3d gravity and quantum groups - Day 2

Bard Summer School on Quantum Gravity
Mä̈té Dupuis ${ }^{1, *}$
${ }^{1}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(Dated: June 10 - June 15 2019)

I. SOME ADDITIONAL DEFINITIONS, THEOREM USEFUL FOR TODAY LECTURE

Theorem Let G be a Lie group with Lie algebra g. If G is a Poisson Lie group, then \mathfrak{g} has a natural Lie bialgebra structure, called the tangent Lie bialgebra of G.
Conversely, if G is connected and simply-connected, every Lie bialgebra structure on \mathfrak{g} is the tangent Lie bialgebra of a unique Poisson structure on G, which makes G into a Poisson Lie group.
Definition A pair $(\mathfrak{g}, \delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g})$ is a Lie bialgebra if \mathfrak{g} is a Lie algebra and δ satisfies

- δ is a Lie cobracket which means that $\delta^{*}=\mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a Lie bracket.
- a compatibility condition:

$$
\begin{equation*}
\delta([x, y])=[x, \delta(y)]+[\delta(x), y] . \tag{1}
\end{equation*}
$$

This is a cocycle property of δ. The bracket on \mathfrak{g} can be extended to wedge powers of \mathfrak{g} by declaring on pure tensors that $[x, y \wedge z] \equiv[x, y] \wedge z+y \wedge[x, z]$.

Proposition If (\mathfrak{g}, δ) is a Lie bialgebra and μ is the Lie bracket of \mathfrak{g}, then $\left(\mathfrak{g}^{*}, \mu^{*}\right)$ is a Lie bialgebra, where δ^{*} is the Lie bracket of \mathfrak{g}^{*}.

II. PROBLEM SOLVING SESSION

A. Poisson Manifolds

A Poisson manifold is a smooth manifold associated with a Poisson bracket $\{\cdot, \cdot\}$.

$$
\{\cdot, \cdot\}:\left\{\begin{align*}
C^{\infty}(M) \times C^{\infty}(M) & \rightarrow C^{\infty}(M) \tag{2}\\
(f, h) & \rightarrow\{f, h\}
\end{align*}\right.
$$

The Poisson bracket defines a bivector π

$$
\begin{equation*}
\{f, h\}(x)=\left\langle\pi_{x}, d f \otimes d h\right\rangle=\pi_{x}(d f, d h) \tag{3}
\end{equation*}
$$

with $\pi_{x} \in \Lambda^{2} T_{x} M$ and $d f, d h \in T_{x}^{*} M$ where T_{M}^{*} the cotangent space.

1. Bivectors

- If π is a bivector, at each point x, π_{x} has skew-symmetric components in local coordinates $\left(\pi_{x}\right)_{i j}, i, j=$ $1,2, \cdots, \operatorname{dim} M$.
- At each point $x \in M$, we can view π_{x} as a skew-symmetric bilinear form on $T_{x}^{*} M$, or as the the skew-symmetric linear map $\underline{\pi}_{x}$ from $T_{x}^{*} M$ to $T_{x} M$ such that

$$
\begin{equation*}
\left\langle\eta_{x}, \underline{\pi}_{x}\left(\xi_{x}\right)\right\rangle=\pi_{x}\left(\xi_{x}, \eta_{x}\right) \tag{4}
\end{equation*}
$$

for $\xi_{x}, \eta_{x} \in T_{x}^{*} M$.

[^0]- If ξ, η are differential 1-form on M, we can define $\pi(\xi, \eta)$ to be the function in $C^{\infty}(M)$ whose value at $x \in M$ is $\pi_{x}\left(\xi_{x}, \eta_{x}\right)$.
- If f and g are functions on M, and $d f, d g$ denote their differentials, we set

$$
\begin{equation*}
\{f, g\}=\pi(d f, d g) \tag{5}
\end{equation*}
$$

- Note that $\underline{\pi}(d f)$ is a vector field denoted by X_{f}, and that

$$
\begin{equation*}
\{f, g\}=X_{f} g \tag{6}
\end{equation*}
$$

So equivalently, a Poisson manifold can be defined as a manifold M with a Poisson bivector π such that (5) satisfies the Jacobi identity. The Jacobi identity translates into an equation written in terms of local coordinates of the bivector.

$$
\begin{equation*}
\left(\pi_{x}\right)_{r i}\left(\pi_{x}\right)_{j k, r}+\left(\pi_{x}\right)_{r j}\left(\pi_{x}\right)_{k i, r}+\left(\pi_{x}\right)_{r k}\left(\pi_{x}\right)_{i j, r}=0 \tag{7}
\end{equation*}
$$

This condition is indeed necessary and sufficient for a bivector to be a Poisson bivector. Then, when (M, π) is a Poisson manifold, $\{f, g\}$ is called the Poisson bracket of f and $g \in C^{\infty}(M)$ and $X_{f}=\underline{\pi}(d f)$ is called the Hamiltonian vector field with Hamiltonian f.

1. If $M=\mathbb{R}^{2 n}$ with coordinates $q^{i}, p_{i}, i=1, \cdots, n$ and if

$$
\underline{\pi}\left(d q^{i}\right)=-\frac{\partial}{\partial p_{i}}, \quad \underline{\pi}\left(d p_{i}\right)=\frac{\partial}{\partial q^{i}}
$$

write explicitly $X_{f},\{f, g\}$ and π for $f, g \in \mathbb{C}^{\infty}\left(\mathbb{R}^{2 n}\right)$.

2. Action of a symmetry group over a Poisson manifold

Let's $(M,\{\cdot, \cdot\})$ be a Poisson manifold. We are interested in the action of a symmetry group that is consistent with $\{\cdot, \cdot\}$, that is, that this action is a Poisson map. Let's consider as an example the manifold $M=\mathbb{C}^{2}$ with the canonical Poisson brackets $\left\{z_{i}, \bar{z}_{j}\right\}_{M}=-i \delta_{i j}$ with $i, j \in\{1,2\}$. We consider the action of $G=\mathrm{SU}(2)$. Let $g \in \mathrm{SU}(2)$

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Under $\mathrm{SU}(2)$ transformation, the coordinates transform as

$$
z_{i} \rightarrow z_{i}^{\prime}=g_{i j} z_{j}, \quad \bar{z}_{i} \rightarrow \bar{z}_{i}^{\prime}=\bar{g}_{i j} \bar{z}_{j}
$$

We want that this action, \triangleright, to be consistent with the Poisson brackets.

$$
g \triangleright\{f, g\}(x)=\{f, h\}(g \triangleright x)=\{f, h\}_{G}(g \triangleright x)+\{f, h\}_{M}(g \triangleright x) .
$$

1. Show that in this case, i.e. when $\left\{z_{i}, \bar{z}_{j}\right\}_{M}=-i \delta_{i j}$, the Poisson brackets on G are trivial.
2. Compute $\left\{g_{i j}, \bar{g}_{k l}\right\}_{G}$ if now the Poisson structure for the z 's is given by

$$
\left\{z_{1}, z_{2}\right\}=\frac{i}{\beta} z_{1} z_{2}, \quad\left\{z_{1}, \bar{z}_{2}\right\}=\frac{i}{\beta} z_{1} \bar{z}_{2}, \quad\left\{z_{1}, \bar{z}_{1}\right\}=-i\left(1-\frac{2}{\beta} z_{1} \bar{z}_{1}\right), \quad\left\{z_{2}, \bar{z}_{2}\right\}=-i\left(1-\frac{2}{\beta} \sum_{k_{1}}^{2}\left|z_{k}\right|^{2}\right)
$$

3. Is this Poisson structure on the group multiplicative (that is that the group multiplication and the Poisson bracket on the group are compatible)?

[^0]: *Electronic address: mdupuis@perimeterinstitute.ca

