of the Wronskian hg′ − gh′.

Proof of Proposition 1. By definition, discx(g(x) − th(x)) = ±`−1 Res(g(x) − th(x), g′(x) − th′(x)). Using
the identity (2) above, we can write

`−1 Res(g(x)− th(x), g′(x)− th′(x)) =
±Res(g(x)− th(x), h(x)g′(x)− th(x)h′(x))

`Res(g(x)− th(x), h(x))

=
±Res(h(x)g′(x)− th(x)h′(x), g(x)− th(x))

``(h)m−δ Res(g(x), h(x))
,

where the last equality follows from switching the inputs of the resultant in the numerator and applying
Lemma 1 to the denominator with a = g, b = −h, c = −t, and d = 0. Now apply Lemma 1 to the numerator
with a = hg′, b = th, c = h′, and d = g to get

discx(g(x)− th(x)) = ± `ε+m−q−2

`(h)m−δ Res(g(x), h(x))
Res(h(x)g′(x)− g(x)h′(x), g(x)− th(x))

= ± `ε+m−q−2Dm

`(h)m−δ Res(g(x), h(x))

∏
r∈Rφ

(g(r)− th(r))mr .

Let {θ(j)i }
dj
i=1 be the roots of gj(x). Note that the roots of P (x) are disjoint from those of the gj . This

allows us to factor

∏
r∈Rφ

(g(r)− th(r))mr =
T∏
j=1

dj∏
i=1

(−th(θ(j)i ))ej−1
∏

{µ : P (µ)=0}

g(µ)
∏

{µ : P (µ)=0}

(1− t/φ(µ)),

and analyze each product separately. To begin, we have

T∏
j=1

dj∏
i=1

(−th(θ(j)i ))ej−1 = ±

(
T∏
i=1

tei−1

)
T∏
j=1

`
−d(ej−1)
j Res(gj , h)ej−1.
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Next, we evaluate g(x) on the roots of P (x):

Y
{θ : P (θ)=0}

g(θ) = ±L−δ`d
Y

{θ : g(θ)=0}

P (θ) = ±L−δ`d
TY
j=1

deg gjY
i=1

P (θ
(j)
i )ej

= ±L−δ`d
0@ TY
j=1

deg gjY
i=1

h(θ
(j)
i )ej

1A0@ TY
j=1

deg gjY
i=1

“
ejg1(θ

(j)
i ) · · · g′j(θ

(j)
i ) · · · gT (θ

(j)
i )
”ej1A

= ±L−δ`d`−ε Res(g, h)

 
TY
j=1

[`
2−δj
j disc(gj)]

ej

!0B@ TY
i=1

TY
j=1
j 6=i

[`
−δj
i Res(gi, gj)]

ei

1CA .

Putting together all the constants finishes the proof of the theorem. �

3. Projective Transformations

We wish to obtain a similar formula as in the previous section for the nth iterate φ(n) of φ. To do that,
we need to generalize the following quantities from the formula of Proposition 1: ε, δ, `,m, q,D, `(h), and
Res(g, h). It turns out that the derivations of the formulas for these generalizations are greatly simplified
when δ > ε. Using Möbius transformations we will show that it is always possible to reduce to this case. We
start by switching viewpoints to projective coordinates.

Any s ∈ P1 can be represented by [s1 : s2] uniquely up to scalar multiples. We define

D1,φ([s1 : s2]) := discx(s2g(x)− s1h(x)),

where s1, s2 ∈ OK . The sets of primes that we will describe will depend on this choice and the choice of
coordinates for φ, but the finiteness of those sets will not be affected. We define Dn,φ similarly for the nth

iterate of φ. By the factorization properties of discriminants, a different representative of the same finite
point (say [1 : s1/s2]) only contributes a power of s2 to the discriminant, which has only finitely-many prime
divisors in OK . For a specialization to the point at infinity [1 : 0] our discriminant reduces to that of h(x).

Lemma 2. Suppose φ ∈ K(x) and choose τ ∈ Aut(P1 /K) to be integral over K. Then (1) Dn,φ([s1 : s2]) is
divisible by finitely many primes as n goes to infinity if and only if the same holds for Dn,φτ (τ([s1 : s2])), and
(2) there exists a finite extension K ′/K and (K ′-integral) τ ∈ Aut(P1 /K ′) such that φτ has the property
that δ > ε.

Proof. In both cases, the choice of integral model of τ will affect the prime divisors of the discriminant,
but will not affect the finiteness of those sets. Any automorphism of P1 can be decomposed into a product
of four transformations: two translations, a dilation/rotation, and an inversion. One can check that Dn,φ

transforms in the following way under these operations:

Dn,φτ (τ([s1 : s2])) = Dn,φ([s1 : s2]) (translation, inversion),

Dn,φτ (τ([s1 : s2])) = λ(max(δ,ε))·(max(δ,ε)−1)Dn,φ([s1 : s2]) (dilation/rotation),

where for a dilation/rotation, λ is the determinant of the transformation. This proves the first claim. For
the second, note that by enlarging the base field K to a finite extension K ′, we are guaranteed that φ(x)
has a fixed-point defined over K ′ and deg g > deg h is equivalent to ∞ being fixed by φ(x). Applying an
automorphism of P1 that gives deg g > deg h ensures that deg gn > deg hn for all n. �

This brings up an important point which is crucial when applying our discriminant formula. The discrimi-
nant disc(gn(x)) appears as one of the factors in disc(gn(x)−thn(x)) below and it may be the case that there
exists a positive integer N such that disc(gn(x)) 6= 0 for 1 ≤ n ≤ N , but disc(gn(x)) = 0 for all n > N . This
happens precisely when 0 is a postcritical value of φ (e.g. φ(x) = x2−1). This is something that, unlike fixing
∞, may not be able to be fixed by conjugating by a Möbius transformation. In particular, since the number
of iterates needed to capture all of the branch points may be quite large, a Möbius transformation may need
to be applied many times to “fix” φ, and doing so may affect the previous branch points. According to Propo-
sition 1, the multiplicity of 0 as a branch point may be deduced from the power of t dividing the discriminant.
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Thanks to Lemma 2, we will now suppose for the rest of the paper that φ(x) = g(x)/h(x) with deg g(x) >
deg h(x). In addition, we will focus on affine specializations, since specializing to [1 : 0] reduces to
disc(−hn(x)). For more information on disc(hn(x)), see below.

4. Iteration of Rational Functions

We begin by recursively defining two sequences of polynomials gn, hn such that φ(n)(x) = gn(x)/hn(x).
Namely,

gn(x) =
δ∑
r=0

arg
r
n−1(x)hδ−rn−1(x), hn(x) = hδ−εn−1(x)

ε∑
s=0

bsg
s
n−1(x)hε−sn−1(x).(4)

By Proposition 1, the discriminant discx(gn(x)− thn(x)) is given by the following:

discx(gn(x)− thn(x)) = ± `εn+mn−δn−2
n Dδn

n

`(hn)δn−qn Res(gn, hn)

∏
r∈R

φ(n)

(gn(r)− thn(r))mr ,(5)

where a term with the subscript ‘n’ refers to the corresponding quantity for the nth iterate in the formula
of Proposition 1.

Remark. It is not obvious that Res(gn, hn) 6= 0 since gn(x) and hn(x) are defined recursively. See Propo-
sition 2 for a proof that if Res(g, h) 6= 0 then Res(gn, hn) 6= 0.

We begin with a Lemma but omit the proof; it is routine algebraic manipulation.

Lemma 3. Let δ > ε. With all notation as above, we have

δn = δn

εn = δn − (δ − ε)n

`n = `(gn) = `(g)
1−δn
1−δ

qn = 2δn − (δ − ε)n − 1

`(hn) =
(
`(g)
`(h)

)Pn−1
k=1 εk

`(h)
1−δn
1−δ

Dn = `(hn)`(gn)(δ − ε)n.

Proposition 2. The resultant iterates in the following way:

Res(gn, hn) =
Res(g, h)δ

n−1(1+δ+···+δn−1)`(g)δ
n−1(1+δ+···+δn−1)(δ−ε)

`(gn)(δ−ε)n(1+δ+···+δn−1)

Before we prove Proposition 2, we recall the definition of the resultant of bivariate polynomials A(x, y)
and B(x, y); for more information see [4, Ch. 2.4]. Let

A(x, y) = a0x
n + · · ·+ any

n

B(x, y) = b0x
m + · · ·+ bmy

m
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be homogeneous polynomials. Then the resultant Res(A,B) of A and B is defined to be the determinant of
the (m+ n)× (m+ n) matrix

Res(A,B) = det



a0 a1 · · · an
a0 a1 · · · an

a0 a1 · · · an
. . . . . .

a0 a1 · · · an
b0 b1 · · · · · · bm

b0 b1 · · · · · · bm
b0 b1 · · · · · · bm

. . . . . .
b0 b1 · · · · · · bm


If a0b0 6= 0, and A and B factor as

A = a0

n∏
i=1

(x− αiy) and B = b0

m∏
j=1

(x− βjy),

then

Res(A,B) = am0 b
n
0

n∏
i=1

m∏
j=1

(αi − βj).

In particular, if A and B have the same degree and represent the homogenizations of two univariate polyno-
mials a and b (e.g. A(x, y) = ydeg aa(x/y)), then the resultant of the specializations of A and B at y = 1 is
exactly the resultant of the univariate polynomials a and b. Moreover, the bivariate resultant transforms un-
der composition in the following way [4, ex. 2.12]: if F and G are homogeneous polynomials of degree D and
f and g are homogeneous of degree d, and A(x, y) = F (f, g) and B(x, y) = G(f, g) are their compositions,
then

Res(A,B) = Res(F,G)d · Res(f, g)D
2
.

Proof of Proposition 2. Recall that g and h have different degrees. In particular, if we write their homoge-
nizations G(x, y) and H(x, y) as

G(x, y) = yδg(x/y) and H(x, y) = yδh(x/y) := yδ−εH̃(x, y),

then the leading term (in x) of H(x, y) contains non-trivial multiples of y. In order to relate the bivariate
resultant to the univariate resultant, we use the factorization H(x, y) = yδ−εH̃(x, y) together with the
definition in terms of the determinant to get

Res(G,H) = `(G)δ−ε Res(G, H̃).

By iterating the result of [4, ex. 2.12] referred to above, we get

Res(Gn, Hn) = Res(G,H)d
n−1(1+d+···+dn−1).

It follows that `(Gn)δn−εnRes(Gn, H̃n) = [Res(G, H̃)`(G)δ−ε]d
n−1(1+···+dn−1). Altogether this gives

Res(Gn, H̃n) =
[Res(G, H̃)`(G)δ−ε]d

n−1(1+···+dn−1)

`(G)(δ−ε)n(1+···+dn−1)
.

Since Res(Gn, H̃n) = Res(gn, hn), and Res(G, H̃) = Res(g, h), we obtain the desired formula. �

Proposition 2 and Equation (5) give a formula for the geometric ramification in the function field extensions
given by the Φn(x, t). We now wish to consider the arithmetic ramification in the number fields obtained by
specializing t to t0 ∈ K. A consequence of Lemma 3 and Proposition 2 is that if we write

discx(gn(x)− thn(x)) = Cn
∏

r∈R
φ(n)

(gn(r)− thn(r))mr ,
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then the primes which divide Cn have finitely-many prime divisors as n→∞. We now provide a key result
that will show, under appropriate hypotheses, that the discriminants do indeed have only finitely many
prime divisors. It is natural to assume φ is postcritically finite, since this is the condition that guarantees
disc(gn(x)− thn(x)) has only finitely many prime divisors in K[t] as n goes to infinity.

To set up for the next series of Propositions, we factor gn(x) = gn,1(x)e1gn,2(x)e2 · · · gn,R(x)eR into powers
of K-irreducibles. We further define

gSn (x) = gn,1(x)gn,2(x) · · · gn,R(x).

Using the identity disc(AB) = ±disc(A) disc(B) Res(A,B)2 for monic coprime polynomials, one can work
out a formula for disc gSn . It suffices then to give a formula for disc gn when gn(x) has no repeated roots.

Proposition 3. With all notation as above, we have

disc gn = ±`1−εn−1(δ
2−δ)+(1−δn−1)δ disc gRes(gn−1, hn−1)δ(δ−1)

δ∏
j=1

disc(gn−1 − βjhn−1).

Proof. We leave it to the reader to check the power of `. Factor g(x) over K as

g(x) = `(g)
δ∏
j=1

(x− βj).

Then, up to a power of `, the discriminant disc gn(x) is given by
∏
{θ : gn(θ)=0} gn

′(θ). Using the factorization

gn(x) = `
∏δ
j=1(gn−1(x) − βjhn−1(x)), one sees that the set of roots of gn is partitioned into δ subsets

{θ(j)i }
δn−1
i=1 ; the fact that these sets are disjoint follows from gn and hn having no common roots and that the

βj are distinct. The derivative of gn(x) is given by

g′n(x) = `

δ∑
j=1

(g′n−1(x)− βjh′n−1(x))
δ∏
k=1
k 6=j

(gn−1(x)− βkhn−1(x))

 ,
and so we evaluate gn ′(x) on the roots of gn(x):

Y
{θ : gn(θ)=0}

g
′
n(θ) =

δY
j=1

δn−1Y
i=1

g
′
n(θ

(j)
i )

= `

0BBB@
δY
j=1

δY
k=1
k 6=j

δn−1Y
i=1

gn−1(θ
(k)
i )− βjhn−1(θ

(k)
i )

1CCCA
264 δY
j=1

δn−1Y
i=1

g
′
n−1(θ

(j)
i )− βjhn−1(θ

(j)
i )

375 .

The quantity in parentheses is, up to powers of `, simply all the resultants Res(gn−1 − βjhn−1, gn−1 −
βkhn−1) for j 6= k. It is easy to check that, up to powers of `, we have δ∏

j=1

δ∏
k=1
k 6=j

δn−1∏
i=1

gn−1(θ(k)i )− βjhn−1(θ(k)i )

 = ±disc gS Res(gn−1, hn−1)δ(δ−1).

The quantity in brackets is, up to powers of `, the product over all the βj of disc(gn−1 − βjhn−1). This
proves the Proposition. �

We now state and prove the main result of the paper.

Theorem 1. Let φ(x) ∈ K(x) be postcritically finite. Choose an integral model φ(x) = g(x)/h(x) so
that g(x), h(x) ∈ OK [x] and Res(g(x), h(x)) 6= 0. If gn(x), hn(x) are given by (4), then for each t0 ∈ K,
there exists a finite set St0 of primes of K such that for all n ≥ 1, if p is a prime of K not in St0 , then
vp(disc(gn(x)− t0hn(x))) = 0.
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Proof. We divide the proof into two cases based on whether the discriminant disc gn = 0.
Case 1: disc gn(x) 6= 0 for all n

According to the Remark preceeding the proof of Proposition 1, we have

discx(gn(x)− thn(x)) = ±disc(gn)
∏

β∈B
φ(n)

(1− t/β)Mβ .

Since φ is postcritically finite, there exists an N ∈ Z>0 such that for all n ≥ N∏
β∈B

φ(n)

(1− t/β)Mβ =
∏

β∈B
φ(N)

(1− t/β)Mβ

as K-polynomials. It therefore suffices to focus on disc gn. By Proposition 3 we have

disc gn = ±`1−εn−1(δ
2−δ)+(1−δn−1)δ disc gRes(gn−1, hn−1)δ(δ−1)

δ∏
j=1

disc(gn−1 − βjhn−1),

where the βj are the roots of g(x). By Proposition 2, Res(gn−1, hn−1) is a power of Res(g, h). We then have
δ∏
j=1

disc(gn−1 − βjhn−1) = ±disc(gn−1)δ
δ∏
j=1

∏
β∈B

φ(n−1)

(1− βj/β)Mβ

is simply a product of the discriminants of the type in this Theorem evaluated on the βj . Since φ is
postcritically finite, there exists an N (the same N as above suffices) such that for all n ≥ N , the products

δ∏
j=1

∏
β∈B

φ(n−1)

(1− βj/β)Mβ =
δ∏
j=1

∏
β∈B

φ(N)

(1− βj/β)Mβ

are equal. This finishes the proof in the case where disc gn 6= 0 for all n.

Case 2: disc gn(x) = 0 for some n

The proof in this case is more complicated, but has the same strategy. The main point is that the coef-
ficients of the product

∏
Pn(µ)=0(1− t/φ(n)(µ)) have the same prime divisors for all n sufficiently large and

the product itself remains fixed for all n sufficiently large.

We therefore take n large enough such that for all ν > n, we have Bφ(n) = Bφ(ν) . We refer to the formula
of Proposition 1 and note that the coefficient in front of the initial parentheses iterates as in Lemma 3
and so has only finitely-many prime divisors as n → ∞. Under iteration, the product

∏T
i=1 t

ei−1 simply
contributes more powers of t to the discriminant, and thus does not provide any new prime divisors for a
given specialization.

Next, the product
∏T
j=1 `

−d(ej−1)
j Res(gj , h)ej−1 can be rewritten as

T∏
j=1

`
−d(ej−1)
j Res(gj , h)ej−1 =

∏T
j=1 `

−d(ej)
j Res(gj , h)ej∏T

j=1 `
−d
j Res(gj , h)

=
`d Res(g, h)

`(gS)d Res(gS , h)
.

As n→∞, the prime divisors of the iterates of `d Res(g,h)
`(gS)d Res(gS ,h)

form a finite set (use the fact that Res(gS , h)
and `(gS) are OK-divisors of Res(g, h) and `, respectively).

Finally, the two products T∏
j=1

[`2−δjj disc(gj)]ej


 T∏
i=1

T∏
j=1
j 6=i

[`−δji Res(gi, gj)]ei


are, up to powers of divisors of `, have exactly the same prime divisors as disc(gS) (note that each resultant
appears twice, and recursively apply the formula disc(AB) = disc(A) disc(B) Res(A,B)2). Therefore, it
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remains to demonstrate that disc gSn has only finitely-many prime divisors as n → ∞. But each irreducible
factor of gSn (x) is itself a product of factors of the type gn−1−βjhn−1, the discriminants of which have already
been shown to have finitely-many prime divisors as n → ∞ under the hypothesis that φ is postcritically
finite. This completes the proof of the Theorem. �

When δ−ε > 1, then dischn(x) = 0 for any h(x) once n > 1. In this case, a specialization of Dn,φ([s1 : s2])
to infinity equals zero. When δ < ε, it is the case that δn = εn for all n > 1 so it suffices to consider
0 ≤ δ − ε ≤ 1. In that case, one can work out an analogous discriminant formula to the one in Proposition
3 to show that dischn, if it is non-zero, has finitely-many prime divisors as n→∞.

5. Applications

The main application of the discriminant formula is the characterization of the primes ramifying in a
finite extension of characteristic-0 function fields, and its number field specializations. In particular, it has
potential usefulness in computing the different ideal of the extensions. This is complementary to results of
Beckmann [2, 3]. There, the author provides a geometric framework in which the number field ramification
can be described. For completeness, we briefly remind the reader of those results.

Let X −→ P1 be a branched covering of curves over C that can be defined over a number field K; let
XK −→ P1

K be a model for this covering. Let Sbad be the union of the set of finite primes of OK that

(1) divide the order of the Galois group of the Galois closure of K(X);
(2) at which two branch points of X −→ P1 meet;
(3) divide the discriminant of the polynomial generating the field extension,

where two points a, b ∈ K meet at p if ordp(a− b) > 0. Further, if we specialize the function field extension
at t = a, then let Sa be the set of primes at which a meets some branch point. A good model is a model for
which the primes of OK that ramify in O[X] are contained in Sbad.

Theorem. [3, thm. 5.1.1] Suppose that G [the Galois group of the Galois closure of the cover] has trivial
center, or that XK −→ P1

K is a good model. Let a ∈ K and assume that t = a is not a branch point of
X −→ P1. Let L1, . . . , Lm be the field extensions of K arising from the specialization of XK −→ P1

K to
t = a. Then the finite primes of K that ramify in some Li are contained in the set Sbad

⋃
Sa.

For a concrete family of examples, recall [4, p. 351] that a rational map φ : P1 −→ P1 of degree ≥ 2
is called a Lattès map if there exists an elliptic curve E, a morphism ψ : E −→ E, and a finite separable
covering π : E −→ P1 such that the following diagram commutes:

E
ψ //

π

��

E

π

��
P1

φ // P1

It known [4, Prop. 6.45] that Lattès maps are postcritically finite. In particular, if we fix a Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

take ψ = [m] (the multiplication-by-m isogeny), and take π to be the projection onto the x-coordinate, then
φ is a Lattès map and hence postcritically finite. In particular, φ(n)(x) = x([mn]P ) is postcritically finite
for all n.
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Let P ∈ E and set π(P ) = t ∈ P1. Then the preimage of t under the compositions of π with the [mn]
give rise to ramified coverings of P1 and hence to ramified extensions of number fields Kn/K:

...
φ

��

...

P1

φ

��
φ(2)

��

K2

P1

φ

��

K1

P1 K

Our formulæ not only show that the field extension
⋃∞
n=1Kn of K is ramified at a finite number of places,

but it also gives an exact formula for the discriminant of all the Kn.
For an explicit example, we choose a Weierstrass equation for E of the form y2 = x3 + ax + b, with

a, b ∈ K. We take ψ = [2] so that

φ(x) =
x4 − 2ax2 − 8bx+ a2

4x3 + 4ax+ 4b
.

Therefore, given a point P on E with coordinates (x, y), the rational function φ(x) gives the x-coordinate
of [2]P and so φ(n)(x) = x([2n]P ). Applying Proposition 1 we get

discx(g(x)− th(x)) = ±212(ta+ b+ t3)2(4a3 + 27b2).

For n ≥ 2, an explicit formula for the discriminant can be found using the formula of Proposition 2, but the
only primes ramifying in the field extension are those which divide −212(ta+ b+ t3)2(4a3 + 27b2). Similarly,
if Φ = π ◦ [3], then

Φ =
G(x)

H(x)
:=

x9 − 12ax7 − 96bx6 + 30a2x5 − 24bax4 +
“
36a3 + 48b2

”
x3 + 48ba2x2 +

“
9a4 + 96b2a

”
x +

“
8ba3 + 64b3

”
9x8 + 36ax6 + 72bx5 + 30a2x4 + 144bax3 +

`
−12a3 + 144b2

´
x2 − 24ba2x + a4

,

and the discriminant discx(G(x)− tH(x)) is given by

±24839(t3 + at+ b)4(4a3 + 27b2)10.

Similar formulas can be obtained for all positive integers m. More generally, given a point P of infinite
order on an elliptic curve E/Q one can study the ramification in the Kummerian fields Q(E[m], P ) via these
formulæ in tandem with elliptic Kummer theory.

Finally, we note that in the case of postcritically finite extensions our discriminant formula guarantees
finite ramification in the (infinite) tower of number fields. However, it is not clear whether a given non-
postcritically-finite tower can be finitely-ramified, since not all primes dividing the discriminant must ramify.
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