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I. SOME ADDITIONAL DEFINITIONS, THEOREM USEFUL FOR TODAY LECTURE

Theorem Let G be a Lie group with Lie algebra g. If G is a Poisson Lie group, then g has a natural Lie bialgebra
structure, called the tangent Lie bialgebra of G.
Conversely, if G is connected and simply-connected, every Lie bialgebra structure on g is the tangent Lie
bialgebra of a unique Poisson structure on G, which makes G into a Poisson Lie group.

Definition A pair (g, δ : g→ g⊗ g) is a Lie bialgebra if g is a Lie algebra and δ satisfies

• δ is a Lie cobracket which means that δ∗ = g∗ ⊗ g∗ → g∗ is a Lie bracket.

• a compatibility condition:

δ([x, y]) = [x, δ(y)] + [δ(x), y]. (1)

This is a cocycle property of δ. The bracket on g can be extended to wedge powers of g by declaring on
pure tensors that [x, y ∧ z] ≡ [x, y] ∧ z + y ∧ [x, z].

Proposition If (g, δ) is a Lie bialgebra and µ is the Lie bracket of g, then (g∗, µ∗) is a Lie bialgebra, where δ∗ is the
Lie bracket of g∗.

II. PROBLEM SOLVING SESSION

A. Poisson Manifolds

A Poisson manifold is a smooth manifold associated with a Poisson bracket {·, ·}.

{·, ·} :

{
C∞(M)× C∞(M) → C∞(M)

(f, h) → {f, h} (2)

The Poisson bracket defines a bivector π

{f, h}(x) = 〈πx, df ⊗ dh〉 = πx(df, dh), (3)

with πx ∈ Λ2TxM and df, dh ∈ T ∗xM where T ∗M the cotangent space.

1. Bivectors

• If π is a bivector, at each point x, πx has skew-symmetric components in local coordinates (πx)ij , i, j =
1, 2, · · · ,dimM .

• At each point x ∈M , we can view πx as a skew-symmetric bilinear form on T ∗xM , or as the the skew-symmetric
linear map πx from T ∗xM to TxM such that

〈ηx, πx(ξx)〉 = πx(ξx, ηx) (4)

for ξx, ηx ∈ T ∗xM .
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• If ξ, η are differential 1-form on M , we can define π(ξ, η) to be the function in C∞(M) whose value at x ∈ M
is πx(ξx, ηx).

• If f and g are functions on M , and df, dg denote their differentials, we set

{f, g} = π(df, dg). (5)

• Note that π(df) is a vector field denoted by Xf , and that

{f, g} = Xfg (6)

So equivalently, a Poisson manifold can be defined as a manifold M with a Poisson bivector π such that (5) satisfies
the Jacobi identity. The Jacobi identity translates into an equation written in terms of local coordinates of the
bivector.

(πx)ri(πx)jk,r + (πx)rj(πx)ki,r + (πx)rk(πx)ij,r = 0 (7)

This condition is indeed necessary and sufficient for a bivector to be a Poisson bivector. Then, when (M,π) is a
Poisson manifold, {f, g} is called the Poisson bracket of f and g ∈ C∞(M) and Xf = π(df) is called the Hamiltonian
vector field with Hamiltonian f .

1. If M = R2n with coordinates qi, pi, i = 1, · · · , n and if

π(dqi) = − ∂

∂pi
, π(dpi) =

∂

∂qi
,

write explicitly Xf , {f, g} and π for f , g ∈ C∞(R2n).

2. Action of a symmetry group over a Poisson manifold

Let’s (M, {·, ·}) be a Poisson manifold. We are interested in the action of a symmetry group that is consistent with
{·, ·}, that is, that this action is a Poisson map. Let’s consider as an example the manifold M = C2 with the canonical
Poisson brackets {zi, z̄j}M = −iδij with i, j ∈ {1, 2}. We consider the action of G = SU(2). Let g ∈ SU(2)

g =

(
a b
c d

)
Under SU(2) transformation, the coordinates transform as

zi → z′i = gijzj , z̄i → z̄′i = ḡij z̄j .

We want that this action, ., to be consistent with the Poisson brackets.

g . {f, g}(x) = {f, h}(g . x) = {f, h}G(g . x) + {f, h}M (g . x).

1. Show that in this case, i.e. when {zi, z̄j}M = −iδij , the Poisson brackets on G are trivial.

2. Compute {gij , ḡkl}G if now the Poisson structure for the z’s is given by

{z1, z2} =
i

β
z1z2, {z1, z̄2} =

i

β
z1z̄2, {z1, z̄1} = −i(1− 2

β
z1z̄1), {z2, z̄2} = −i(1− 2

β

2∑
k1

|zk|2).

3. Is this Poisson structure on the group multiplicative (that is that the group multiplication and the Poisson
bracket on the group are compatible)?
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