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Introduction

0.1 A brief overview: Context, Content, and Connections

This subject puts together all of the following: Noether’s theorem, Covariant Formalism,
Edge Modes, Soft Modes, Asymptotic symmetries, BMS symmetry, ADM mass, Boundary
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symmetries, Soft theorems, Infrared anomalies, Memory effects, Black-Hole thermodynam-
ics, Holography, Geometrical entropy formula, Black-Hole Hairs, resolution of the informa-
tion paradox, Discretization of gauge theory, Discretization of gravity and extensions of
loop quantum gravity.
I will not be able to cover all these subject :( . I can only skim through the surface in 5
hours with a narrow focus and make choices that I am still in the process of making.

1 Lecture 1: Preliminaries

Here I’ll recall some basics that are needed for the understanding of the lecture. Would be
amazing if I could skip it and there was a preliminary introductory lecture about it.

1.1 Cartan calculus and volume forms

Talk about Cartan calculus: forms, vector fields, and differentials. Talk about the Lie
bracket & Jacobi identity

[[X,Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]] (1)

the Lie-derivative LXY = [X,Y ] and LXα, Cartan’s magical formula Lx = ıxd + dıx and
present the Cartan identities: both d and ιX are graded differential operators of degree +1
and −1 respectively. The graded commutator [A,B] := AB − (−1)abBA.

The wedge product of forms is such that

dxσ1 ∧ · · · ∧ dxσn = sign(σ)dx1 ∧ · · · ∧ dxn (2)

where sign(σ) is the signature of the permutation σ.
The Lie bracket and Lie derivative satisfy 6 Cartan identities for (d, LX , ıX): 3 involve

the differentials

2d2 = [d,d] = 0 (3)

[ıX , ıY ] = 0,
[d, ıX ] = LX

[d, LX ] = 0
[LX , LY ] = L[X,Y ] (4)

[LX , ıY ] = ı[X,Y ]

(5)

explain each briefly.
The first of the Cartan identities d2 = 0 is equivalent to the equality of mixed partials

in coordinates, e.g.,
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(6)

2



Ex. 1: Prove it.

More geometrically it can be thought of as the fact that there is no boundary to the
boundary of a manifold: ∫

M
d2ω =

∫
∂M

dω =

∫
∂∂M

ω =

∫
∅
ω = 0. (7)

Volume form: Given a metric we can define volume forms, we use the Hodge star operation.
It is such that

ε := ∗1 =
√
g(dx1 ∧ · · · ∧ dxd), ιξ ∗ ω = ∗(ω ∧ g(ξ)) (8)

where g(ξ)a := gabξ
b. It also satisfy

g(ξ) ∧ ∗ω = ∗(ιξω)(−1)|ω|−1 (9)
ε := ∗1 =

√
g(dx1 ∧ · · ·dxd),

εa := ι∂aε = gaa′ ∗ (dxa
′
),

εab := ι∂bι∂aε = gaa′gbb′ ∗ (dxa
′ ∧ dxb

′
)

(10)

Application of these definition gives. These forms can be used to integrate functions on
manifold M , vectors on codimension 1 slices Σ, and charge aspects on co-dimension 2
surfaces. ∫

M
Fε =

∫
M
F̂ ,

∫
Σ
ξaεa =

∫
Σ
ιξε,

1

2

∫
S
Qabεab =

∫
S
ιQε. (11)

are such that dε = dεa = dεab = 0 and we can show that

Lαε = (∂aα
a)ε, Lα(βbεb) = [∂a(α

aβb)− βa(∂aαb)]εb (12)

And we establish that

d(ξaεa) = (∂aξ
a)ε, d

(
1
2Q

abεab

)
= (∂aQ

ab)εb. (13)

Proof:

dıαε = ∂aα
bdxb ∧ εb = (14)

1.2 Canonical Formalism

Talk about Canonical formalism, symplectic potential, Poisson bracket, Noether charge,
action and Hamiltonians for finite dimensional systems.
A Phase space is a manifold P equipped with a two-form ω which is closed. This is the
symplectic form ω = ωab(dx

a ∧ dxb),
dω = 0. (15)
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When invertible, we can associate to it a Poisson structure {f, g} = Πab∂af∂bg. The
Poisson structure is a biderivation , it is simply given by a bivector field which is the inverse
of the symplectic potential, where Πabωcb = δac . The central identity for the Poisson bracket
is that it satisfies the Jacobi identity

Jac(F,G,H) := {F, {G,H}}+ cycl = 0. (16)

Ex. 2: Prove that it follows from dω = 0 and Πω = −1.
The main purpose of the Poisson bracket is that it allows to map, phase space observables
F onto a phase space transformation, a flow. The Flow associated to F is encoded into a
vector field XF as follows: Given F we define the Hamiltonian vector field XF to be such
that

ιXF
ω + dF = 0. (17)

And we define the Poisson bracket to be given by

{F,G} := ω(XF , XG). (18)

We can establish three key properties of the Hamiltonian vector field and the Poisson
bracket:

LXF
ω = 0, {F,G} = LXF

G, [XF , XG] = X{F,G}. (19)

In other words we have that Hamiltonian vector field preserves the symplectic structure,
that the bracket compute the action of a Hamiltonian vector field on a second hamiltonian
and that the bracket of two Hamiltonian vector fields is an Hamiltonian vector field asso-
ciated with the bracket.
Ex. 3: Prove it! Proof:

LXF
ω = dιXF

ω = −d2F = 0,
{F,G} = ιXG

ιXF
ω = −ιXF

ιXG
ω = ιXF

dG = LXF
G,

ι[XF ,XG]ω = [LXF
, ιXG

]ω = −LXF
dG = −dLXF

G = −d{F,G}. (20)

In other words we have established that

{F, ·} = XF ⇔ ιXF
ω = ω(XF , ·) = −dF. (21)

We can also establish that Jacobi is satisfied

{{F,G}, H} = {F, {G,H}} − {G, {F,H}}. (22)

Proof:

{{F,G}, H} = L{F,G}H = L[XF ,XG]H
= [LXF

,LXG
]H = {F, {G,H}} − {G, {F,H}}. (23)
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1.3 Lagrangian

From an action to a symplectic structure. A symplectic structure is locally associated with
a symplectic potential ω = dθ.

S =

∫ 1

0
dt[pq̇ −H(p, q)]. (24)

We have
δS = δp[q̇ − ∂pH]− δq[ṗ+ ∂qH] + [pδq]10 (25)

We see here that the structure of the equation of motion is

q̇ = {H, q}, ṗ = {H, p}, {p, q} = 1. (26)

so that XH = ∂t generates the time flow. This Poisson structure is compatible with the
symplectic structure:

θ = pδq, ω = δp ∧ δq. (27)

We have that
Xp = ∂q, Xq = −∂p, {p, q} = 1. (28)

Here we have Xp = {p, ·} = ∂q also Xq = {q, ·} = −∂p and therefore {p, q} = 1. Here H
generates a hamiltonian flow XH = ∂t.

Thus the symplectic structure is the inverse of ω = dθ where θ is the boundary term
in the action.

Difference between gauge and symmetry: A SymmetryX is a canonical transform
which preserve the Hamiltonian. We denote its hamiltonian JX . IXω + dJX = 0. X is a
symmetry if {JX , H} = 0. Noether first theorem states that a symmetry is conserved, this
follows from

J̇X = XH [JX ] = {H,JX} = −{JX , H} = X[H] = 0. (29)

A gauge transformation is a transformation which is in the Kernel of Ω. It’s Noether charge
vanishes! JX = 0.

Two questions: What happens if ω is not invertible? and how to we find
the symplectic form ω in Field theory?

Suppose we have a phase space (P, ω) together with a set of constraints C = {Ca, a =
1, · · · , n}. the constraints sub space C−1(0) ≡ {x ∈ P |Ca(x) = 0} ⊂ P . We denote by
iC : C → P the embedding map. i∗Cω the pull back of ω to C, restricted to the constraint
surface is a closed two form. It is a presymplectic form since it is not invertible. We denote
by NC ≡ Ker(i∗Cω) ⊂ TC the set of vector field which are in the kernel of i∗Cω. Since ω is
closed we have that if X,Y ∈ NC then [X,Y ] ∈ NC . NC is therefore the tangent space to
the space of orbits. An equivalence relation is defined by

x ∼ y ⇔ y = eXx, X ∈ NC . (30)
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and we define
P//C = [C−1(0)]∗/ ∼ (31)

where ∗ means that we take out the fixed point of the group action. P//C is a symplectic
manifold.

1.4 geometric quantisation

In the quantisation scheme the symplectic potential plays a key role. As we have seen,
classically an observable F defines a vector field XF which is such that ıXF

ω = −dF . At
the quantum level phase space functions are promoted to sections of a line bundle over P .
The additional dimension is given by the phase factor. The question we want to investigate
is whether there exists a quantisation map F → F̂ promoting functions to operators such
that

[F̂ , Ĝ] = i~{̂F,G} (32)

for all functions (F,G) in Phase space? Remarkably the answer is yes! Strange because
Groenewold-Van Hove theorem states that this is not possible. This is a cornerstone results
of Geometric quantisation, and the symplectic potential plays a key role.

One first establish that the change in the symplectic potential along an Hamiltonina
vector field is given by

LXF
θ = dιXF

θ + ιXF
dθ = d(ιXF

θ − F ) := d`F . (33)

The combination `F := ιXF
θ − F is the Lagrangian associated with F .

LXF
`G − LXG

`F = LXF
ιXG

θ − LXF
G︸ ︷︷ ︸

={F,G}

− ιXG
d`F︸ ︷︷ ︸

=ιXG
LXF

θ

−d ιXG
`F︸ ︷︷ ︸

=0

= [LXF
, ιXG

]θ − {F,G}
= ι[XF ,XG]θ − {F,G} = `{F,G}. (34)

Given a function F one defines a differential operator

F̂ :=
~
i
LXF

− `F . (35)

This operator satisfies the quantisation condition (32).

i

~
[F̂ , Ĝ] =

~
i
[XF , XG]− (LXF

`G − LXG
`F )

=
~
i
X{F,G} − `{F,G} = {̂F,G}. (36)

One used that θ defines a natural hermitian connection with curvature ω:

∇X := X − i

~
ιXθ (37)
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and then define F̂ = ~
i∇XF

+ F. Applying this to (p, q) with (Xp, Xq) = (∂q,−∂p) and
(Λp,Λq) = (0,−q) one gets

p̂ =
~
i
∂q, q̂ = −~

i
∂p + q. (38)

In order to get the usual quantisation we have to restrict to a polarisation where ∂pφ = 0.

1.5 Connections and curvature

Present in an elementary manner the concept of connection and its curvature in gauge and
gravity. We will use Yang-Mills connections A one-form valued into a Lie algebra g

∇aφ = ∂a +Aa, F (A) = [∇a,∇b] = ∂aAb − ∂bAa + [Aa, Ab]. (39)

We will also use Levi-Civita connection Which are connection in the tangent bundle. And
Levi-civita connection ∇XY −∇YX = [X,Y ], ∇agab = 0, the coefficient of the conection
are ∇a∂b = Γab

c are given by

Γab
c =

1

2
(∂agbd + ∂bgad − ∂dgab) gdc. (40)

and the curvature tensor is
[∇a,∇b]∂c = Rdcab∂d. (41)

While the Ricci tensor is Rab = Rcacb. Taking the variation of these relations we get

δRdcab = ∇aδΓbcd −∇bδΓacd, δRab = ∇cδΓbac −∇bδΓcac. (42)

1.6 Variational calculus

Introduce the variational Cartan calculus (δ, IX , LX). The two differentials anticommute
dδ + δd = 0, so that d + δ is itself a differential. Talk about the concept of Field space
vector field. And introduce as first example QCD.

2 Lecture 2: Covariant phase space and Noether’s theorem

We are going to see that in the covariant formalism a Lagrangian determines both the
equation of motion and a presymplectic structure on the system’s phase space. We will
also see that we can analyze symmetries and Hamiltonian structure without having to
specify a global time foliation.

We start with the QCD Lagrangian

L =
1

4g2
Tr(FabF

ab + jamAa), (43)
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where Fab = ∂aAb − ∂bAa + [Aa, Ab] is the curvature.
Its variation gives the equation of motion up to a boundary term:

δL = ∂aθ
a − Tr(EaδAa)︸ ︷︷ ︸

:=E

. (44)

where θa is the symplectic current, and Ea are the equations of motion

θa :=
1

g2
Tr(F abδAb), and Ea :=

1

g2
∇bF ba − jam. (45)

The covariant derivative is such that ∇aX := ∂aX + [Aa, X].

Ex. 4: Prove it.

δL =
1

g2
Tr(∗F ∧ dAδA) + Tr(∗jδA).

= d

(
1

g2
Tr(∗F ∧ δA)

)
− 1

g2
Tr((dA ∗ F − ∗j) ∧ δA) (46)

A Lagrangian symmetry is a transformation of the field that leaves the Lagrangian
invariant up to a boundary term. A gauge symmetry is a Lagrangian symmetry whose
parameter is a local functional. Look to the gauge transformation LXAa := ∇aX. The
action of this vector field on the local functional L is given on the one hand by

LXL = ∂a (Xjam)︸ ︷︷ ︸
:=`aX

, (47)

where jm is the charge matter current and we have denoted the boundary term `X .
On the other hand we have, since LXL = δIXL, that

LXL = ∂a(IXθ
a)− Tr(Ea∇aX)︸ ︷︷ ︸

IXE

, and IXθ
a =

1

g2
Tr(F ab∇bX). (48)

We can conclude two important equations from this. First taking the difference we obtain
the conservation law for the Noether current:

∂a (IXθ
a − `aX)︸ ︷︷ ︸

:=JX

= IXE =̂ 0. (49)

This is Noether’s first theorem. The Noether current JX := (IXθ
a − `aX) is conserved

on-shell which is represented by the hatted equality.
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In the case of a gauge symmetry we have more: we can decompose IX into a total
derivative plus a term that does not depend on derivatives of X,

IXE = Tr(Ea∇aX) = ∂a Tr(EaX)︸ ︷︷ ︸
:=Ca

X

−Tr(X∇aEa), (50)

and we can write the current conservation as

∂a(J
a
X − CaX) = Tr(X∇aEa). (51)

Here JX is the Noether current while CX is the constraints that follows from gauge sym-
metry.

If X is a local variation, this equality can be true only if both sides vanish, this gives
us the Bianchi identity:

∇aEa = 0. (52)

This is indeed an identity in the example of QCD

∇aEa =
1

g2
[∇a, [∇b, F ba]]−∇ajam =

1

2g2
[Fab, F

ba]−∇ajam = −∇ajam. (53)

The Noether Bianchi identity means that the matter Current needs to be covariantly
conserved. It also means that the Noether conservation Law reads

∂a(IXΘa − `aX − CaX) = 0, CaX =
1

g2
Tr(EaX). (54)

The fact that the divergence of JX−CX vanishes independently of the equations of motion
means that it is trivially conserved. In other words, there exists a bivector QabX called the
charge aspect such that

JaX = CaX + ∂b(Q
ab
X ). (55)

The fact that the Noether Current is a pure boundary term on-shell is the hallmark of
gauge invariant theories.
Ex. 5: Check the Bianchi identity and the trivial conservation.

We can check the trivial conservation of the current directly by evaluating the charge
aspect for QCD: one finds that

JaX =
1

g2
Tr (F ab∇bX)︸ ︷︷ ︸

soft-current

− Tr(jamX)︸ ︷︷ ︸
hard-current

, and QabX =
1

g2
Tr
(
F abX

)
︸ ︷︷ ︸
charge-aspect

. (56)

Ex. 6: Prove it!
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The solution is

JaX − CaX = IXΘa − Tr(jamX)− Tr(EaX)

=
1

g2
Tr(F ab∇bX)− Tr(jamX)− Tr

(
X

(
1

g2
∇bF ba − jam

))
= ∂b

(
1

g2
Tr
(
F abX

))
︸ ︷︷ ︸

Qab
X

. (57)

This means that in QCD we have an infinite number of local charges of symmetries. These
are boundary charges

QS [X] =

∫
S
QX. (58)

And they form a non-abelian group of symmetry.! In QED this group is called the Spy
group.

Now that we understand the Conservation equation and Bianchi identities lets inves-
tigate the canonical property of the charges. Given the symplectic current, we define the
symplectic potential:

ω = δθ. (59)

For QCD this is ω = ωaεa given by

ωa =
1

g2
Tr(δF ab ∧ δAb) =

1

g2
Tr
(

(∇aδAb −∇bδAa)f δAb
)
. (60)

The Symplectic potential is a 2-form in field space and a codimension one form. It can
therefore be integrated over codimension one manifold Σ embedded in space-time to define
the symplectic structure

ΩΣ :=

∫
Σ
ω. (61)

It is customary to define Σ at a constant time slice T = t of a global foliation. Here as
the figure shows (??) we do not have to restrict to a given foliation or a particular time-
slice. The question arises whether the symplectic structure depends on the codimension
one surface that one choses to evaluate it? The fact that it doesn’t for on-shell variations,
that is variations that preserves the

Taking the differential of the defining equation (67) and using that δ2 = 0 we get

δE = dω. (62)

This equation is the classical version of the unitarity condition. WE call it Noether 0-th
Law. Given two cohomologous hypersurface ∂Σ = ∂Σ′ enclosing a region R such that
∂R = Σ ∪ (−Σ′) ( see fig. 2) , Noether zeroth law means that

ΩΣ − ΩΣ′ =

∫
R
δE=̂0. (63)
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This means that the symplectic potential is conserved. If the two regions intersect the
boundary at different time then we need to impose boundary conditions that insure that
the boundary symplectic potential vanish. This is the reason behind Dirichlet or Neuman
boundary conditions.

Given the symplectic potential we can define the bracket of two Noether current to be
given by

{JX , JY } := ω(X,Y ) = −IXIY ω. (64)

This bracket satisfy Jacobi-identity, since δω = 0. The bracket of charges is therefore

{QS(X), QS(Y )} = QS([X,Y ]), {Qa(x), Qb(y)} = F abcQ
c(x)δ(2)(x, y). (65)

3 Lecture 3: Edge modes and Gravity

Summary: Let us summarise this lecture. We denote ε the volume form1 and we consider
the Lagrangian density L̂(φ) = L(φ)ε for a set of fields φa. Its variation defines the
symplectic potential and the equations of motion.

δL̂(φ) = dθ(φ, δφ)− E(φ, δφ), E = δφaE
a. (67)

The Lagrangian variation is a sum of a boundary term plus the equations of motion.

E = δφaEa, θ = θaεa (68)

where we denote the basis of codimension-one forms by εa = ı∂aε and θ = θaεa is a d− 1-
form on M , determined by the symplectic current θa, it is also a 1 form in field space. E
is also a one-form on field space and a volume form.

We have seen the property of unitarity, Noether zeroth-law:

δE = dω, ω = δθ. (69)

By contracting the defining equation with a symmetry transformation and using that
LX L̂ = IXδL̂ = d`X we get that

IXE = dJX , JX := IXθ − `X . (70)

This gives us Noether first property: The Noether current is conserved on-shell.
Moreover of gauge transformation δXφa = DaX, we have that the Bianchi identity is

satisfied:
IXE = dCX −X · (D†aEa) = dCX . (71)

1which is given by
ε :=

√
g(dx1 ∧ · · · ∧ dxd). (66)
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Here CX := X·Eaεa is a “constraint” a quantity that vanish when the equations of motions
are imposed.

From this we conclude that we have the Bianchi identity and the trivial conservation
law We have seen that

d(JX − CX) = 0, D†aE
a = 0. (72)

This means that
JX = J soft

X + Jhard
X = CX + dQX . (73)

That is the current which is a sum of a soft component due to the gauge fields and a hard
component due to the sources is a pure boundary term on-shell. This means that we have
a new form of charge conservation in any gauge theory

dQX =̂ J soft
X + Jhard

X . (74)

Holography: The previous conservation law is equivalent to the validity of the equations
of motion. If One defines the boundary charges

QX =
1

g2
Tr(∗FX), (75)

we have the conservation equation:

QS′(X)−QS(X) =

∫
Σ

Tr(dAX ∧ ∗F ) +

∫
Σ

Tr(Xjm), QS(X) :=

∫
S
QX (76)

where ∂Σ = S′ ∪ S̄. Here we need to empphasize that we have an infinite number of
charges. This are local charge of symmetry not gauge. One for each spherical Harmonics
X = Y`mτα with τα a basis of g.

Q`mα =

∫
S
Y`mQ

ab
α εab. (77)

where α labels a basis of the Lie algebra g.

3.1 Symmetry and equations of motion

Now that we have the symplectic potential we want to understand whether we have Noether
third identity: That is is it true that not only the Noether current is also the canonical
generator of gauge transformations? That is we are want to know if it is true that

IXω + δJX =̂ 0? (78)

It turns out that there exist an anomaly in this equation. We are going to show that in
fact we have

IXω + δJX =̂ dϑX . (79)
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where ϑX is the symplectic anomaly. The presence of this anomaly term violates the
on-shell conservation of the symplectic structure when δϑX 6= 0 since LXω = dδϑX . The
fact that the symplectic structure is not preserved means that the numbers of degrees
of freedom of the system is not preserved by the evolution. This is the Hallmark of open
systems and what this means is that we are not tracking all the relevant degrees of freedom
necessary to understand the symmetry of the system.

The resolution of this fundamental puzzle rely in accepting that we are missing certain
degrees of freedom and that we therefore have to add them back to our description in order
to have a complete description. The main point is that the missing degrees of freedom are
related to boundary terms. Indeed if we integrate (??) on a region Σ with boundaryS then
we get

LXΩΣ =

∫
S
δϑX . (80)

And of course if ∂Σ = ∅ then the theory is unitary. The missing degrees of freedom are
therefor associated with the edges of our spacelike regions, they are edge modes.

The way we reveal these edge mode is by identifying a boundary symplectic structure
denoted ϑ which is a one-form in Field space and a codimension 2 form in spacetime such
that the anomaly can by written

δ(ϑX + LXϑ) =̂ 0. (81)

As we will see doing so requires adding boundary goldstone modes, new degrees of freedom
that renders the theory unitary. When this is the case we can define an extended symplectic
potential and an extended charge

θext := θ + dϑ, Jext
X = JX + dIXϑ. (82)

This potential is such that
dJext

X + IXω
ext =̂ 0, (83)

which insures that X is Hamiltonian and that Jext
X is its Hamiltonian generator.

Ex. 7: Prove it!.
This follows from

IXω
ext = IXω + dIXδϑ = −δJX + dϑX + d(LXθ

ext − δIXθext) = −δ(JX + IXθ
ext). (84)

We are now going to study the general structure of the symplectic anomaly, that deter-
mines the nature of the edge modes. What we are going to show in the case of QCD and
in the case of gravity, but which holds in general is the following. First given a symmetry
transformation X acting on fields space, there exist a space-time vector field X] acting on
spacetime which is such that

LXE = IδXE + dıX]E. (85)
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The symplectic anomaly can be written explicitely in terms of this vector field and the
charge aspect as

ϑX = ιX]θ +QδX . (86)

Given this we can now prove that2

{Jext
X , Jext

Y } = Jext
[X,Y ]. I[X,Y ] := [LX , IY ] (87)

3.2 QCD Edge mode

We now show that for QCD the symplectic anomaly takes the form (86) with X] = 0. We
have seen that δE = dω and that IX = dJX therefore we get that

LXE = IXδE + δIXE = IXdω + δdJX = d(IXω + δJX). (88)

This shows that
δJX + IXω =̂ dϑX . (89)

where ϑX is a one-form on field space and a codimension 2 form on space-time. As we
will see it can be interpreted as the edge mode symplectic potential. We can evaluate this
directly for QCD. We find

IXω + δJX = LXθ − δ`X = JδX . (90)

This follows from this in QCD:

LXθ
a − δ`aX =

1

g2
Tr(F ab∇bδX)− δXjam

=
1

g2
∂bTr(F abδX) +

1

g2
Tr(∇bF baδX)− δXjam

= ∂bQ
ab
δX + Tr(EaδX) = JaδX . (91)

One introduce

ϑab := − 1

g2
Tr(F baϕ−1δϕ), ϑ = −Qϕ−1δϕ (92)

where ϕ ∈ G is a group valued field, and define

LXA = ∇X, LXϕ = ϕX. (93)

This satisfy the identity LXϑ = −dQδX .
Ex. 8: Prove it!.

This follows form LXF = [F,X] and LX(ϕ−1δϕ) = [ϕ−1δϕ,X] + δX. In this case we
have that IXϑ = −QX . Therefore we have that the extended symplectic potential is

θext =
1

g2
Tr(∗F ∧ δA)− d

(
1

g2
Tr(∗Fϕ−1δϕ)

)
. (94)

2Central extension
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The extended Noether charge is then

Jext
X = JX + dIXϑ = CX =̂ 0. (95)

Therefore we see that the edge modes not only restore the unitarity but also the gauge
invariance. What is remarkable is that this induces in terms a new form of symmetry: One
can look at the edge mode transformation

LX̃A = 0, LX̃ϕ = −Xϕ. (96)

This transformation is Hamiltonian and the generator of the symmetry transformation is
Q̃X = IX̃θ

ext given by

Q̃X =
1

g2
Tr(∗ϕFϕ−1X). (97)

This charge is gauge invariant: it commutes with the Constraint

{JX , Q̃Y } = 0. (98)

3.3 Edge mode or no edge modes

WE could also have decided that the Hamiltonian parameter is not part of phase space
δX = 0 . In this case JX is no longer a gauge generator, the variables conjugated to
boundary gauge transformations becomes physical and we have new physical degrees of
freedom anyway.

——

4 Lecture 4*: Gravitational Edge modes and BH entropy

This lecture starts with two exercises:
Ex. 9: Ex 3: Compute (θ, `ξJξ, Cξ, Qξ) for gravity. One start with the Lagrangian

L =
ε

8πG

(
1

2
R(g)− Λ

)
(99)

with R = gabRab and [∇a,∇b]va = Rabv
a.

Ex. 10: First establish that

θa[g, δg] =
1

16πG
(δΓabcg

bc − δΓccbgab) =
1

16πG
∇b[δgab − gabδg]εa (100)

Here we used the abbreviated notation δg = gabδgab, and δgab = gacgbdδgcd (i.e. δgab is
the variation of the metric with the indices raised, not the variation of the inverse metric,
which is given by δ(gab) = −δgab)�.
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