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Abstract. Ever since Legendre introduced the polynomials that bear his name in 1785, they have
played an important role in analysis, physics and number theory, yet their algebraic properties are
not well-understood. Stieltjes conjectured in 1890 how they factor over the rational numbers. In
this paper, assuming Stieltjes’ conjecture, we formulate a conjecture about the Galois groups of
Legendre polynomials, to the effect that they are “as large as possible,” and give theoretical and
computational evidence for it.

1. Introduction

The sequence (Pm(x))m≥0 of Legendre polynomials is an orthogonal family on [−1, 1], first intro-
duced by Adrien-Marie Legendre in 1785 [15] as coefficients in a series expansion for the gravitational
potential of a point mass. For m ≥ 0 we can define Pm(x) via the Rodrigues formula

Pm(x) :=
(−1)m

2mm!

(
d

dx

)m
(1− x2)m.

As a solution y = Pm(x) of the Legendre differential equation

d

dx

[
(1− x2)dy

dx

]
+m(m+ 1)y = 0,

Pm(x) is an eigenfunction of the self-adjoint operator d
dx(1− x2) d

dx with eigenvalue −m(m+ 1). It
is easy to see that Pm(−x) = (−1)mPm(x), prompting us to define the even polynomial of degree
2bm/2c:

Lm(x) =

{
Pm(x) if m is even;

Pm(x)/x if m is odd.

While their importance in classical physics and analysis dates back to Legendre’s paper, the role
of Legendre polynomials in number theory became manifest a bit later, for instance as the Hasse
invariant

Wp(Eλ) := (1− λ)mPm

(
1 + λ

1− λ

)
for the Legendre-form elliptic curve Eλ : y2 = x(x − 1)(x − λ) over Fp, where p = 2m + 1 is
prime (see [3] and its references). As an indication of the arithmetic depth of this fact, we mention
one of its consequences, thanks to the theory of elliptic curves with complex multiplication: say
m = (p− 1)/2 is odd; then the class number of Q(

√
−p) is one-third the number of linear factors

of Pm(x) over Fp (see Brillhart-Morton [3, Theorem 1(a)]).
The algebraic properties of many similar families of hypergeometric polynomials (Laguerre,

Chebyshev, Hermite, Bessel) have been extensively explored using methods pioneered by Schur
[21], but results of this nature for Legendre polynomials continue to be fragmentary at best. As
regards how Legendre polynomials factor over the rationals, Stieltjes put forward the following
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conjectures.
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conjecture in an 1890 letter to Hermite [22]: P2n(x) and P2n+1(x)/x are irreducible over Q, i.e
Lm(x) is irreducible over Q for all m. Some cases of Stieltjes’ conjecture have been verified by
Holt, Ille, Melnikov, Wahab, McCoart [11, 12, 14, 17, 24, 25, 16]; the articles [24] and [16] provide
useful summaries. The flavor of these results is that if m or m/2 is within a few units of a prime
number, then Lm(x) is irreducible over Q (see for example Corollary 3.4(b), a result of Holt com-
pleted by Wahab, which we re-derive). There has been no significant improvement of these results
for several decades. From a number-theoretic viewpoint, for primes p = 2m + 1 ≡ 3 mod 4, the
irreducibility of Pm(x) has the intriguing consequence, thanks to the result of Brillhart and Morton
quoted above, that the class number of Q(

√
−p) is “governed” by the number field cut out by a

non-zero root of Pm(x), specifically by how the prime p splits in it. We should point out that recent
work of Bourgain and Rudnick [2] places Stieltjes’ conjecture in a much more general context of
expectations for the behavior of eigenfunctions of Laplacians; perhaps a resurgence of interest in
the question will ensue.

We assume Stieltjes’ conjecture, and turn our attention to the next natural question, namely
“What is the Galois group of the degree 2bm/2c polynomial Lm(x)?” We explore this question here,
and conjecture that these Galois groups are as large as possible, namely S2 o Sn where n = bm/2c.
Our starting point is to note that Lm(x) is an even polynomial, so if we write m = 2n + δ with
δ ∈ {0, 1}, then

Lm(x) = P2n+δ(x)/xδ = (−1)np(δ)n (−x2),

where p
(0)
n (x) and p

(1)
n (x) are degree n polynomials “underlying” the Legendre polynomials of even

and odd degrees, respectively. The choice of −x2 as opposed to x2 here is for convenience, so that

p
(0)
n (x) and p

(1)
n (x) have non-negative coefficients. The Galois group of L2n+δ(x) is now seen to

be be a subgroup of the wreath product of the group of order 2 with the Galois group of p
(δ)
n (x),

and hence an extension of the latter group by an elementary abelian 2-group of rank at most n.

We conjecture that p
(δ)
n (x) has full Galois group Sn and that the corresponding elementary abelian

2-component also has maximal rank, namely n; our focus in this paper is on the former aspect,

namely the computation of the Galois group of p
(δ)
n (x). We prove some cases of the conjecture

and give theoretical as well as computational evidence for it (see Theorems 1.6, 1.7, 1.8, and 1.9).
One of our approaches is to exploit tame ramification at primes in (n, 4n). In Section 7 we give an
alternate approach via primes that are wildly ramified in the splitting field of Lm(x).

1.1. Jacobi Polynomials. To proceed, we enter into a more detailed description of the polynomi-

als p
(δ)
n (x); in particular, it will be useful to express them as a specialization of Jacobi polynomials,

a two-parameter deformation of Legendre polynomials. For this purpose, we will rely on the classic

monograph of Szegö [23] as a reference. For n ≥ 0, the nth degree Jacobi polynomial P
(α,β)
n (x) can

be defined by the Rodrigues formula

P (α,β)
n (x) :=

(−1)n

2nn!
(1− x)−α(1 + x)−β

(
d

dx

)n [
(1− x)n+α(1 + x)n+β

]
.

Thus, Pm(x) = P
(0,0)
m (x).

Among many explicit expressions for the degree n polynomial P
(α,β)
n (x), we single out two. First,

from [23, 4.3.2], we have

P (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ β

j

)(
x− 1

2

)j (x+ 1

2

)n−j
.

The shifted polynomial

J (α,β)
n (x) := P (α,β)

n (2x+ 1)
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is also very useful because of the expansion (see [23, 4.21.2]):

J (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ α+ β + j

j

)
xj .

We begin our investigation by writing p
(δ)
n (x) in terms of the Jacobi Polynomial P

(α,β)
n (x) with

parameters α = ±1/2, β = 0. For n ≥ 0 and δ ∈ {0, 1} we find, using [23, Theorem 4.1], that

L2n+δ(x) = (−1)nJ (ε/2,0)
n (−x2), where ε = (−1)δ+1 = 2δ − 1, i.e.

p(δ)n (x) = J (δ−1/2,0)
n (x).

To lighten the notation, we define for ε ∈ {±1}

J εn(x) := J (ε/2,0)
n (x), J ε

n(x) := 2nn!J εn(x).

The advantage of the polynomial J ε
n(x) is that it has integer coefficients with a particularly useful

factorization as a binomial coefficient times a product of n consecutive odd integers. To describe
these coefficients, we introduce the following modified Pochhammer symbol notation:

((α))n := (α+ 2)(α+ 4) · · · (α+ 2n),

and compute

J ±
n (x) =

n∑
j=0

(
n

j

)
((2j ± 1))nx

j .

We summarize all of this as follows.

Lemma 1.2. Suppose m = 2n+ δ where n ≥ 0, δ ∈ {0, 1}, and ε = 2δ − 1. Then

(−1)n Lm(x) = J εn(−x2), (−2)nn! Lm(x) = J ε
n(−x2).

The preceding lemma essentially reduces the study of many algebraic properties of the Legendre
polynomials to the corresponding properties for J ±

n (x). The following lemma illustrates this for
the question of irreducibility (compare Wahab [24, Cor. 3.4]).

Lemma 1.3. Suppose m = 2n + δ where n ≥ 1, δ ∈ {0, 1}, and ε = 2δ − 1. Then Lm(x) is
irreducible over Q if and only if J ε

n(x) is irreducible over Q.

Proof. Suppose J ε
n(x) is irreducible over Q and let θ be a root of it. We compute

NQ(θ)/Q(−θ) =
J ε

n(0)

((2n+ ε))n
=

((ε))n
((2n+ ε))n

.

The interval [2n + 2 + ε, 4n + ε] contains a prime l (Bertrand’s Postulate, see Lemma 2.2). The
valuation of NQ(θ)/Q(−θ) at l is exactly −1, hence −θ is not a square in Q(θ). It follows that

Q(
√
−θ), which contains the degree n field Q(θ), has degree 2n over Q. Thus, the degree 2n

polynomial J ε
n(−x2) which has

√
−θ as a root, must be the minimal polynomial of this algebraic

number, and is therefore irreducible. The other direction is easy and left to the reader. �

1.4. The main conjecture and results. From now on, we assume the irreducibility of J ±
n (x)

and ask what can be said about its Galois group.

Conjecture 1.5. Suppose n ≥ 1 is an integer, δ ∈ {0, 1} and ε = 2δ − 1. Suppose the polynomial
J ε

n(x) is irreducible over Q. Then

(a) The Galois group of J ε
n(x) over Q is isomorphic to Sn.

(b) The Galois group of L2n+δ(x) is isomorphic to the wreath product S2 o Sn.

Some corroborating evidence for Conjecture 1.5(a) is provided by the following four theorems.
3



Theorem 1.6. Let n ≥ 2 be an integer and ε ∈ {±1}. Then the discriminant of the polynomial
J ε

n(x) is not a square in Q×. Hence, assuming J ε
n(x) is irreducible, its Galois group is not

contained in An.

Theorem 1.7. Let n > 2 be an integer and ε ∈ {±1}. Suppose J ε
n(x) is irreducible over Q and

that there is a prime number ` in the interval ((n+1)/2, n− 2) such that either (a) 2` + ε is prime;

or (b) 2̂̀+ ε is prime, where ̂̀= 2n+ 1− `. Then Gal(J ε
n(x)) ' Sn.

Theorem 1.8. The Hardy-Littlewood conjecture ([10, Conj. D]) implies that Conjecture 1.5(a)
holds for all large enough n.

Theorem 1.9. Suppose δ ∈ {0, 1} and ε = 2δ − 1. Then

(a) For all n ≤ 1 000 000 000, GalQ(J ε
n(x)) ' Sn, assuming this polynomial is irreducible.

(b) For n ≤ 60 we have GalQ(L2n+δ(x)) ' S2 o Sn.

In section 2, by using the expression for p
(δ)
n (x) as a specialized Jacobi Polynomial, we easily

obtain an explicit formula for its discriminant, which is composed of all the primes in the interval
[2, 4n+2δ−1]; we can then prove Theorem 1.6. We compute the Newton Polygons of J ±

n (x) at all
primes p > n in section 3. In section 4, we prove Theorem 1.7 by exploiting the tame ramification
of primes exceeding n, as determined by the slopes of the Newton polygons at these primes. We
remark that in practice it is easy, for any large enough n, to find a plethora of prime pairs (`, 2`+ε)

or (`, 2̂̀+ ε) with ` in the range indicated in Theorem 1.7; note that for ε = 1 this is the case of
Sophie Germain primes. It is likely well-known to experts that the Hardy-Littlewood conjectures
imply that such prime pairs always exist for large enough n, and that the number of such pairs
goes to infinity as n grows, but we were not able to find this in the literature. We therefore discuss
the case of prime pairs (`, 2` + ε) in the final section to establish Theorem 1.8 (see Theorem 5.2).
We establish Theorem 1.9(a) by a computation in Pari checking that every n in the indicated
range is close enough to an appropriate prime of ±-Sophie Germain type, and Theorem 1.9(b) via
a computation in Magma.

2. Discriminant Formula

It is well-known that the Galois group of a degree n irreducible polynomial f(x) ∈ Q[x] is
contained in An if and only if disc(f) is a square in Q×. In this section we will compute the

discriminant for J
(±1/2,0)
n (x) and prove that it is not a rational square.

Lemma 2.1. For n > 1 and ε ∈ {±1}, the discriminant of J ε
n(x) is given by the formula

disc J ε
n(x) = 2n

2−n
n∏
k=1

k2k−1(2k + ε)k−1(2k + 2n+ ε)n−k.

Proof. It is known [23, Thm. 6.71] that the discriminant Dn(α, β) of the Jacobi polynomial P
(α,β)
n (x)

is equal to

Dn(α, β) = 2−n(n−1)
n∏
k=1

kk−2n+2(k + α)k−1(k + β)k−1(n+ k + α+ β)n−k.
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Thus, for P
(±1/2,0)
n (x) we get

Dn(±1/2, 0) = 2−n(n−1)
n∏
k=1

k2k−2n+1(k ± 1/2)k−1(n+ k ± 1/2)n−k

= 2−2n(n−1)
n∏
k=1

k1−2(n−k)(2k ± 1)k−1(2n+ 2k ± 1)n−k.

Taking into account the fact that the discriminant of n!2nP
(±1/2,0)
n (x) is equal to (n!2n)2(n−1)Dn(±1/2, 0),

and writing n!2(n−1) as
∏n
k=1 k

2(n−1), we find

discn!2nP (±1/2,0)
n (x) =

n∏
k=1

k2k−1(2k ± 1)k−1(2n+ 2k ± 1)n−k.

Finally, recall that J
(α,β)
n (x) = P

(α,β)
n (2x+1). Since the discriminant is invariant under translation,

we apply the formula disc(f(2x)) = 2deg f(deg f−1) disc(f(x)) to arrive at

disc J ±
n (x) = discn!2nJ±n (x) = 2n

2−n
n∏
k=1

k2k−1(2k ± 1)k−1(2k + 2n± 1)n−k,

which is what we wanted to prove. �

To see that the discriminant of J
(±1/2,0)
n (x) is not a rational square, we will use the following

Lemma on the distribution of primes modulo 4, which is a simple consequence of Ramaré-Rumely
[20] together with a computer calculation.

Lemma 2.2. For all x ≥ 9, the interval [x, 2x − 5] contains at least one prime congruent to 1
modulo 4 and at least one prime congruent to 3 modulo 4.

Proof. See [7, Thm. 1]. �

Proposition 2.3. For all n ≥ 2, and ε ∈ {±1}, the discriminant of J ε
n(x) is not a square in Q×.

Proof. From Lemma 2.1, we have

disc J ε
n(x) = 2n

2−n
n∏
k=1

k2k−1(2k + ε)k−1(2k + 2n+ ε)n−k.

According to Lemma 2.2, for all n > 6, the interval [2n + 2 + ε, 4n − 2 + ε] contains a prime p
congruent to 2 + ε mod 4. When we write p in the form

p = 2k0 + 2n+ ε, 1 ≤ k0 ≤ n− 1,

we find that the p-valuation of disc J ε
n(x) is n − k0. But since p = 2k0 + 2n + ε ≡ 2 + ε mod 4,

n+ k0 is odd, hence so is n− k0. Consequently, disc J ε
n(x) has odd p-valuation, hence cannot be

a rational square. The cases 2 ≤ n ≤ 6 are easily checked by hand. �

3. Newton Polygons

In this section we will compute the Newton polygons of J ±
n (x) at primes p > n, giving us

information on the ramification indices for these primes in fields obtained by adjoining a root of the
polynomial. In Section 4 we will then use these ramification data to give easily verified numerical
criteria for showing that these polynomials have large Galois groups.
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We write NPp(f) for the p-adic Newton Polygon of a polynomial f ∈ Q[x]; for more details on
Newton Polygons, we refer the reader to [8], whose conventions we use, namely for a degree n
polynomial f(x) =

∑n
j=0 ajx

j ∈ Q[x], NPp(f) is the lower convex hull of the points

{(j, ordp aj) | 0 ≤ j ≤ n}.
A short but excellent account is also given in [6].

Proposition 3.1. Fix an integer n ≥ 2 and ε ∈ {±1}. For a prime p > n, define q = (p − ε)/2,
q′ = 2n+1− q, r = q′−p. If p > 4n+ ε, then NPp(J ε

n(x)) is trivial, i.e. it consists of a single slope
0 segment of length n. For primes p in the interval n < p ≤ 4n+ ε, the p-adic Newton polygon of
J ε

n(x) can be described as follows:

(a) If 2n+ ε < p ≤ 4n+ ε, then NPp(J ε
n(x)) consists of

• a length n− q′ segment of slope 0, and;
• a length q′ segment of of slope 1/q′.

(b) If (4n+ ε)/3 < p ≤ 2n+ ε, then NPp(J ε
n(x)) consists of

• a length q segment of slope −1/q, and;
• a length n− q segment of slope 0.

(c) If n < p ≤ (4n+ ε)/3, then NPp(J ε
n(x)) consists of

• a length q segment of slope −1/q, and;
• a length p− n− 1 segment of slope 0, and;
• a length r segment of slope 1/r.

Schematically, the Newton polygon for p in the intervals (2n+ ε, 4n+ ε], ((4n+ ε/3, 2n+ ε], and
(n, (4n+ ε)/3] is given as follows:

•
1/q′

•
−1/q

•
−1/q

•

•
n− q′︸ ︷︷ ︸

0 • , •
n− q︸ ︷︷ ︸0 • , •

p− n− 1︸ ︷︷ ︸0 •

1/r

Proof. Recall that

J ε
n(x) =

n∑
j=0

(
n

j

)
((2j + ε))nx

j ,

where

((2j + ε))n =
n∏
k=1

(2j + 2k + ε) = (2j + ε+ 2)(2j + ε+ 4) · · · (2j + ε+ 2n).

Since p > n, we have ordp
(
n
j

)
= 0 for all j = 0, . . . , n. Therefore, it suffices to pay attention to the

p-adic valuation of a
(ε)
j := ((2j + ε))n for the purposes of computing the Newton polygon at p > n.

We first make a general observation on the computation of this valuation, namely:

Observation 1. If a
(ε)
j is divisible by p, then 2j+2k+ε = µp for a unique pair µ, k with µ ∈ {1, 3}

and k ∈ {1, . . . , n} .

To see this, we note that a) a
(ε)
j is a product of n consecutive odd positive integers, none of which

exceeds 4n+ ε; b) we have 5p > 5n > 4n+ ε since p > n; and, finally c) p and 3p cannot both occur

simultaneously as factors in the product defining a
(ε)
j , since 3p− p = 2p > 2n.

For µ = 1, we note that

p = 2q + ε = 2j + 2k + ε if and only if j + k = q.
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Thus, p is one of the factors in the product defining a
(ε)
j if and only if max(0, q − n) ≤ j ≤ q − 1.

For the case of µ = 3, we compute similarly that

3p = 6q + 3ε = 2j + 2k + ε if and only if j + k = q + p.

Thus, 3p is one of the factors in the product defining a
(ε)
j if and only if max(0, q + p − n) ≤ j ≤

min(n, q + p− 1). We have therefore demonstrated the following:

Observation 2. Suppose j ∈ {0, 1, 2, . . . , n}. If q − n ≤ j ≤ q − 1 or q + p − n ≤ j ≤ q + p − 1,

then ordp a
(ε)
j = 1. Otherwise, ordp a

(ε)
j = 0.

If p > 4n+ε, then clearly ordp a
(ε)
j vanishes for all j so the Newton polygon is trivial. We are now

ready to proceed by splitting the proof into cases according to the various intervals within (n, 4n+ε]
to which p belongs. First suppose that 2n + ε < p ≤ 4n + ε. We note that since q′ + q = 2n + 1,

we have q− n− 1 = n− q′. Therefore, from Observation 2, we find that a
(ε)
j has p-adic valuation 0

for 1 ≤ j ≤ n− q′ and p-adic valuation 1 for n− q′ + 1 ≤ j ≤ n. Thus, the p-adic Newton polygon
of J ε

n(x) has a length (n− q′) segment of slope 0 and a length q′ segment of slope 1/q′.

We move to the case where (4n + ε)/3 < p ≤ 2n + ε. From Observation 2, we find that a
(ε)
j

has p-adic valuation 1 for 1 ≤ j ≤ q − 1 and p-adic valuation 0 for q ≤ j ≤ n. Thus, the Newton
polygon of J ε

n(x) has a slope −1/q segment of length q and a length n− q segment of slope 0.

Finally, suppose p lies in the range n < p ≤ (4n+ ε)/3. By Observation 2, we have ordp a
(ε)
j is 0

for j in the interval q ≤ j ≤ q + p − n − 1 and 1 for the other values of j in {0, 1, 2, . . . , n}. This
finishes the proof of the Proposition. �

Remark. The first two cases of the above Proposition give an alternate means of obtaining the
irreducibility results of Holt [11], [12] mentioned in the introduction. The last case, giving Newton
polygons with slopes of opposite sign, gives new information on degrees of factors of Legendre
polynomials via a result of Bush-Hajir [4]; for the reader’s convenience, we record the result we
need in a simplified form.

Lemma 3.2 (Lemma 2.5 of [4]). Suppose r is the length of the slope zero segment of NPp(f(x)) where
f(x) ∈ Q[x] and s is the maximum of the absolute values of slopes of NPp(f(x)). If g(x) ∈ Q[x] is
a degree d divisor of f(x), then d does not belong to the interval (r, 1/s).

Theorem 3.3. Suppose n > 1, ε ∈ {±1} and J ε
n(x) has a factor of degree d ≥ 1 in Q[x].

(a) If p = (2n+ ε) + 2s is a prime exceeding 2n+ ε, where 1 ≤ s ≤ n, then d does not belong to the
interval [s, n− s].

(b) If p = (2n+ ε)− 2(t− 1) is a prime not exceeding 2n+ ε where 1 ≤ t ≤ (n+ ε)/3, then d does
not belong to the interval [t, n− t].

(c) If p = n + u is a prime exceeding n where 1 ≤ u ≤ (n + ε)/3, then d does not belong to the
interval [u, (n+ ε− 3u)/2].

Proof. Each of these follows easily via an application of Lemma 3.2 to the Newton polygon deter-
minations of Proposition 3.1; the details are left to the reader. �

We can use the above Theorem to recover a result of Holt [12], completed by Wahab [24].

Corollary 3.4. (a) Suppose n > 10, ε ∈ {±1}, and there is a prime p which satisfies

2n+ ε− 2 ≤ p ≤ 2n+ ε+ 4.

Then J ε
n(x) is irreducible over Q.
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(b) Suppose p is an odd prime and m is an integer in the interval p− 4 ≤ m ≤ p+ 3. Then Lm(x)
is irreducible over Q.

Proof. We begin with (a). If p > 2n+ε, we write p = 2n+ε+2s with s = 1 or 2. Then by Theorem
3.3(a), if J ε

n(x) is reducible, it has a linear factor. But by Wahab [24, Cor. 3.5], P2n+δ(x), where
δ = (ε + 1)/2, does not have a quadratic factor, hence J ε

n(x) does not have a linear factor. For
p ≤ 2n + ε, the proof is the same except that we use Theorem 3.3(b) with t = 1 or 2. We derive
(b) directly from (a) via Lemma 1.3. �

4. Galois Properties

We are finally ready to address the Galois theory of the polynomials under consideration.

4.1. General Considerations. As before, we write m = 2n+ δ, δ ∈ {0, 1}, ε = (−1)δ+1. We seek
to understand the Galois group of Lm(x), paying close attention to the fact that

(−2)nn!Lm(x) = J ε
n(−x2).

Let Γ = GalQ(Lm(x)) and G = GalQ(J ε
n(x)) so that G is a quotient of Γ. If the roots of J ε

n(x)
are θ1, . . . , θn, then the roots of Lm(x) are

±
√
−θ1, . . . ,±

√
−θn.

Thus, the splitting field F of Lm(x) is an elementary abelian extension of degree 2k (k ≤ n) over
the splitting field K of J ε

n(x).
In other words, the conjectured irreducibility of Lm(x) and of J ε

n(x) tells us that there is an
exact sequence

1 // (S2)
k // Γ // G // 1.

Note that Γ is a subgroup of the wreath product S2 o G. According to Conjecture 1.5, we expect,
based on numerical evidence, not only that G is isomorphic to Sn but that Γ/G is “full,” meaning
k = n in all cases. We should note that Lemma 1.3 implies k > 1. We do not enter into a further
discussion of the interesting question of determining Γ/G but note only that it is equivalent to the
determination of its Kummer dual, namely the subgroup of K×/(K×)2 generated by the image of
〈−θ1, . . . ,−θn〉 where K = Q(θ1, . . . , θn) is the splitting field of J ε

n(x). While we do not currenty
have an efficient method for verifying that Γ/G is as large as possible for a given m, we have checked
this using Magma for m ≤ 120.

By contrast, we can use the results of the previous section to give a simple numerical criterion
for confirming the conjecture on G. This criterion is easily checked for any given m; moreover,
standard conjectures in analytic number theory predict that this criterion holds for all m as we will
see in Theorem 5.2.

4.2. Jordan’s Criterion. Our main technique is to extract information about the size of the
Galois group from the slopes of the Newton polygons at well-chosen primes. The basic tool is
Jordan’s Criterion: a transitive subgroup of Sn containing a p-cycle where p is a prime in the range
n/2 < p < n− 2 contains An (see for example Wielandt [26]). Following [9, def. 5.1], we denote by
Nf the Newton index of f(x) ∈ Q[x], namely the least common multiple of the denominators (in
lowest terms) of all slopes of NPp(f(x)) as p ranges over all primes. The main theorem of Newton
polygons tells us the slopes of NPp(f(x)) are the negatives of p-adic valuations of the roots of f ,
hence their denominators are ramification indices. We can therefore extract information about the
Galois group from the Newton polygon as follows (see [8] and [9] for more details).

Theorem 4.3 ([9]). Given an irreducible polynomial f ∈ Q[x], Nf divides the order of the Galois
group of f . Moreover, if Nf has a prime divisor q in the range n/2 < q < n − 2, where n is the
degree of f , then the Galois group of f contains An.
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4.4. Tame Ramification. Proposition 3.1 tells us that all primes p in the range n < p < 4n + ε
ramify in the splitting field of J ε

n(x); we note that since p does not divide n!, all these primes
are tamely ramified. We are now ready to extract Galois-theoretic information from this Newton
polygon data via Theorem 4.3.

Theorem 4.5. Suppose n > 1 and ε ∈ {±1}. Every prime p in the interval (n, 4n + ε] yields a
decomposition of the number 2n+ 1 as

2n+ 1 = q + q′ where q = (p− ε)/2.

We have:

(a) If p is a prime in the range n < p ≤ 2n+ ε, then q divides # GalQ J ε
n(x); and

(b) If p is a prime in the range 2n+ ε < p ≤ 4n+ ε then q′ divides # GalQ J ε
n(x).

Proof. Suppose first p ∈ (n, 2n+ ε]. Then, by Theorem 3.1, the p-adic Newton Polygon of J ε
n(x)

has −1/q as a slope, so by Theorem 4.3, q divides the order of its Galois group. Similarly, if
p ∈ (2n+ ε, 4n+ ε], then the p-adic Newton Polygon of J ε

n(x) has 1/q′ as a slope, hence q′ divides
the order of its Galois group. �

We can now prove Theorem 1.7.

Proof of Theorem 1.7. We take case (a) first where by assumption there is a prime ` in ((n+1)/2, n−2)
such that 2`+ ε is prime. We put p = 2`+ ε, and q = `. We note that p ∈ (n, 2n− 4 + ε) so we can
apply case (a) of Theorem 4.5 in conjunction with Jordan’s criterion and Theorem 1.6 to conclude

that the Galois group of J ε
n(x) is Sn. For case (b), we put p = 2̂̀+ ε. In the notation of Theorem

4.5, we get q′ = ` and q = ̂̀. We have p ∈ (2n + 6 + ε, 3n + 1 + ε), so case (b) of Theorem 4.5
applies to show that ` = q′ divides the order of GalQ J ε

n(x). We can then finish as before, applying
Jordan’s criterion and Theorem 1.6, to conclude that this Galois group is Sn. �

5. Hardy-Littlewood Conjectures

Standard conjectures in analytic number theory predict the existence of prime pairs (q′, p) and
(q, p) as in Theorem 4.5 for all large enough n. We were not able to find an appropriate reference for
this type of result in the literature, so we work out the details for the case of prime pairs q, 2q + ε,
which is enough to establish Theorem 1.8.

A Sophie Germain prime is a prime q such that 2q + 1 is prime; we’re not aware of a name for
primes q such that 2q − 1 is prime. It is not known whether there are infinitely many prime pairs
q, 2q + ε for either value of ε ∈ {±1} but heuristic arguments for their density has a long history
culminating in the beautiful conjectures of Hardy and Littlewood. We will establish that these
conjectures imply that for every large enough n, the criterion of Theorem 1.7 (a) holds, i.e. there
is a prime q in ((n+1)/2, n− 2) such that 2q + ε is also prime.

Let

π(ε)sg (x) = |{2 ≤ q ≤ x | q and 2q + ε are both prime}|.
Hardy and Littlewood [10] put forward the following conjecture.

Conjecture 5.1. [[10, Conj. D]] Suppose a, b are fixed coprime positive integers, k is a positive
integer coprime to a and to b, and just one of k, a, b is even. Let πa,b,k(x) be the number of prime
pairs (p, p′) with p′ < x such that ap′ − bp = k. Then

πa,b,k(x) ∼ 2C2

a

x

(log x)2

∏
r|abk

r − 1

r − 2
,
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where the product is over the odd prime divisors r of abk and C2 is defined by

C2 :=
∏

odd primes p

(
1− 1

(p− 1)2

)
.

Theorem 5.2. Suppose ε ∈ {±1}.
(a) Conjecture 5.1 implies that

π(ε)sg (x) ∼ C2
x

(log x)2
.

(b) Conjecture 5.1 implies that for every n exceeding some absolute constant n0, the interval
((n+1)/2, n− 2) contains a prime q such that 2q + ε is prime.

(c) Conjecture 5.1 implies that for n ≥ n0 with n0 as above, the Galois group of J ε
n(x), assumed

irreducible, is Sn.

Proof. (a) If we take (a, b, k) = (1, 2, 1) in Conjecture 5.1, then we are counting prime p′ < x
such that p′ − 2p = 1 i.e. we are counting the number of Sophie-Germain primes p < x/2, so

π
(1)
sg (x) ∼ π1,2,1(x/2).
If we take (a, b, k) = (2, 1, 1), then we are counting primes p′ < x such that 2p′−p = 1, i.e. we are

counting primes p′ < x such that 2p′ − 1 is prime, so π
(−1)
sg (x) ∼ π2,1,1(x). Thus, from Conjecture

5.1, we find the following asymptotic expansions predicted by Hardy and Littlewood:

π1,2,1(x/2) ∼ 2C2
x/2

(log(x/2))2

π2,1,1(x) ∼ 2C2

2

x

((log x)2
.

We conclude that π
(ε)
sg (x) ∼ C2 x/(log x)2, which, incidentally, is independent of ε.

(b) Let us put

E(ε)
sg (x) := π(ε)sg (x)− C2

x

(log x)2
.

According to Hardy-Littlewood, E
(ε)
sg (x) is in o(x/(log x)2), hence so is E

(ε)
sg (x/2). Thus,

π(ε)sg (x)− π(ε)sg (x/2) =

[
C2x

(
1

(log x)2
− 1/2

(log(x/2)2

)]
+
[
E(ε)

sg (x)− E(ε)
sg (x/2)

]
.

The first (main) term of the right hand side is of size x/(log x)2 whereas the second term is of order
of magnitude o(x/(log x)2). Hence, for any positive integer k, there exists a bound n0(k) such that

for all x ≥ n0(k), π
(ε)
sg (x) − π(ε)sg (x/2) > k. Taking k = 4, say, we conclude that for n ≥ n0(4), the

interval ((n+1)/2, n− 2) contains a prime q such that 2q+ ε is prime. It is reasonable to expect that

E
(ε)
sg (x) is of order of magnitude O(x/(log x)3). An explicit O-constant in such an estimate would

then allow one to give a specific value for n0. Computations on the computer indicate that optimal
values for n0 are 26 if ε = 1 and 82 if ε = −1.

(c) This is clear from (b), Theorem 4.5, and and the proof of Theorem 1.7. �

Remark. The existence of prime pairs (q′, p) such that q′ ∈ ( (n+1)
2 , n− 2) and p = 2(2n+ 1− q′) + ε

as in Theorem 1.7(b) can be analyzed in a similar manner using [10, Conj. C].

Prime distribution results are still quite far from establishing any conjectures of Hardy-Littlewood
type beyond Dirichlet’s theorem. It is clear though that Theorem 1.7 can in practice verify Con-
jecture 1.5(a) for any given value of n very quickly. To demonstrate this, we provide some com-
putational evidence on the existence of desired prime pairs (q′, p) or (q, p) in the desired ranges.
Using precomputed tables of primes in Pari, a relatively quick computation finds a desired (q′, p)
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or (q, p) for all n in the range 26 ≤ n ≤ 109. The plenitude of such pairs in this range can be
gleaned from the following representative chart showing the growth of the number of such pairs
for eight sample values of n. In the column marked #`, we record the number of primes in the

interval ((n+1)/2, n− 2). In the notation of Theorem 1.7, the columns marked #2`+ 1 and #2̂̀+ 1
correspond to the number of primes of the given form for prime ` in the specified range. These give
instances of prime pairs (q, p) and (q′, p) respectively, in the notation of Theorem 4.5. Columns 3
and 4 correspond to the choice ε = 1, while the last two columns give the same counts for the case
of ε = −1.

ε = +1 ε = +1 ε = −1 ε = −1

n #` prime #2`+ 1 prime #2̂̀+ 1 prime #2`− 1 prime #2̂̀− 1 prime
10 1 0 1 1 0

100 10 3 3 2 2
1 000 73 12 16 14 13

10 000 560 75 75 80 82
100 000 4 459 501 473 494 560

1 000 000 36 960 3 422 4 049 3 452 3 401
10 000 000 316 066 25 375 24 435 25 418 24747

100 000 000 2 760 321 193 572 205 460 193 968 188 438
1 000 000 000 24 491 667 1 533 184 1 494 514 1 531 559 1 539 939

For the purposes of numerical verification, it can be useful to invert the point of view. Namely,
if we assume Stieltjes’ conjecture, we can think of each prime pair (q, 2q + ε) as a “certificate” for

the Galois group of J
(ε/,0)
n (x) being Sn for many n: it is so as long as (n+1)/2 < q < n− 2, i.e. for

all n belonging to [q+ 3, 2q− 2]. For instance, the Sophie Germain prime 29 is a ramification index
for the prime 59 = 2 · 29 + 1 in a root field of J +

n (x) for all n in [32, 56] and therefore exhibits a
(tame) 29-cycle in some inertial subgroup of the Galois group for each of these integers n. Thus,
to ensure that criterion (a) of Theorem 1.7 applies to every n up to a given bound, it’s enough to
check that consecutive primes of ε-Sophie Germain type are sufficiently close to each other. We
can state this more precisely as follows.

Lemma 5.3. Let ε ∈ {±1}. Consider the increasing sequence

q
(ε)
1 < q

(ε)
2 < . . . < q

(ε)
k < . . .

of all primes q satisfying 2q + ε is prime. Suppose u < v are positive integers such that for all k
in [u, v] we have qk+1 ≤ 2qk − 4. Then for every n in [qu + 3, 2qv − 2], the Galois group of J ε

n(x),
assumed irreducible, is Sn.

We used the above Lemma to check case (a) of Theorem 1.7 applies for both ε = +1 and ε = −1
and all n in the range 26 ≤ n ≤ 109. Also, as mentioned above, we used Magma to check the
(irreducibility and) Galois group of L2n+δ(x) for small values of n. Parts (a) and (b) of Theorem
1.9 summarize the results of our numerical computations in Pari and Magma, respectively.

6. Mod p Factorizations

In her 1924 dissertation, Ille [14] states a beautiful factorization property modulo primes for
Legendre polynomials, which she attributed to her advisor Schur, but she did not provide a proof.
Here is the statement of the result.

Theorem 6.1. Let p be an odd prime number and let m be a positive integer whose base-p expansion
is given by

m = a0 + a1p+ · · ·+ arp
r, 0 ≤ ai < p for i = 0, 1, . . . , r.

11



Then the reduction mod p of the Legendre polynomial Pm(x) admits the factorization

Pm(x) ≡ Pa0(x)Pa1(x)p · · ·Par(x)p
r

mod p.

As far as we know, the first published proof appears in Wahab [24, Theorem 6.1]. Wahab’s
advisor, Carlitz wrote a paper [5] on the more general subject of factorizations of orthogonal
polynomials modulo integers less than the degree and called the factorization formula for Legendre
polynomials a “Schur congruence.” The name has been generally adopted, and polynomial families
satisfying such congruences have been studied more broadly; see, for example, [1] and [19].

We recently discovered that in 1913, Holt stated this property for Legendre polynomials in a
notice [13] to the London Mathematical Society; it does not appear that Holt published a subsequent
paper with more details, though that was his intention. Thus, unfortunately his congruence went
unnoticed for some time. It’s probably too late to change the name “Schur congruence” to “Holt-
Schur congruence” but since Holt laid much of the foundation for the study of Stjeltjes’ conjecture,
we thought we should point out that many years prior to Ille’s thesis, Holt had discovered the Schur
congruence and indicated that he had a proof. His earlier papers contained special cases.

Recall that Pm(x) is an even polynomial if m is even and an odd polynomial if m is odd, so for
every m ≥ 0, the polynomial

Lm(x) =

{
Pm(x) if m is even;

Pm(x)/x if m is odd.

is an even polynomial of degree 2bm/2c.

Theorem 6.2. Suppose ε ∈ {±1}, n ≥ 4 and n = u+p where p is a prime in the range n/2 < p ≤ n.

(1) If (2n+ 3)/3 ≤ p ≤ n or, equivalently, if 0 ≤ u ≤ (p− 3)/2, then

J εn(x) ≡ J εu(x)
(
J−1 (x)

)p
mod p, and

J εn(x− 1/3) ≡ (3/2)J εu(x− 1/3) xp mod p.

(2) Suppose p 6= 2, 5. If n/2 < p ≤ (2n+ 1)/3 or, equivalently, if (p− 1)/2 ≤ u < p, then

J εn(x) ≡ x(p−ε)/2J−εu+δ−(p+1)/2(x)
(
J+
1 (x)

)p
mod p and

J εn(x− 3/5) ≡ (5/2)xp(x− 3/5)(p−ε)/2J−εu+δ−(p+1)/2(x− 3/5) mod p.

Proof. Let m = 2n+ δ ≥ 8 where δ = (ε+ 1)/2 ∈ {0, 1}.
We begin with part (1). We have m − 2p = 2n + δ − 2p = 2u + δ. Note that by the constraint

on u, we have 2u+ δ < p. Thus, by Theorem 6.1,

L2n+δ(x) ≡ L2u+δ(x)L2(x)p mod p.

Since L2k+δ(x) = (−1)kJ εk(−x2), we have

(−1)nJ εn(−x2) ≡ (−1)uJ εu(−x2)
(
−J−1 (−x2)

)p
mod p.

Noting that n = u+ p makes the signs on both sides match up, we conclude that

J εn(−x2)− J εu(−x2)
(
J−1 (−x2)

)p
is identically 0 as a polynomial over Fp, hence

J εn(x) ≡ J εu(x)
(
J−1 (x)

)p
mod p.

The second congruence follows from the first one by noting that J−1 (x) = (1 + 3x)/2 and applying
Fermat’s congruence.
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For part (2), let p ∈ (n/2, (2n+1)/3] so that the following are valid base-p expansions:

n = u · p0 + 1 · p1

m = (2u+ δ − p) · p0 + 3 · p1.
The Holt-Schur factorization gives us

Pm(x) ≡ P2u+δ−p(x)P3(x)p mod p.

This translates into the L-factorzation as

xδLm(x) ≡ x1−δL2u+δ−p(x)(xL3(x))p mod p,

where the term x1−δ comes from the fact that 2u+ δ−p = 2v+ (1− δ) where v = u+ δ− (p+ 1)/2.
As before, we now use the fact that the L-polynomials are even to get

(−1)nJ εn(−x2) ≡ xp+1−2δ(−1)vJ−εv (−x2)(−J+
1 (−x2))p mod p.

Recalling n = u+ p and 2δ − 1 = ε, and writing xp+1−2δ = (−1)(p+1−2δ)/2(−x2)(p−ε)/2, we find

J εn(−x2)− (−x2)(p−ε)/2J−εv (−x2)(J+
1 (−x2))p

vanishes identically over Fp, hence

J εn(x) ≡ x(p−ε)/2J−εv (x)(J+
1 (x))p mod p.

The second congruence follows from the first one by noting that J+
1 (x) = (3 + 5x)/2.

�

7. Wild primes

The results of the previous section afford us a new path by which to try to establish for a given n
and ε that J εn has Galois group Sn. Namely, one observes by numerical investigation that primes p
very close to, but not exceeding, n, tend to be wildly ramified in a root field of J εn(x); of course, as
before, we assume that J εn is irreducible. When p is wildly ramified, it divides a ramification index,
hence the order of the group, allowing us to conclude that the Galois group is Sn via Jordan’s
criterion. Using the results of the previous section, we will develop a numerical criterion for a
prime p to be wildly ramified in a root field of J εn(x). We illustrate this in particular for n = p+ 3
where p ≥ 13 is a prime satisfying p ≡ 1 mod 4 in which case we can prove, assuming only that
J εp+3(−1/3) is not divisible by p2, both that J εp+3(x) is irreducible, and that it has Galois group
Sp+3. We present numerical data on how often this condition holds.

Theorem 7.1. Suppose ε ∈ {±1} and n = p+ u > 12 where p is a prime in the range 2n/3 < p <
n− 2. If

vp(J
ε
n(−1/3)) = 1 and vp(J

ε
u(−1/3)) = 0,

then the Newton Polygon of J εn(x − 1/3) at p consists of a slope 0 segment of length u and a slope
−1/p segment of length p. If, additionally, J εn(x) has no factor in Q[x] of degree ≤ u, then J εn(x)
is irreducible over Q and has Galois group Sn.

Proof. From Theorem 6.2, we have

J εn(x) ≡ J εu(x)J−1 (x)p mod p,

and so

J εn(x− 1/3) ≡ 3

2
xp J εu(x− 1/3) mod p.

Let us write

J εn(x− 1/3) =
n∑
j=0

Ajx
j , J εu(x− 1/3) =

u∑
j=0

ajx
j .
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We see immediately that
Ai ≡ 0 mod p for i = 0, 1, 2, . . . p− 1.

Moreover, vp(Ap) = vp(a0) = vp(J
ε
u(−1/3)) = 0. Since vp(An) = vp(

(
2n+ε
n

)
) = 0, we conclude that

the corners of the Newton Polygon of J εn(x − 1/3) are (0, 1), (p, 0), and (n, 0), giving a slope 0
segment of length u and a slope −1/p segment of length p. The shape of this Newton polygon
dictates that in any factorization of J εn(x − 1/3), at least one of the factors must have degree at
most u; if no such factors exist, then J εn(x− 1/3), and therefore also J εn(x), is irreducible. Moreover,
in the field obtained by adjoining a root of this polynomial, p is wildly ramified. By Theorem 4.3,
the Galois closure of this field has Galois group containing An and is therefore Sn by Proposition
2.3. �

Corollary 7.2. Fix ε ∈ {±1} and an integer u ≥ 3. Let B(u) be the largest prime dividing
J εu(−1/3). For every sufficiently large prime p, specifically for p > max(2u,B(u)), if J εp+u(x) does
not have a factor in Q[x] of degree ≤ u, then J εp+u(x) is irreducible. Under this assumption, if,
furthermore, vp(J

ε
p+u(−1/3)) < 2, then the Galois group of J εp+u(x) is Sp+u.

In the case u = 3 in the above Corollary, for “half” the primes p, we can prove both irreducibility
and fullness of the Galois group assuming only the condition on p2 not dividing the value of
J εp+3(−1/3). To do so, we need to make use of a 2-adic Newton polygon as well as the p-adic one.

We first recall the computation, first made by Wahab [24, Theorem 3.1], of the 2-adic Newton
polygon of Pm(2x+ 1).

Theorem 7.3 (Wahab). Let m be a positive integer with base 2 expansion

m = 2e1 + 2e2 + . . .+ 2er , e1 > e2 > · · · > er ≥ 0.

Then the vertices of the 2-adic Newton polygon of Pm(2x+ 1) are

(0, 0), (2e1 , 1), (2e1 + 2e2 , 2), (2e1 + 2e2 + 2e3 , 3), . . . , (m, r).

Thus, this Newton polygon consists of r segments with slopes

mi =
1

2ei
, i = 1, . . . , r.

Corollary 7.4. Suppose ε ∈ {±1} and n is a positive integer. Let m = 2n+ δ where δ = (ε+ 1)/2.
Write the 2-adic expansion of n as

n = 2k1 + 2k2 + . . .+ 2kr , k1 > k2 > · · · > kr ≥ 0.

Then,

(1) The 2-adic Newton polygon of Lm(2x+ 1) consists of r segments with slopes

mi =
1

2ki+1
, i = 1, . . . , r.

(2) Any factor in Q[x] of Lm(x) has degree divisible by 2kr+1.
(3) Any factor of J εn(x) in Q[x] has degree divisible by 2kr .

Proof. (1) If ε = −1 so that m = 2n, then the base 2 expansion of m is simply

m = 2k1+1 + 2k2+1 + . . .+ 2kr+1.

Since Lm(x) = Pm(x) in this case, (1) follows immediately from Theorem 7.3. Now suppose ε = 1,
giving

m = 2k1+1 + 2k2+1 + . . .+ 2kr+1 + 20.

In this case, Pm(2x+1) = (2x+1)Lm(2x+1), so the Newton polygon of Pm(2x+1) is the Minkowski
sum of the Newton polygon of Lm(2x + 1) and that of 2x + 1, which is simply a slope 1 segment
of length 1. By Theorem 7.3, the Newton polygon of Lm(2x+ 1) thus has the claimed slopes.
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(2) It suffices to prove that if Lm(x) has an irreducible factor g(x) of degree d in Q[x], then
2kr+1 divides d. Note that g(2x+ 1) is an irreducible degree d factor of Lm(2x+ 1). Consider the
number field Q(α) where α is a root of of g(2x+ 1); its degree d decomposes as a sum d =

∑
j ejfj

where ej and fj are, respectively, the ramification index and residual degree corresponding to the

distinct embeddings Q(α) ↪→ Q2(α). It suffices to show that 2kr+1 divides each ej . This follows
from Coleman [6, Corollary p. 185] but since the argument is elementary and elegant, we give the
details. Since α is a root of Lm(2x + 1), its valuation is the negative of one of the slopes of the
2-adic Newton polygon of Lm(2x + 1), i.e. it is −1/2ki+1 for some 1 ≤ i ≤ r by (1). Since the
denominator of this valuation is the ramification index ej , and since ki ≥ kr for i = 1, . . . , r, we

have shown that 2kr+1 divides ej for each j. Hence d is divisible by 2kr+1 and we are done.
(3) Suppose J εn(x) has a factor over Q of degree e. Recall that Lm(x) = (−1)nJ εn(−x2), hence

Lm(x) has a rational factor of degree 2e, so by (2), 2kr+1|2e, i.e. 2kr divides e.
�

Theorem 7.5. Suppose ε ∈ {±1} and n = p+ 3 where p ≥ 13 is a prime satisfying p ≡ 1 mod 4.
If

vp(J
ε
n(−1/3)) = 1,

then J εn(x) is irreducible over Q and has Galois group Sn.

Proof. By Theorem 7.1, the Newton polygon at p has a slope 0 segment of length 3 and one of
length p. By Cor. 7.4, every factor has degree divisible by 4, so there is no factor of degree less
than 4, hence irreducibility (note that the hypothesis on n means that kr = 2 in the statement of
Cor. 7.4). The rest follows from Corollary 7.2. �

We tested the condition vp(J
ε
p+3(−1/3)) < 2 for primes p < 18, 637. In this range, there are only

three exceptions: (p, ε) = (59, 1), (p, ε) = (3191,−1) and (p, ε) = (12799, 1). In all these cases the
valuation was 2. We do not have an explanation as to why these exceptions occur, hence we do not
have a good sense whether there will be infinitely many exceptions or not. However, the advantage
of this approach is that when the condition does hold, we do not need to assume irreducibility of
the polynomial, but can instead derive it from the given hypotheses. In the case of n = p+ 3 where
p ≡ 3 mod 4, we do not yet know how to rule out the quadratic and cubic factors.

We conclude with an alternative approach to verifying the condition that vp(J
ε
p+3(−1/3)) < 2

that may prove more amenable to computation for large n. Using the recursion relations for the
Jacobi polynomials, we may write

J (α,β)
n (x) = C(α, β, x)J

(α,β)
n−3 (x) +Q(α, β, x)J

(α,β)
n−4 (x),

where C and Q are cubic and quadratic polynomials in x, respectively. Under the specializations
α = ±1/2, β = 0 and specifically in degree n = p+ 3, we get the following explicit expressions :

J εp+3(x) = Cε(x)J εp(x) +Qε(x)J εp−1(x),(1)
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where

C+(x) =
(4p+ 3)(4p+ 5)(4p+ 7)(4p+ 9)(4p+ 11)(4p+ 13)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)
x3

+
3(4p+ 3)(4p+ 5)(4p+ 7)(4p+ 9)(4p+ 11)(8p2 + 28p+ 7)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)(4p+ 1)
x2

+
5(4p+ 5)(4p+ 7)(4p+ 9)(32p4 + 224p3 + 488p2 + 336p+ 63)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)(4p+ 1)
x

+
(4p+ 7)(8p2 + 28p+ 15)(32p4 + 224p3 + 520p2 + 448p+ 105)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)(4p+ 1)

C−(x) =
(4p+ 1)(4p+ 3)(4p+ 5)(4p+ 7)(4p+ 9)(4p+ 11)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)
x3

+
3(4p+ 1)(4p+ 3)(4p+ 5)(4p+ 7)(4p+ 9)(8p2 + 20p− 5)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)(4p− 1)
x2

+
5(4p+ 3)(4p+ 5)(4p+ 7)(32p4 + 160p3 + 200p2 − 9)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)(4p− 1)
x

+
(4p+ 5)(8p2 + 20p+ 3)(32p4 + 160p3 + 232p2 + 80p− 15)

8(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)(4p− 1)

Q+(x) =
−p(2p+ 1)(4p+ 5)(4p+ 7)(4p+ 9)(4p+ 11)(4p+ 13)

4(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)(4p+ 1)
x2

+
−p(2p+ 1)(4p+ 7)(4p+ 9)(4p+ 11)(8p2 + 36p+ 33)

2(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)(4p+ 1)
x

+
−3p(2p+ 1)(4p+ 9)(4p2 + 18p+ 17)(4p2 + 18p+ 19)

4(p+ 1)(p+ 2)(p+ 3)(2p+ 3)(2p+ 5)(2p+ 7)(4p+ 1)

Q−(x) =
−p(2p− 1)(4p+ 3)(4p+ 5)(4p+ 7)(4p+ 9)(4p+ 11)

4(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)(4p− 1)
x2

+
−p(2p− 1)(4p+ 5)(4p+ 7)(4p+ 9)(8p2 + 28p+ 17)

2(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)(4p− 1)
x

+
−3p(2p− 1)(4p+ 7)(4p2 + 14p+ 9)(4p2 + 14p+ 11)

4(p+ 1)(p+ 2)(p+ 3)(2p+ 1)(2p+ 3)(2p+ 5)(4p− 1)
.

Since J εp(x) ≡ J−1 (x)p mod p, we will introduce an auxiliary polynomial Eεp(x) by writing J εp(x) =

J−1 (x)p + pEεp(x). Substituting this expression into (1) and then evaluating at x = −1/3 gives us

(recall J−1 (−1/3) = 0):

J εp+3(x) = Cε(x)J−1 (x)p + pCε(x)Eεp(x) +Qε(x)J εp−1(x);

J εp+3(−1/3) = pCε(−1/3)Eεp(−1/3) +Qε(−1/3)J εp−1(−1/3).

We therefore seek a criterion for which the right side of the previous equation is not divisible by p2

(note p divides the content of Qε(x)). Dividing by p, we can make this into a mod p criterion:

Cε(−1/3)Eεp(−1/3) 6≡ (1/p)Qε(−1/3)J εp−1(−1/3) mod p.
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Proposition 7.6. For a prime p > 3, we have vp(J
ε
p+3(−1/3)) < 2 if and only if

− 35E+
p (−1/3) 6≡ 38J+

p−1(−1/3) for ε = 1, and

− 5E−p (−1/3) 6≡ 21J−p−1(−1/3) for ε = −1.
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