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Introduction

0.1 A brief overview: Context, Content, and Connections

This subject puts together all of the following: Noether’s theorem, Covariant Formalism,
Edge Modes, Soft Modes, Asymptotic symmetries, BMS symmetry, ADM mass, Boundary
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symmetries, Soft theorems, Infrared anomalies, Memory effects, Black-Hole thermodynam-
ics, Holography, Geometrical entropy formula, Black-Hole Hairs, resolution of the informa-
tion paradox, Discretization of gauge theory, Discretization of gravity and extensions of
loop quantum gravity.
I will not be able to cover all these subject :( . I can only skim through the surface in 5
hours with a narrow focus and make choices that I am still in the process of making.

1 Lecture 1: Preliminaries

Here I’ll recall some basics that are needed for the understanding of the lecture. Would be
amazing if I could skip it and there was a preliminary introductory lecture about it.

1.1 Cartan calculus and volume forms

Talk about Cartan calculus: forms, vector fields, and differentials. Talk about the Lie
bracket & Jacobi identity

[[X,Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]] (1)

the Lie-derivative LXY = [X,Y ] and LXα, Cartan’s magical formula Lx = ıxd + dıx and
present the Cartan identities: both d and ιX are graded differential operators of degree +1
and −1 respectively. The graded commutator [A,B] := AB − (−1)abBA.

The wedge product of forms is such that

dxσ1 ∧ · · · ∧ dxσn = sign(σ)dx1 ∧ · · · ∧ dxn (2)

where sign(σ) is the signature of the permutation σ.
The Lie bracket and Lie derivative satisfy 6 Cartan identities for (d, LX , ıX): 3 involve

the differentials

2d2 = [d,d] = 0 (3)

[ıX , ıY ] = 0,
[d, ıX ] = LX

[d, LX ] = 0
[LX , LY ] = L[X,Y ] (4)

[LX , ıY ] = ı[X,Y ]

(5)

explain each briefly.
The first of the Cartan identities d2 = 0 is equivalent to the equality of mixed partials

in coordinates, e.g.,
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(6)
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Ex. 1: Prove it.

More geometrically it can be thought of as the fact that there is no boundary to the
boundary of a manifold: ∫

M
d2ω =

∫
∂M

dω =

∫
∂∂M

ω =

∫
∅
ω = 0. (7)

Volume form: Given a metric we can define volume forms, we use the Hodge star operation.
It is such that

ε := ∗1 =
√
g(dx1 ∧ · · · ∧ dxd), ιξ ∗ ω = ∗(ω ∧ g(ξ)) (8)

where g(ξ)a := gabξ
b. It also satisfy

g(ξ) ∧ ∗ω = ∗(ιξω)(−1)|ω|−1 (9)
ε := ∗1 =

√
g(dx1 ∧ · · ·dxd),

εa := ι∂aε = gaa′ ∗ (dxa
′
),

εab := ι∂bι∂aε = gaa′gbb′ ∗ (dxa
′ ∧ dxb

′
)

(10)

Applying This one gets for example that

∗F = F ab ∗ (dxa ∧ dxb) = F abεba = −F abεab
∗F ∧ δA = F abδAbεa. (11)

These forms can be used to integrate functions on manifold M , vectors on codimension 1
slices Σ, and charge aspects on co-dimension 2 surfaces.∫

M
Fε =

∫
M
F̂ ,

∫
Σ
ξaεa =

∫
Σ
ιξε,

1

2

∫
S
Qabεab =

∫
S
ιQε. (12)

are such that dε = dεa = dεab = 0 and we can show that

Lαε = (∂aα
a)ε, Lα(βbεb) = [∂a(α

aβb)− βa(∂aαb)]εb (13)

And we establish that

d(ξaεa) = (∂aξ
a)ε, d

(
1
2Q

abεba

)
= (∂bQ

ab)εa. (14)

Proof:
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1.2 Canonical Formalism

Talk about Canonical formalism, symplectic potential, Poisson bracket, Noether charge,
action and Hamiltonians for finite dimensional systems.
A Phase space is a manifold P equipped with a two-form ω which is closed. This is the
symplectic form ω = ωab(dx

a ∧ dxb),
dω = 0. (15)

When invertible, we can associate to it a Poisson structure {f, g} = Πab∂af∂bg. The
Poisson structure is a biderivation , it is simply given by a bivector field which is the inverse
of the symplectic potential, where Πabωcb = δac . The central identity for the Poisson bracket
is that it satisfies the Jacobi identity

Jac(F,G,H) := {F, {G,H}}+ cycl = 0. (16)

Ex. 2: Prove that it follows from dω = 0 and Πω = −1.
The main purpose of the Poisson bracket is that it allows to map, phase space observables
F onto a phase space transformation, a flow. The Flow associated to F is encoded into a
vector field XF as follows: Given F we define the Hamiltonian vector field XF to be such
that

ιXF
ω + dF = 0. (17)

And we define the Poisson bracket to be given by

{F,G} := ω(XF , XG). (18)

We can establish three key properties of the Hamiltonian vector field and the Poisson
bracket:

LXF
ω = 0, {F,G} = LXF

G, [XF , XG] = X{F,G}. (19)

In other words we have that Hamiltonian vector field preserves the symplectic structure,
that the bracket compute the action of a Hamiltonian vector field on a second hamiltonian
and that the bracket of two Hamiltonian vector fields is an Hamiltonian vector field asso-
ciated with the bracket.
Ex. 3: Prove it! Proof:

LXF
ω = dιXF

ω = −d2F = 0,
{F,G} = ιXG

ιXF
ω = −ιXF

ιXG
ω = ιXF

dG = LXF
G,

ι[XF ,XG]ω = [LXF
, ιXG

]ω = −LXF
dG = −dLXF

G = −d{F,G}. (20)

In other words we have established that

{F, ·} = XF ⇔ ιXF
ω = ω(XF , ·) = −dF. (21)

We can also establish that Jacobi is satisfied

{{F,G}, H} = {F, {G,H}} − {G, {F,H}}. (22)
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Proof:

{{F,G}, H} = L{F,G}H = L[XF ,XG]H
= [LXF

,LXG
]H = {F, {G,H}} − {G, {F,H}}. (23)

1.3 Lagrangian

From an action to a symplectic structure. A symplectic structure is locally associated with
a symplectic potential ω = dθ.

S =

∫ 1

0
dt[pq̇ −H(p, q)]. (24)

We have
δS = δp[q̇ − ∂pH]− δq[ṗ+ ∂qH] + [pδq]10 (25)

We see here that the structure of the equation of motion is

q̇ = {H, q}, ṗ = {H, p}, {p, q} = 1. (26)

so that XH = ∂t generates the time flow. This Poisson structure is compatible with the
symplectic structure:

θ = pδq, ω = δp ∧ δq. (27)

We have that
Xp = ∂q, Xq = −∂p, {p, q} = 1. (28)

Here we have Xp = {p, ·} = ∂q also Xq = {q, ·} = −∂p and therefore {p, q} = 1. Here H
generates a hamiltonian flow XH = ∂t.

Thus the symplectic structure is the inverse of ω = dθ where θ is the boundary term
in the action.

Difference between gauge and symmetry: A SymmetryX is a canonical transform
which preserve the Hamiltonian. We denote its hamiltonian JX . IXω + dJX = 0. X is a
symmetry if {JX , H} = 0. Noether first theorem states that a symmetry is conserved, this
follows from

˙JX = XH [JX ] = {H,JX} = −{JX , H} = X[H] = 0. (29)

A gauge transformation is a transformation which is in the Kernel of Ω. It’s Noether charge
vanishes! JX = 0.

Two questions: What happens if ω is not invertible? and how to we find
the symplectic form ω in Field theory?

Suppose we have a phase space (P, ω) together with a set of constraints C = {Ca, a =
1, · · · , n}. the constraints sub space C−1(0) ≡ {x ∈ P |Ca(x) = 0} ⊂ P . We denote by
iC : C → P the embedding map. i∗Cω the pull back of ω to C, restricted to the constraint
surface is a closed two form. It is a presymplectic form since it is not invertible. We denote
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by NC ≡ Ker(i∗Cω) ⊂ TC the set of vector field which are in the kernel of i∗Cω. Since ω is
closed we have that if X,Y ∈ NC then [X,Y ] ∈ NC . NC is therefore the tangent space to
the space of orbits. An equivalence relation is defined by

x ∼ y ⇔ y = eXx, X ∈ NC . (30)

and we define
P//C = [C−1(0)]∗/ ∼ (31)

where ∗ means that we take out the fixed point of the group action. P//C is a symplectic
manifold.

1.4 geometric quantisation

In the quantisation scheme the symplectic potential plays a key role. As we have seen,
classically an observable F defines a vector field XF which is such that ıXF

ω = −dF . At
the quantum level phase space functions are promoted to sections of a line bundle over P .
The additional dimension is given by the phase factor. The question we want to investigate
is whether there exists a quantisation map F → F̂ promoting functions to operators such
that

[F̂ , Ĝ] = i~{̂F,G} (32)

for all functions (F,G) in Phase space? Remarkably the answer is yes! Strange because
Groenewold-Van Hove theorem states that this is not possible. This is a cornerstone results
of Geometric quantisation, and the symplectic potential plays a key role.

One first establish that the change in the symplectic potential along an Hamiltonina
vector field is given by

LXF
θ = dιXF

θ + ιXF
dθ = d(ιXF

θ − F ) := d`F . (33)

The combination `F := ιXF
θ − F is the Lagrangian associated with F .

LXF
`G − LXG

`F = LXF
ιXG

θ − LXF
G︸ ︷︷ ︸

={F,G}

− ιXG
d`F︸ ︷︷ ︸

=ιXG
LXF

θ

−d ιXG
`F︸ ︷︷ ︸

=0

= [LXF
, ιXG

]θ − {F,G}
= ι[XF ,XG]θ − {F,G} = `{F,G}. (34)

Given a function F one defines a differential operator

F̂ :=
~
i
LXF

− `F . (35)

This operator satisfies the quantisation condition (32).

i

~
[F̂ , Ĝ] =

~
i
[XF , XG]− (LXF

`G − LXG
`F )
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=
~
i
X{F,G} − `{F,G} = {̂F,G}. (36)

One used that θ defines a natural hermitian connection with curvature ω:

∇X := X − i

~
ιXθ (37)

and then define F̂ = ~
i∇XF

+ F. Applying this to (p, q) with (Xp, Xq) = (∂q,−∂p) and
(Λp,Λq) = (0,−q) one gets

p̂ =
~
i
∂q, q̂ = −~

i
∂p + q. (38)

In order to get the usual quantisation we have to restrict to a polarisation where ∂pφ = 0.

1.5 Connections and curvature

Present in an elementary manner the concept of connection and its curvature in gauge and
gravity. We will use Yang-Mills connections A one-form valued into a Lie algebra g

∇aφ = ∂a +Aa, F (A) = [∇a,∇b] = ∂aAb − ∂bAa + [Aa, Ab]. (39)

We will also use Levi-Civita connection Which are connection in the tangent bundle. And
Levi-civita connection ∇XY −∇YX = [X,Y ], ∇agab = 0, the coefficient of the conection
are ∇a∂b = Γab

c are given by

Γab
c =

1

2
(∂agbd + ∂bgad − ∂dgab) gdc. (40)

and the curvature tensor is
[∇a,∇b]∂c = Rdcab∂d. (41)

While the Ricci tensor is Rab = Rcacb. Taking the variation of these relations we get

δRdcab = ∇aδΓbcd −∇bδΓacd, δRab = ∇cδΓbac −∇bδΓcac. (42)

1.6 Variational calculus

Introduce the variational Cartan calculus (δ, IX , LX). The two differentials commute
[d, δ] = 0. Talk about the concept of Field space vector field. And introduce as first
example QCD.
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2 Lecture 2: Covariant phase space and Noether’s theorem

We are going to see that in the covariant formalism a Lagrangian determines both the
equation of motion and a presymplectic structure on the system’s phase space. We will
also see that we can analyze symmetries and Hamiltonian structure without having to
specify a global time foliation.

We start with the QCD Lagrangian

L =
1

4g2
Tr(FabF

ab + jamAa), (43)

where Fab = ∂aAb − ∂bAa + [Aa, Ab] is the curvature.
Its variation is evaluated using that δFab = ∇aδAb − ∇bδAa, it gives the equation of

motion up to a boundary term.

δL = ∂aθ
a − Tr(EaδAa)︸ ︷︷ ︸

:=E

. (44)

where θa is the symplectic current, and Ea are the equations of motion

θa :=
1

g2
Tr(F abδAb), and Ea :=

1

g2
∇bF ba − jam. (45)

The covariant derivative is such that ∇aX := ∂aX + [Aa, X].

This Lagrangian can also be written in terms of forms covariant Cartan calculus and
Hodge dual as

L =
1

4g2
Tr(F ∧ ∗F + ∗jm ∧A), (46)

Ex. 4: Prove it.

δL =
1

g2
Tr(∗F ∧ dAδA) + Tr(∗jδA).

= d

(
1

g2
Tr(∗F ∧ δA)

)
− 1

g2
Tr((dA ∗ F − ∗j) ∧ δA) (47)

A Lagrangian symmetry is a transformation of the field that leaves the Lagrangian
invariant up to a boundary term. A gauge symmetry is a Lagrangian symmetry whose
parameter is a local functional. Look to the gauge transformation LXAa := ∇aX. The
action of this vector field on the local functional L is given on the one hand by

LXL = ∂a (Xjam)︸ ︷︷ ︸
:=`aX

, (48)
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where jm is the charge matter current and we have denoted the boundary term `X .
On the other hand we have, since LXL = δIXL, that

LXL = ∂a(IXθ
a)− Tr(Ea∇aX)︸ ︷︷ ︸

IXE

, and IXθ
a =

1

g2
Tr(F ab∇bX). (49)

We can conclude two important equations from this. First taking the difference we obtain
the conservation law for the Noether current:

∂a (IXθ
a − `aX)︸ ︷︷ ︸

:=JX

= IXE =̂ 0. (50)

This is Noether’s first theorem. The Noether current JX := (IXθ
a − `aX) is conserved

on-shell which is represented by the hatted equality.
In the case of a gauge symmetry we have more: we can decompose IXE into a total

derivative plus a term that does not depend on derivatives of X,

IXE = Tr(Ea∇aX) = ∂a Tr(EaX)︸ ︷︷ ︸
:=Ca

X

−Tr(X∇aEa), (51)

and we can write the current conservation as

∂a(J
a
X − CaX) = Tr(X∇aEa). (52)

Here JX is the Noether current while CX is the constraints that follows from gauge sym-
metry.

If X is a local variation, this equality can be true only if both sides vanish, this gives
us the Bianchi identity:

∇aEa = 0. (53)

This is indeed an identity in the example of QCD

∇aEa =
1

g2
[∇a, [∇b, F ba]]−∇ajam =

1

2g2
[Fab, F

ba]−∇ajam = −∇ajam. (54)

The Noether Bianchi identity means that the matter Current needs to be covariantly
conserved. It also means that the Noether conservation Law reads

∂a(IXΘa − `aX︸ ︷︷ ︸
JX

−CaX) = 0, CaX =
1

g2
Tr(EaX). (55)

The fact that the divergence of JX−CX vanishes independently of the equations of motion
means that it is trivially conserved. In other words, there exists a bivector QabX called the
charge aspect such that

JaX = CaX + ∂b(Q
ab
X ). (56)
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The fact that the Noether Current is a pure boundary term on-shell is the hallmark of
gauge invariant theories.
Ex. 5: Check the Bianchi identity and the trivial conservation.

We can check the trivial conservation of the current directly by evaluating the charge
aspect for QCD: one finds that

JaX =
1

g2
Tr (F ab∇bX)︸ ︷︷ ︸

soft-current

− Tr(jamX)︸ ︷︷ ︸
hard-current

, and QabX =
1

g2
Tr
(
F abX

)
︸ ︷︷ ︸
charge-aspect

. (57)

Ex. 6: Prove it!

The solution is

JaX − CaX = IXΘa − Tr(jamX)− Tr(EaX)

=
1

g2
Tr(F ab∇bX)− Tr(jamX)− Tr

(
X

(
1

g2
∇bF ba − jam

))
= ∂b

(
1

g2
Tr
(
F abX

))
︸ ︷︷ ︸

Qab
X

. (58)

Now that we understand the Conservation equation and Bianchi identities lets investi-
gate the canonical property of the charges. Given the symplectic current, we define the
symplectic potential:

ω = δθ. (59)

For QCD this is ω = ωaεa given by

ωa =
1

g2
Tr(δF ab ∧ δAb) =

1

g2
Tr
(

(∇aδAb −∇bδAa) f δAb

)
. (60)

The Symplectic potential is a 2-form in field space and a codimension one form. It can
therefore be integrated over codimension one manifold Σ embedded in space-time to define
the symplectic structure

ΩΣ :=

∫
Σ
ω. (61)

It is customary to define Σ at a constant time slice T = t of a global foliation. Here as
the figure shows (??) we do not have to restrict to a given foliation or a particular time-
slice. The question arises whether the symplectic structure depends on the codimension
one surface that one choses to evaluate it? The fact that it doesn’t for on-shell variations,
that is variations that preserves the
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Taking the differential of the defining equation (??) and using that δ2 = 0 we get

δE = dω. (62)

This equation is the classical version of the unitarity condition. WE call it Noether 0-th
Law. Given two cohomologous hypersurface ∂Σ = ∂Σ′ enclosing a region R such that
∂R = Σ ∪ (−Σ′) ( see fig. 2) , Noether zeroth law means that

ΩΣ − ΩΣ′ =

∫
R
δE=̂0. (63)

This means that the symplectic potential is conserved. If the two regions intersect the
boundary at different time then we need to impose boundary conditions that insure that
the boundary symplectic potential vanish. This is the reason behind Dirichlet or Neuman
boundary conditions.

Given the symplectic potential we can define the bracket of two Noether current to be
given by

{JX , JY } := ω(X,Y ) = −IXIY ω. (64)

This bracket satisfy Jacobi-identity, since δω = 0.
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