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Abstract. We show that the degree-3 Jacobi Polynomials define two one-parameter families of elliptic

curves Er/Q(r) and Fs/Q(s) with positive rank outside of an explicit finite set of (r, s) ∈ Q × Q. In

addition we initiate a program to study the ranks of the Jacobians of these curves in higher degree.

1. Introduction

Orthogonal polynomials have played a central role in mathematics for centuries, but it is only recently that
they have been studied for their arithmetic properties. Schur pioneered this field of arithmetic by studying the
irreducibility and Galois-theoretic properties of certain subfamilies of the Hermite and Generalized Laguerre
polynomials. Schur’s results have been generalized by many, including Coleman [3], Gow [5], Hajir [6, 7],
and Sell [11]. In [8], Hajir and Wong initiated an algebro-geometric program for studying the irreducibility
and Galois properties of any one-parameter family of polynomials. The techniques they employ are different
than the earlier approaches and illustrate the far-reaching impact of this area of mathematics. In this paper
we study certain arithmetic properties of the Jacobi Polynomials.

The Jacobi Polynomials are a two-parameter family of polynomials, defined as follows:

P (α,β)
n (x) :=

n∑
j=0

(
n+ α

n− j

)(
n+ α+ β + j

j

)(
x− 1

2

)j
.

These polynomials were originally discovered as solutions to the differential equation

(1− x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β + 1)y = 0,

and, together with the Generalized Laguerre Polynomials and Hermite Polynomials, make up the three
classical families of orthogonal polynomials.

The arithmetic of Jacobi polynomials is less well-understood than that of Laguerre and Hermite. In
particular, Jacobi polynomials yield as special cases the Chebyshev, Gegenbauer, and Legendre polynomials,
the irreducibility properties of which are only partially known. An investigation of the arithmetic properties
of certain one-parameter subfamilies of the Jacobi polynomials using the program outlined in [8] was begun in
[4]. Jacobi polynomials have also been studied in connection with the arithmetic of elliptic curves. In [1], it is
shown that there is a connection between the supersingular polynomial ssp(t) and certain Jacobi polynomials:
ssp(x) ≡ Jp(x), xJp(x), (x − 1728)Jp(x), or x(x − 1728)Jp(x) if p ≡ 1, 5, 7, 11 (mod 12), respectively, where
Jp(x) is an explicit Jacobi polynomial. Other applications of Jacobi polynomials to elliptic curves have been
studied by Kaneko and Zagier [9], and Mahlburg and Ono [10].

In this note we examine Jacobi polynomials as models for curves giving rise to abelian varieties by taking
their Jacobians. We begin by introducing a linear change of variables that decouples the (α, β)-coefficients
and more clearly shows to which degree these coefficients belong. We define:

P 〈r,s〉n (x) := P (−1−n−r,r+s+1)
n (2x+ 1) =

n∑
j=0

(
−1− r
n− j

)(
s+ j

j

)
xj .

In this parameterization, the Jacobi polynomials enjoy the symmetry relation P 〈r,s〉n (x) = (−x)nP 〈s,r〉n (1/x),
which will be used in Section 3.

Set n = 3 and denote by X the projective closure of the zero-set of P 〈r,s〉3 (x) so that X defines a projective
surface in P3

Q. Alternatively, one can view the surface X/Q as defining a curve over the function field Q(r)
or Q(s); we will see that these give rise to elliptic curves Er and Fs. The generalized Mordell-Weil theorem
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over function fields of number fields applies, and so it makes sense to ask about the rank of the Mordell-Weil
groups of these curves. If they have positive rank, then a theorem of Silverman [12, p. 211] implies that the
ranks of the specializations over Q are positive for all but finitely-many specializations. Once this fact has
been established, one can try to compute the exceptional set explicitly. This is our main result.

Theorem 1. The elliptic curves Er and Fs each have Mordell-Weil group Z/3 × Z over Q(r) and Q(s),
respectively. Moreover, the exceptional set of rank-0 specializations of (r, s) to Q×Q is exactly S×S, where

S = {0,−3/4,−6/5,−3/2}.

2. The Elliptic Curves Er and Fs
We start by viewing X as a projective curve over the function field Q(s) given by the zero-set of the

homogeneous polynomial

P3(x, r, z) :=
(

1
6
s3 + s2 +

11
6
s+ 1

)
x3 +

((
−1

2
s2 − 3

2
s− 1

)
r +

(
−1

2
zs2 − 3

2
zs− z

))
x2

+
((

1
2
s+

1
2

)
r2 +

(
3
2
zs+

3
2
z

)
r +

(
z2s+ z2

))
x+

(
−1

6
r3 − zr2 − 11

6
z2r − z3

)
.

With a view towards specialization, denote this curve by Fs. We compute the resultants

R1 := Res(P 〈r,s〉3 (x), ∂xP
〈r,s〉
3 (x)), and

R2 := Res(P 〈r,s〉3 (x), ∂rP
〈r,s〉
3 (x)).

Altogether:

Res(R1, R2) =
(s+ 1)30(s+ 2)24(s+ 3)14(17s2 + 39s+ 18)2

236342
6= 0.

Thus Fs is non-singular in the affine plane over Q(s) and it is similarly easy to check non-singularity at
infinity. Therefore Fs defines a smooth cubic curve with many rational points (e.g. [0 : −1 : 1]), and so it is
an elliptic curve. A standard change of variables [13, §3] gives us a Weierstrass model for Fs:

y2 = x3 +
−35(9s2 + 50s+ 73)

(s+ 1)2(s+ 2)4(s+ 3)4
x+

2 · 36(27s4 + 252s3 + 866s2 + 1340s+ 827)
(s+ 1)4(s+ 2)6(s+ 3)6

.

Alternatively, X defines a sextic curve over Q(r). This curve is smooth in the affine plane and is singular
at infinity; the singular points are [0 : 1 : 0] and [1 : 0 : 0]. Let π : X −→ P1

Q(r) denote the projection-to-s
map, the branch locus of which is given by the roots of the discriminant:

disc(P 〈r,s〉3 (x)) =
−(r + 1)(r + 2)

12
(s+ 1)2(s+ 2)(s+ 3 + r)(s+ 4 + r)2.

The Riemann-Hurwitz formula applied to π : X −→ P1
Q(r) yields

2g(X)− 2 = (deg π)(−2) +
∑
p∈X

(ep − 1),

with deg π = 3. Plugging in the ramification indices and taking note that there is no ramification at infinity,
we see that the genus of X/Q(r) is 1. Thus X/Q(r) has a resolution of singularities Er which is a smooth
curve of genus 1 with a rational point, hence is an elliptic curve. A Weierstrass model for Er is

y2 = x3 − 3(r + 1)2(9r2 + 50r + 73)x+ 2(r + 1)2(27r4 + 252r3 + 866r2 + 1340r + 827).(1)

This equation is obtained by applying the change of variables in [13, §3] to the proper transform in Section
3 of this paper when n = 3.

Proposition 1. The Mordell-Weil groups Fs(Q(s)) and Er(Q(r)) are each isomorphic to Z/3× Z.

Proof. For any elliptic curve E over a field k with Weierstrass equation y2+a1xy+a3y = x3+a2x
2+a4x+a6,

the change of variables x = u2x′ + α, y = u3y′ + βu2x′ + γ, where α, β, γ ∈ k and u ∈ k× preserves the form
of the Weierstrass equation, the point at infinity, and is an isomorphism of curves. In the case of Fs, setting
α = β = γ = 0 and u = 3/((s + 1)(s + 2)(s + 3)) produces the same Weierstrass equation as Er. It follows
that Fs has the same arithmetic properties as Er.
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If k is the function field Q(t), a theorem of van Luijk [14, Prop. 6.2] states that if p is a rational prime
of good reduction for E, and if E denotes the reduction modulo p, then E(Q(t)) injects into E(Fp(t)). One
checks that the discriminant ∆r of Er is ∆r = −1728(r + 1)4(r + 2)3(r + 3)2. Choose p = 5 so that by (1),
the Weierstrass equation for Er over F5(r) is

Y 2 = X3 + 3(r + 1)2(r2 + 2)X − (r + 1)2(r4 + r3 + 3r2 + 1).

This curve has an F5(r)-rational 3-torsion point, so the Mordell-Weil group can be computed by an explicit
descent-by-3-isogeny. We omit the details but instead refer the reader to [2] for an explicit approach to such
computations. The conclusion is that

Er(F5(r)) ' Z/3× Z.

To determine the torsion subgroup of Er(Q(r)), we look for a 3-torsion point A(r). In order for [3]A(r) =
O, we require [2]A(r) = −A(r), and hence that x([2]A(r)) = x(A(r)):

x4 + 6(r + 1)2(9r2 + 50r + 73)x2 − 16(r + 1)2(27r4 + 252r3 + 866r2 + 1340r + 827)x + 9(r + 1)4(9r2 + 50r + 73)2

4x3 − 12(r + 1)2(9r2 + 50r + 73)x + 8(r + 1)2(27r4 + 252r3 + 866r2 + 1340r + 827)
= x.

A little algebra reveals that A(r) =
(
3(r + 1)2/4, 2(r + 1)(r + 2)

)
has order 3.

We can conclude that Er(Q(r)) ' Z/3 × Z provided we exhibit a rational point that does not have
order 3. A search for an arbitrary Q(r)-rational point B(r) of Er of quadratic type reveals that B(r) =
((r + 1)(3r + 11), 8(r + 1)(r + 3)) is a point of Er which is not of order 3. This proves the Proposition. �

It remains to determine the exceptional set of rank-0 specializations. Due to the discriminants of the
curves, we only consider specializations of r and s to the set Q \ {−1,−2,−3}.

Proposition 2. Let B(r) = ((r+1)(3r+11), 8(r+1)(r+3)) and let r0 ∈ Q\{0,−3/4,−1,−6/5,−3/2,−2,−3}.
Then B(r0) is a point of infinite order on Er0/Q.

Proof. For any r0 ∈ Q \ {−1,−2,−3}, the specialization Er0 is an elliptic curve defined over Q. We need to
show that the only r0 for which B(r0) is a torsion point are r0 = 0,−3/4,−6/5,−3/2. By Mazur’s theorem,
the torsion subgroup of an elliptic curve over Q is precisely one of the following:

Z/N : 1 ≤ N ≤ 10, or N = 12;
Z/2× Z/2N : 1 ≤ N ≤ 4.

We use this information in the following way. If, say, B(r0) were a 2-torsion point, then y(B(r0)) = 0,
i.e. 8(r0 +1)(r0 +3) = 0. This is impossible since the specializations r0 = −1,−3 are singular. The following
table contains information for similar arguments for m-torsion points. In particular, the Q-solutions to the
equations in the third column are the only possibilities for rank-0 specializations:

m Geometric Condition Algebraic Condition
2 y(B(r)) = 0 8(r + 1)(r + 3) = 0
3 x([2]B(r)) = x(B(r)) (3r − 13)(r + 1) = (3r + 11)(r + 1)
4 y([2]B(r)) = 0 16(r + 1)(4r + 3) = 0
5 x([4]B(r)) = x(B(r)) 48r4+248r3+635r2+750r+315

(4r+3)2 = 3r2 + 14r + 11
6 y([3]B(r)) = 0 32

27 (r + 3)(7r2 + 15r + 9) = 0
7 x([6]B(r)) = x(B(r)) 1579r6+12204r5+38844r4+62478r3+51516r2+19440r+2187

9(7r2+15r+9)2 = 3r2 + 14r + 11

8 y([4]B(r)) = 0 −16(r+1)(4r4+165r3+594r2+756r+324)
(4r+3)3 = 0

9 x([8]B(r)) = x(B(r)) [(r + 1)(768r11 − 282880r10 − 2164512r9 − 3793824r8 + 16329843r7 + 99899487r6 + 246635280r5

+359761500r4 + 334611000r3 + 197144928r2 + 67709520r + 10392624)]/

(4r + 3)3(4r4 + 165r3 + 594r2 + 756r + 324)2 = (3r + 11)(r + 1)

10 y([5]B(r)) = 0 −8(r+1)(r+3)(512r6+5670r5+22842r4+45387r3+48114r2+26244r+5832)
(2r2−6r−9)3 = 0

12 y([6]B(r)) = 0 −4(r+3)(4r+3)(5r+6)(208r6+1044r5+2673r4+5967r3+9963r2+8748r+2916)
8(7r2+15r+9)3 = 0

The rational solutions are those that belong to the set {−1,−2,−3,−3/4,−3/2,−6/5, 0}, which proves the
Proposition. �
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Corollary 1. The rank-0 specializations and Mordell-Weil groups of Er are precisely the following:

r0 Er0 Er0(Q)
0 y2 = x3 − 219x+ 1654 Z/9
−3/4 y2 = x3 − (1947/256)x+ 54107/2048 Z/12
−6/5 y2 = x3 − (1947/625)x+ 108214/15625 Z/12
−3/2 y2 = x3 − (219/16)x+ 827/32 Z/9

Proof. If r0 6= −1,−2,−3,−3/4,−3/2,−6/5, 0 then Er0 is an elliptic curve of positive rank over Q. Hence,
it suffices to check the Mordell-Weil groups of Er0 for r0 ∈ {−3/4,−3/2,−6/5, 0} which are as given in the
table. [Note: E0 and E−3/2 are isomorphic as curves, as are E−3/4 and E−6/5.] �

Corollary 2. The Mordell-Weil group Fs0(Q) has positive rank for all specializations

s0 ∈ Q \ {0,−3/4,−1,−6/5,−3/2,−2,−3}.

Proof. There is an isomorphism of curves Et −→ Ft defined over Q(t):

(x, y) 7→

([
3

(t+ 1)(t+ 2)(t+ 3)

]2
x,

[
3

(t+ 1)(t+ 2)(t+ 3)

]3
y

)
.

Via this isomorphism, the specializations are as follows:

s0 Fs0 Fs0(Q)
0 y2 = x3 − (219/16)x+ 827/32 Z/9
−3/4 y2 = x3 − (42532864/16875)x+ 1815529652224/11390625 Z/12
−6/5 y2 = x3 − (253515625/6912)x+ 13209716796875/1492992 Z/12
−3/2 y2 = x3 − 56064x+ 6774784 Z/9

�

3. Future Work

For higher-degree Jacobi Polynomials, we can similarly define the curves Er and Fs as the zero-sets of
the polynomials viewed over the function fields Q(r) and Q(s) respectively. The curve Fs has degree n,
is smooth in every degree, and hence has genus (n − 1)(n − 2)/2. On the other hand, the curve Er has
two singularities p := [1 : 0 : 0] and q := [0 : 1 : 0] in every degree. Since Er has degree 2n, it has genus
(2n − 1)(2n − 2)/2 − (δp + δq), where δp, δq are the delta-invariants of the singularities. The following two
lemmas show that Er has genus (n− 1)(n− 2)/2 also.

Recall that an “ordinary m-fold point” is a singular point of multiplicity m with m distinct smooth
branches, i.e., m different tangent directions. For example, the origin is an ordinary double point for the
nodal cubic y2 = x3 + x2. Such a singular point (for a curve in C2) is resolved upon blowing up the origin
once.

Lemma 1. The point p ∈ Er is an ordinary n-fold point. Hence,

δp =
1
2
n(n− 1).

Proof. We consider the local equation for Er in affine coordinates centered at p :

Qn(1, s, z) =
n∑
j=0

(
−1− r
n− j

)(
s+ jz

j

)
z2n−2j .

It is clear that every monomial in the jth term has order 2n − j, j = 0, . . . , n. Therefore, the point p has
multiplicity n, and the order n piece of Qn(1, s, z) is(

s+ nz

n

)
=

1
n!

(s+ nz)(s+ (n− 1)z) · · · (s+ z).

From here, it is clear that the singularity has n distinct smooth branches. The formula for the delta-invariant
is trivial. �
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Lemma 2. The delta-invariant of q is given by δq = n(n− 1).

Proof. We will show that although q = [0 : 1 : 0] is not an ordinary singular point, it does have multiplicity
n, and upon blowing up the origin once, the proper transform of Er has just one singular point, q1, which is
an ordinary n-fold point there. Once this has been shown, it follows that the delta-invariant is

δq =
1
2

[n(n− 1) + n(n− 1)] = n(n− 1).

The local equation for Er in affine coordinates centered at q is

Qn(x, 1, z) =
n∑
j=0

(
−1− r
n− j

)(
1 + jz

j

)
xjz2n−2j .

The lowest order term from the jth summand is
(−1−r
n−j

)
xjz2n−2j , and hence q has multiplicity n. Now we

blowup the origin in the plane with coordinates x and z. The blowup is covered by two affine charts, but in
only one of these does the proper transform of Er intersect the exceptional P1 . Let this chart have coordinates
(t, z), where t = x/z.

We have

Qn(tz, 1, z) =
(
−1− r
n

)
z2n +

n∑
j=1

(
−1− r
n− j

)
1
j!

(1 + jz)(1 + (j − 1)z) · · · (1 + z)tjz2n−j

= zn

(−1− r
n

)
zn +

n∑
j=1

(
−1− r
n− j

)
1
j!

(1 + jz)(1 + (j − 1)z) · · · (1 + z)tjzn−j

 .

Therefore, the proper transform of Er denoted E T
r , is defined by

(2)
(
−1− r
n

)
zn +

n∑
j=1

(
−1− r
n− j

)
1
j!

(1 + jz)(1 + (j − 1)z) · · · (1 + z)tjzn−j = 0.

The exceptional curve E is given by z = 0, so it is easy to see that E T
r intersects E in only one point:

(t, z) = (0, 0). This is the only possible singular point on E T
r , and we claim it is an ordinary n-fold point.

Clearly, the lowest order terms in the defining equation (2) are(
−1− r
n

)
zn +

n∑
j=1

(
−1− r
n− j

)
1
j!
tjzn−j .

This polynomial has non-zero discriminant, so the formula for the delta-invariant follows. �

By the two lemmas, we have

genus(Er) =
(2n− 1)(2n− 2)

2
− (δp + δq)

=
(2n− 1)(2n− 2)

2
− 3

2
n(n− 1)

=
(
n− 1

2

)
.

Therefore the genera of the curves Er and Fs are equal.
A natural question is whether our main result can be generalized to higher-degree curves and their Ja-

cobians. The symmetry relation P
〈r,s〉
n (x) = (−x)nP 〈s,r〉n (1/x) gives rise to the birationality of Er and Fs.

Indeed, relabeling coordinates so that the affine models of Et and Ft are given by P
〈t,y〉
n (x) and P

〈y,t〉
n (x),

respectively, the transformation (x, y) 7→ (1/x, y) is rational (with rational inverse) on a Zariski-open subset.
Hence the curves are birationally equivalent. In other words, the fact that Er and Fs are geometrically
similar is not restricted to low-degree polynomials. Thus, the curves Er and Fs each have many rational
points and embed into their Jacobians, which are abelian varieties of dimension (n− 1)(n− 2)/2. It would
be interesting to determine whether or not these abelian varieties have positive rank for all n > 3.
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