Realizability of Graphs Discrete Math Day 2008

Maria Belk and Robert Connelly

Motivation: the molecule problem

A chemist determines the distances between atoms in a molecule:

Motivation: the molecule problem

- 1. Is this a possible configuration of points in 3 dimensions?
- 2. What is a possible configuration satisfying these distances?

Motivation: the molecule problem

- 1. Is this a possible configuration of points in 3 dimensions?
- 2. What is a possible configuration satisfying these distances?

Unfortunately, these questions are NP-hard. We will answer a different question.

Realization

Realization: A **realization** of a graph *G* is a placement of the vertices in some \mathbb{R}^d .

Realization

Here are two realizations of the same graph:

d-realizable: A graph is *d*-realizable if given any realization of the graph in some \mathbb{R}^n (possibly high dimensional), there exists a realization in \mathbb{R}^d with the same edge lengths.

Example: A path is 1-realizable.

• A tree is 1-realizable.

- K_3 is 2-realizable, but not 1-realizable.
- A cycle is also 2-realizable, but not
- 1-realizable.
- Any graph containing a cycle is not 1-realizable.

- A tree is 1-realizable.
- K_3 is 2-realizable, but not 1-realizable.
- A cycle is also 2-realizable, but not 1-realizable.
- Any graph containing a cycle is not 1-realizable.

- A tree is 1-realizable.
- K_3 is 2-realizable, but not 1-realizable.
- A cycle is also 2-realizable, but not 1-realizable.

• Any graph containing a cycle is not 1-realizable.

- A tree is 1-realizable.
- K_3 is 2-realizable, but not 1-realizable.
- A cycle is also 2-realizable, but not 1-realizable.
- Any graph containing a cycle is not 1-realizable.

Theorem. (Connelly) A graph is 1-realizable if and only if it a forest (a disjoint collection of trees).

Definition. A **minor** of a graph G is a graph obtained by a sequence of

- Edge deletions and
- Edge contractions (identify the two vertices belonging to the edge and remove any loops or multiple edges).

Definition. A **minor** of a graph G is a graph obtained by a sequence of

- Edge deletions and
- Edge contractions (identify the two vertices belonging to the edge and remove any loops or multiple edges).
- **Theorem. (Connelly)** If *G* is *d*-realizable then every minor of *G* is *d*-realizable (this means *d*-realizability is a minor monotone graph property).

Graph Minor Theorem

Theorem (Robertson and Seymour). For a minor monotone graph property, there exists a finite list of graphs G_1, \ldots, G_n such that a graph G satisfies the minor monotone graph property if and only if G does not have G_i as a minor.

Example: A graph is 1-realizable if and only if it does not contain K_3 as a minor.

Graph Minor Theorem

By the Graph Minor Theorem:

For each d, there exists a finite list of graphs G_1, \ldots, G_n such that a graph is d-realizable if and only if it does not have any G_i as a minor.

Forbidden Minors

Which graphs are 2-realizable?

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

- Start with a triangle.
- Attach another triangle along an edge.
- Continue attaching triangles to edges.

2-trees are 2-realizable.

Partial 2-tree: Subgraph of a 2-tree

Partial 2-tree: Subgraph of a 2-tree

Partial 2-tree: Subgraph of a 2-tree

Partial 2-trees are also 2-realizable.

- **Theorem (Wagner, 1937).** *G* is a partial 2-tree if and only if *G* does not contain K_4 as a minor.
- **Theorem (Belk, Connelly).** *G* is 2-realizable if and only if *G* does not contain K_4 as a minor.

Realizability

	Allowed	Forbidden
1-realizability	Trees	
2-realizability	Partial 2-trees	

Which graphs are 3-realizable?

<u>*k*-sum</u>:

- G_1 contains a K_k subgraph
- G_2 contains a K_k subgraph
- $G_1 \oplus_k G_2$ is obtained by identifying the K_k subgraphs

<u>*k*-tree</u>:

- Start with a K_{k+1} .
- k-sum with another K_{k+1} .
- Continue k-summing with K_{k+1} .

<u>*k*-tree</u>:

- Start with a K_{k+1} .
- k-sum with another K_{k+1} .
- Continue k-summing with K_{k+1} .

<u>*k*-tree</u>:

- Start with a K_{k+1} .
- k-sum with another K_{k+1} .
- Continue k-summing with K_{k+1} .

Partial *k*-tree: Subgraph of a *k*-tree

Partial *k*-tree: Subgraph of a *k*-tree.

Theorem (Connelly) All partial *d*-trees are *d*-realizable.

Theorem (Connelly) All partial *d*-trees are *d*-realizable.

Partial 3-tree: Subgraph of a 3-tree

Another example:

Are the following all equal?

- Partial 3-trees
- Not containing K_5
- 3-realizability

Are the following all equal?

- Partial 3-trees
- Not containing K_5
- 3-realizability

Answer: No, none of the three are equal.

None of the reverse directions are true.

Theorem (Arnborg, Proskurowski, Corneil) The forbidden minors for partial 3-trees.

Which of these graphs are 3-realizable?

Which of these graphs are 3-realizable?

Are there any more forbidden minors for 3-realizability?

Lemma (Belk and Connelly). If G contains

 V_8 or $C_5 \times C_2$ as a minor then either

- G contains K_5 or $K_{2,2,2}$ as a minor, or
- G can be constructed by 2-sums and 1-sums of partial 3-trees, V₈'s, and C₅×C₂'s (and is thus 3-realizable).

Theorem (Belk and Connelly). The forbidden minors for 3-realizability are K_5 and $K_{2,2,2}$.

Are there any more forbidden minors for 3-realizability? NO

Lemma (Belk and Connelly). If G contains

 V_8 or $C_5 \times C_2$ as a minor then either

- G contains K_5 or $K_{2,2,2}$ as a minor, or
- G can be constructed by 2-sums and 1-sums of partial 3-trees, V₈'s, and C₅×C₂'s (and is thus 3-realizable).

Theorem (Belk and Connelly). The forbidden minors for 3-realizability are K_5 and $K_{2,2,2}$.

 V_8 and $C_5 \times C_2$

Theorem (Belk). V_8 and $C_5 \times C_2$ are 3-realizable. **Idea of Proof:** Pull 2 vertices as far apart as possible.

Conclusion

	Allowed	Forbidden
1-realizable	Trees	
2-realizable	Partial 2-trees	
3-realizable	Partial 3-trees	

Which graphs are 4-realizable?

- K_6 is a forbidden minor.
- There is an obvious generalization of $K_{2,2,2}$, which is a forbidden minor.
- However, there are over 75 forbidden minors for partial 4-trees.