MATH 142: Practice Midterm 1

Show all appropriate work. Variables may represent any real number.

1. (a) Use integration by parts with $d v=\cos (x) d x$ to prove the reduction formula $\int \cos ^{n}(x) d x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x$.
(b) Use your answer to part (a) to find $\int_{0}^{\frac{\pi}{2}} \cos ^{5}(x) d x$.
2. Let $f(x)=2 \cos \left[\left(2 x-x^{2}\right) \frac{\pi}{2}\right]$ and $g(x)=2 x \cos \left[\left(2 x-x^{2}\right) \frac{\pi}{2}\right]$. Given that $f(x) \geq g(x)$ on $[0,1]$, find the area bound by $f(x)$ and $g(x)$ on the interval from 0 to 1 .
3. Evaluate the following integrals:
(a) $\int \frac{x+2}{\left(x^{2}+4 x-3\right)^{3}} d x$.
(b) $\int e^{-y} \cos y d y$.
(c) $\int \sqrt{x} e^{\sqrt{x}} d x$.
(d) $\int \frac{x^{4}+x^{3}-x^{2}-x+1}{x^{3}-x} d x$.
