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A major challenge for any theory of quantum gravity is to quantize general relativity while retaining

some part of its geometrical character. We present new evidence for the idea that this can be achieved by

directly quantizing space itself. We compute the Bohr-Sommerfeld volume spectrum of a tetrahedron and

show that it reproduces the quantization of a grain of space found in loop gravity.
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At the Planck scale, a quantum behavior of the geometry
of space is expected. Loop gravity provides a specific
realization of this expectation: It predicts a granularity of
space with each grain having a quantum behavior [1]. In
particular, the volume of a grain of space is quantized and
has a discrete spectrum with a rich structure [2].

In this Letter, we present a new independent road to the
granularity of space and the computation of the spectrum
of the volume. The derivation is based solely on semiclas-
sical arguments applied to the simplest model for a grain of
space, a Euclidean tetrahedron, and is closely related to
Regge’s discretization of gravity and to more recent ideas
about general relativity and quantum geometry [3,4]. The
spectrum is computed by applying Bohr-Sommerfeld
quantization to the volume of a tetrahedron seen as an
observable on phase space. The result is accurate for large
quantum numbers.

Our central question is whether this Bohr-Sommerfeld
volume spectrum and the eigenvalues of the volume op-
erator obtained by quantizing general relativity with loop
methods are related. The remarkable quantitative agree-
ment of the two volume spectra presented here supports
this idea. The result is of interest as it lends further credi-
bility to the intricate derivation of the volume spectrum in
loop gravity, showing that it matches with the elementary
semiclassical approach presented here.

We begin by reviewing how convex polyhedra can be
treated as dynamical systems. Then we discuss the Bohr-
Sommerfeld quantization of the volume of a tetrahedron
and conclude comparing our results to those found in loop
gravity.

Two elegant mathematical results are key in what fol-
lows: Consider a convex polyhedron in three-dimensional
Euclidean space. The first result is a theorem of
Minkowski’s that states that the areas Al and the unit nor-
mals ~nl to the faces of the polyhedron fully characterize its

shape [5,6].Wedefine thevectors ~Al ¼ Al ~nl and callPN the
space of shapes of polyhedrawithN faces of given areasAl:

PN ¼
�
~Al; l ¼ 1; . . . ; N j X

l

~Al ¼ 0; k ~Al k¼ Al

��
SOð3Þ:

The second is a result of Kapovich and Millson’s that states
that the set PN has naturally the structure of a phase space

[7]. The Poisson brackets between two functions fð ~AlÞ and
gð ~AlÞ on PN are

ff; gg ¼ X
l

~Al �
�
@f

@ ~Al

� @g

@ ~Al

�
: (1)

These brackets arise (via symplectic reduction) from the
rotationally invariant Poisson brackets between functions

fð ~AlÞ on ðS2ÞN . Thus we have that convex polyhedra withN
faces of given areas form a 2ðN � 3Þ-dimensional phase
space [4].
Canonical variables on this phase space can be chosen as

follows: Consider the set of vectors ~pk ¼
P

kþ1
l¼1

~Al, where

k ¼ 1; . . . ; N � 3; we define the coordinate qk as the angle

between the vectors ~pk � ~Akþ1 and ~pk � ~Akþ2 and the
momentum variable pk ¼k ~pk k as the norm of the vector
~pk. From (1), it follows that these are canonically conju-
gate variables: fqk; pk0 g ¼ �kk0 .
In the simplest nontrivial case N ¼ 4, the phase space is

two-dimensional, has the topology of a sphere S2, and
describes the shape of a tetrahedron with faces of given
area (Fig. 1). The coordinate qmeasures the angle between
two opposite edges of the tetrahedron. The conjugate

momentum p ¼k ~A1 þ ~A2 k measures the dihedral angle
between two faces of the tetrahedron. It varies in the
interval ½pmin; pmax�, with pmin ¼ maxðjA1 � A2j; jA3 �
A4jÞ and pmax ¼ minðA1 þ A2; A3 þ A4Þ [8].
The volume V of the tetrahedron is a function on this

phase space, P 4, and is given by

V ¼
ffiffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHðq; pÞj

q
; (2)

whereHðq; pÞ ¼ ~A1 � ð ~A2 � ~A3Þ is the triple product of the
normals to its faces.
We derive the spectrum of the volume under the follow-

ing two physical assumptions: (i) The first is that, in a
quantum theory of gravity, the full dynamics induces on a
grain of space—a tetrahedron—the natural rotationally
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invariant Poisson brackets (1) discussed above; (ii) the
second assumption is that Bohr-Sommerfeld quantization
can be applied to the volume observable V on the phase
space P 4.

In particular, (ii) restricts the possible values of the area
of the faces of the tetrahedron [9]. We assume that they are
of the form

Al ¼ ðjl þ 1
2Þ@; (3)

where jl is a half-integer, jl ¼ 1
2 ; 1;

3
2 ; . . . ; and @ is Planck’s

constant. (We work in units c ¼ 1 and Newton’s constant
G ¼ 1, but @ will be kept explicit. As a result, the areas Al

have the same dimensions as Planck’s constant @. We also
set 8�� ¼ 1, where � is the Immirzi parameter proper to
loop gravity.) This condition guarantees that the total
symplectic area of phase space

Z
P 4

dq ^ dp ¼ 2�ðpmax-pminÞ � 2�@d (4)

is an integer multiple d of 2�@. Moreover, it is consistent
with the semiclassical limit of the area spectrum in loop

gravity. [In loop gravity, the area spectrum is Al ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þp

@. For large jl, the area spectrum coincides with
(3).] We call jl the spin of the face Al.

In applying Bohr-Sommerfeld quantization, it is conve-
nient to regard the function Hðq; pÞ as the Hamiltonian of
the system. Expressed in terms of the canonical variables q
and p, it is given by

Hðq; pÞ ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p2 � ðA1 � A2Þ2�½p2 � ðA3 � A4Þ2�

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p2 � ðA1 þ A2Þ2�½p2 � ðA3 þ A4Þ2�

q
sinq:

The evolution of the shape of the tetrahedron is described
by Hamilton’s equations _q ¼ @H

@p and _p ¼ � @H
@q . They

describe closed orbits of constant energy Hðq; pÞ ¼ E

and period TðEÞ (see Fig. 1). The volume V of the tetrahe-
dron is constant along these orbits.
We briefly recall Bohr-Sommerfeld quantization and

show how it can be applied to our system to determine
the spectrum of the volume.
Before the birth of quantum mechanics, Planck intro-

duced the hypothesis that the phase space of a system is
quantized in cells of area 2�@. The argument was made
more precise by Bohr and Sommerfeld: The only allowed
orbits for a periodic system are the ones that encircle an
area in phase space that is a multiple of Planck’s constant.
The quantity that measures the area as a function of the
energy E of the orbit is the Jacobi action integral SðEÞ:

SðEÞ ¼
Z
Hðq;pÞ�E

dq ^ dp ¼
I
E
pdq: (5)

For our system, this quantity can be computed and is
plotted in Fig. 2. The Bohr-Sommerfeld quantization con-
dition requires that

SðEnÞ ¼ ðnþ 1
2Þ2�@; (6)

where n is an integer. This condition identifies the allowed
values of the energy En for a stationary state of the system.
From the modern perspective, these values provide a semi-
classical approximation to the eigenvalues of the
Hamiltonian. The corrections can be computed in a
WKB expansion [10]. A rough estimate is that they are
negligible for En � 2�@=TðEnÞ.
The spectrum of the volume is simply given by the

values

vn ¼
ffiffiffi
2

p
3

ffiffiffiffiffiffiffiffiffi
jEnj

q
; (7)

as follows from (2). We compute explicitly the levels vn

and compare them to those computed in full loop gravity.
For a given choice of spins fj1; j2; j3; j4g, and thus of

areas, the Jacobi action integral SðEÞ can be computed
explicitly:

FIG. 2. Plot of the Jacobi action integral SðEÞ. The energy
levels En shown satisfy the Bohr-Sommerfeld quantization con-
dition. The corresponding orbits are shown in Fig. 1.

FIG. 1. The phase space P 4 of a tetrahedron. The position q
corresponds to the longitude on the sphere, the momentum p to
the latitude. Some orbits of energy En are shown. The volume of
the tetrahedron is constant along the orbits.
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SðEÞ ¼
�X4
i¼1

aiKðmÞ �X4
i¼1

bi�ð�2
i ; mÞ

�
E; (8)

where K and � are the complete elliptic integrals of the
first and third kinds, respectively, and depend on the ellip-
tic parameter m and characteristics �2

i . These five parame-
ters and the eight parameters fai; big depend on the roots of
an auxiliary quartic equation. The coefficients of this
quartic equation are completely specified by the four spins
jl and the energy E; thus, through their dependence on the
roots, all of the parameters of Eq. (8) come to depend on
the energy. By performing a numerical inversion of this
formula, we obtain the En and the corresponding vn and
are able to compare with calculations in loop gravity.

In Fig. 2, we consider a tetrahedron with faces of spin
jl ¼ f2; 2; 2; 2g. The Bohr-Sommerfeld condition selects d
allowed energy levels En. The number of levels, d ¼ 5 in
this example, is given by the total symplectic area of phase
space. The allowed values vn of the volume of the tetrahe-
dron are obtained via Eq. (7). The nonvanishing values vn

are twice degenerate; there are two orbits in phase space
with the same value of the volume (see Fig. 1).

In summary, if we assume that, classically, space is made
up of a collection of tetrahedra (as, for instance, in Regge’s
discretization of gravity), then the Bohr-Sommerfeld con-
dition predicts that spatial volume is quantized and its
spectrum can be derived.

In loop gravity, a grain of space is represented by a node
of the graph of a spin-network state. More precisely, to a
node having N links labeled by spins jl, we associate a
Hilbert space H N known as intertwiner space. This is the
space of invariants in the tensor product of N representa-

tions DðjlÞ of the group SUð2Þ:
H N ¼ InvðDðj1Þ � � � � �DðjNÞÞ: (9)

This space is d-dimensional with d greater than or equal to
1 only if N 	 4. The volume V of a grain of space is an

operator on the Hilbert space H N. This operator is ob-
tained by regularizing and quantizing the 3-metric h in the
classical expression

V ¼
Z
R
d~x

ffiffiffi
h

p
(10)

for the volume of a region of space R. In the case N ¼ 4,
the volume operator is simply given by

V ¼
ffiffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j"ijkJi1Jj2Jk3j

q
; (11)

where Jil is the generator of SUð2Þ in the representation

DðjlÞ. Once a quadruplet of spins fj1; j2; j3; j4g and a basis
in H N have been chosen, the operator V reduces to a
d� d matrix. Computing the volume operator’s spectrum
amounts to finding the d eigenvalues of this matrix, a task
that can be done numerically [2].
In Fig. 3, we consider a list of spin quadruplets and

compare the two volume spectra. The two data sets are in
good agreement both qualitatively and quantitatively even
for small spins. To better appreciate the accuracy of this
agreement, we report some numerical data in Table I.
The reason for a relation between the two volume spec-

tra can be traced back to recent developments on (twisted)
discrete geometries in loop gravity [3,4]. In particular, the
assumption (ii) about the Poisson brackets (1) is the clas-
sical version of the noncommutativity of fluxes of the
parallel transported electric field in loop gravity and de-
scends from the canonical phase space of general relativity
formulated in Ashtekar’s variables [11].
The Bohr-Sommerfeld approach taken here provides a

new method for understanding many aspects of the rich
structure of the volume spectrum in loop gravity. This is
important because a deep understanding of the spectra of
geometrical operators provides fertile ground for develop-
ing phenomenological tests of loop gravity.
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FIG. 3. Volume spectrum. Left: Configuration with spins fj; j; j; jþ 1g. Right: Configuration with spins f4; 4; 4; jg and j varying in
its allowed range. The Bohr-Sommerfeld values of the volume of a tetrahedron are represented as dots, the eigenvalues of the loop-
gravity volume operator as circles. Notice the quality of the matching of the two.
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We briefly describe several results arising from the
Bohr-Sommerfeld quantization: The value of the largest
eigenvalue of the volume in H 4 can be explained as the
volume of the largest tetrahedron in P 4. Moreover, at large
quantum numbers, the levels of the volume are observed to
be equispaced. This fact can be understood in terms of
Bohr’s correspondence principle: The spacing �V is given
by 2�

T , where T is the period of the classical orbits at large

volume.
In loop gravity, the discrete spectra of geometrical ob-

servables provide a physical Planck-scale cutoff that ren-
ders the theory finite in the ultraviolet [11]. An important
question is whether there exists a volume gap, that is, a
discrete gap, above zero, in the volume spectrum for all
spins. We have investigated this question in P 4 and find
that, for a given choice of spins, i.e., of Al, the lowest
nonvanishing level of the Bohr-Sommerfeld volume spec-
trum is given by

vmin ’ c
ffiffiffi
@

p ðA1A2A3A4Þ1=4; (12)

where c is 2=3 for odd d and
ffiffiffi
2

p
=3 for even d. This result is

obtained by expanding the Jacobi action around the orbits
of longest period. Those phase spaces P 4 containing de-
generate tetrahedra require special care as there are orbits
of infinite period. Nevertheless, they can be treated by
using the analytic expression of SðEÞ in terms of elliptic
functions. These results will be discussed in detail in a
forthcoming paper.

Bohr-Sommerfeld quantization offers a completely new
perspective on the discreteness of volume in loop gravity.
We have shown that it is quantitatively accurate and that it
provides an elementary account of various features of the
spectrum.
By using the semiclassical methods of Ref. [9], the

eigenvectors of the volume can be computed in a WKB
expansion. The same method can be applied to other
geometrical operators, as well as to the alternative versions
of the volume operator considered in the literature. When
N > 4, the phase space PN has dimension greater than 2. A
preliminary analysis of the case N ¼ 5 indicates that,
while the volume orbits may be chaotic, the dynamics
can still be practically investigated numerically. This opens
up the intriguing possibility for exploring quantum chaos
in the volume spectrum of loop gravity.
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TABLE I. Volume spectrum.

j1j2j3j4 Loop gravity Bohr-Sommerfeld Accuracy

1
2
1
2
1
2
1
2 0.310 0.252 19%

1
2
1
2 1 1 0.396 0.344 13%

1
2
1
2
3
2
3
2 0.464 0.406 12%

1
2 1 1 3

2 0.498 0.458 8%

1 1 1 1 0 0 exact

0.620 0.566 9%
1
2
1
2 2 2 0.522 0.458 12%

1
2 1

3
2 2 0.577 0.535 7%

1 1 1 2 0.620 0.598 4%
1
2
3
2
3
2
3
2 0.620 0.598 4%

1 1 3
2
3
2 0 0 exact

0.753 0.707 6%

� � �
1.828 1.795 1.8%

3.204 3.162 1.3%

6 6 6 7 4.225 4.190 0.8%

5.133 5.105 0.5%

5.989 5.967 0.4%

6.817 6.799 0.3%
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