Show all appropriate work.

- 1. Problems from the book: (Again, a scan of the problems are attached to the end of this pdf.)
 - (a) Section 3.1: 1, 3, 8, 9, 10, 17, 20, 23.
 - (b) Section 3.5: 2, 6, 13, 15, 17, 26, 32.

spaces.

 $d\mathbf{w}$:

Then the

so that the w can you

 $= b_1$ and imns of A.

space any

and b_2 ?

ot possible in all their : **b** 3 would

of S.

ons \dots

 \mathbf{V}_1 starts with three vectors. A subspace \mathbf{S} comes from all combinations of the Solution first two vectors (1, 1, 0, 0) and (1, 1, 1, 0). A subspace SS of S comes from all multiples (c, c, 0, 0) of the first vector. So many possibilities.

A subspace S of V_2 is the line through (1, -1, 1). This line is perpendicular to u. The vector $\mathbf{x} = (0, 0, 0)$ is in S and all its multiples $c\mathbf{x}$ give the smallest subspace $SS = \mathbf{Z}$.

The diagonal matrices are a subspace ${f S}$ of the symmetric matrices. The multiples cIare a subspace SS of the diagonal matrices.

 V_4 contains all cubic polynomials $y = a + bx + cx^2 + dx^3$, with $d^4y/dx^4 = 0$. The quadratic polynomials give a subspace S. The linear polynomials are one choice of SS. The constants could be SSS.

In all four parts we could take S = V itself, and SS = the zero subspace Z. Each V can be described as all combinations of and as all solutions of:

 $\mathbf{v}_1 = \text{all combinations of the 3 vectors}$ V_1 = all solutions of $v_1 - v_2 = 0$

 $\mathbf{v}_2 = \text{all combinations of } (1, 0, -1) \text{ and } (1, -1, 1) \text{ are solutions of } \mathbf{u} \cdot \mathbf{v} = 0.$

 $\mathbf{V}_3 = \text{all combinations of } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}. \quad \mathbf{V}_3 = \text{all solutions } \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \text{ of } b = c$

 V_4 = all combinations of 1, x, x^2 , x^3 V_4 = all solutions to $d^4v/dx^4 = 0$.

Problem Set 3.1

The first problems 1-8 are about vector spaces in general. The vectors in those spaces are not necessarily column vectors. In the definition of a vector space, vector addition x + y and scalar multiplication cx must obey the following eight rules:

$$(1) x + y = y + x$$

(2)
$$x + (y + z) = (x + y) + z$$

- (3) There is a unique "zero vector" such that x + 0 = x for all x
- (4) For each x there is a unique vector -x such that x + (-x) = 0
- (5) 1 times x equals x

(6)
$$(c_1c_2)x = c_1(c_2x)$$

$$(7) c(x+y) = cx + cy$$

(8)
$$(c_1 + c_2)x = c_1x + c_2x$$
.

- 1 Suppose $(x_1, x_2) + (y_1, y_2)$ is defined to be $(x_1 + y_2, x_2 + y_1)$. With the usual multiplication $cx = (cx_1, cx_2)$, which of the eight conditions are not satisfied?
- 2 Suppose the multiplication cx is defined to produce $(cx_1, 0)$ instead of (cx_1, cx_2) . With the usual addition in \mathbb{R}^2 , are the eight conditions satisfied?

- 3 (a) Which rules are broken if we keep only the positive numbers x > 0 in \mathbb{R}^{1} ? Every c must be allowed. The half-line is not a subspace.
 - (b) The positive numbers with x + y and cx redefined to equal the usual xy and x^c do satisfy the eight rules. Test rule 7 when c = 3, x = 2, y = 1. (Then x + y = 2 and cx = 8.) Which number acts as the "zero vector"?
- The matrix $A = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$ is a "vector" in the space M of all 2 by 2 matrices. Write down the zero vector in this space, the vector $\frac{1}{2}A$, and the vector -A. What matrices are in the smallest subspace containing A?
- 5 (a) Describe a subspace of M that contains $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but not $B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (b) If a subspace of M contains A and B, must it contain I?
 - (c) Describe a subspace of M that contains no nonzero diagonal matrices.
- The functions $f(x) = x^2$ and g(x) = 5x are "vectors" in **F**. This is the vector space of all real functions. (The functions are defined for $-\infty < x < \infty$.) The combination 3f(x) 4g(x) is the function h(x) =____.
- Which rule is broken if multiplying f(x) by c gives the function f(cx)? Keep the usual addition f(x) + g(x).
- If the sum of the "vectors" f(x) and g(x) is defined to be the function f(g(x)), then the "zero vector" is g(x) = x. Keep the usual scalar multiplication c f(x) and find two rules that are broken.

Questions 9–18 are about the "subspace requirements": x + y and cx (and then all linear combinations cx + dy) stay in the subspace.

- 9 One requirement can be met while the other fails. Show this by finding
 - (a) A set of vectors in \mathbb{R}^2 for which x + y stays in the set but $\frac{1}{2}x$ may be outside.
 - (b) A set of vectors in \mathbb{R}^2 (other than two quarter-planes) for which every cx stays in the set but x + y may be outside.
- Which of the following subsets of \mathbb{R}^3 are actually subspaces?
 - (a) The plane of vectors (b_1, b_2, b_3) with $b_1 = b_2$.
 - (b) The plane of vectors with $b_1 = 1$.
 - (c) The vectors with $b_1b_2b_3 = 0$.
 - (d) All linear combinations of v = (1, 4, 0) and w = (2, 2, 2).
 - (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
 - (f) All vectors with $b_1 \leq b_2 \leq b_3$.
- 11 Describe the smallest subspace of the matrix space M that contains

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

1?

ces

ind ien

rite

tor The

;)), ind

the

all

de. ays Let P be the plane in \mathbb{R}^3 with equation x + y - 2z = 4. The origin (0,0,0) is not in P! Find two vectors in P and check that their sum is not in P.

Let P_0 be the plane through (0,0,0) parallel to the previous plane P. What is the equation for P_0 ? Find two vectors in P_0 and check that their sum is in P_0 .

The subspaces of \mathbb{R}^3 are planes, lines, \mathbb{R}^3 itself, or \mathbb{Z} containing only (0,0,0).

- (a) Describe the three types of subspaces of \mathbb{R}^2 .
- (b) Describe all subspaces of D, the space of 2 by 2 diagonal matrices.

15 (a) The intersection of two planes through (0,0,0) is probably a _____ but it could be a _____ It can't be \mathbb{Z} !

(b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is probably a _____ but it could be a _____.

(c) If S and T are subspaces of \mathbb{R}^5 , prove that their intersection $\mathbb{S} \cap \mathbb{T}$ is a subspace of \mathbb{R}^5 . Here $\mathbb{S} \cap \mathbb{T}$ consists of the vectors that lie in both subspaces. Check the requirements on x + y and cx.

Suppose **P** is a plane through (0,0,0) and **L** is a line through (0,0,0). The smallest vector space containing both **P** and **L** is either _____ or ____.

17 (a) Show that the set of *invertible* matrices in M is not a subspace.

(b) Show that the set of singular matrices in M is not a subspace.

18 True or false (check addition in each case by an example):

(a) The symmetric matrices in M (with $A^T = A$) form a subspace.

(b) The skew-symmetric matrices in **M** (with $A^{T} = -A$) form a subspace.

(c) The unsymmetric matrices in M (with $A^T \neq A$) form a subspace.

Questions 19–27 are about column spaces C(A) and the equation Ax = b.

19 Describe the column spaces (lines or planes) of these particular matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 0 \end{bmatrix}.$$

20 For which right sides (find a condition on b_1, b_2, b_3) are these systems solvable?

(a)
$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C. A combination of the columns of (B or C?) is also a combination of the columns of A. Which two matrices have the same column _____?

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$.

22 For which vectors (b_1, b_2, b_3) do these systems have a solution?

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
and
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- (Recommended) If we add an extra column b to a matrix A, then the column space gets larger unless _____. Give an example where the column space gets larger and an example where it doesn't. Why is Ax = b solvable exactly when the column space doesn't get larger—it is the same for A and $\begin{bmatrix} A & b \end{bmatrix}$?
- The columns of AB are combinations of the columns of A. This means: The column space of AB is contained in (possibly equal to) the column space of A. Give an example where the column spaces of A and AB are not equal.
- Suppose Ax = b and $Ay = b^*$ are both solvable. Then $Az = b + b^*$ is solvable. What is z? This translates into: If b and b^* are in the column space C(A), then $b + b^*$ is in C(A).
- 26 If A is any 5 by 5 invertible matrix, then its column space is _____. Why?
- 27 True or false (with a counterexample if false):
 - (a) The vectors \boldsymbol{b} that are not in the column space $\boldsymbol{C}(A)$ form a subspace.
 - (b) If C(A) contains only the zero vector, then A is the zero matrix.
 - (c) The column space of 2A equals the column space of A.
 - (d) The column space of A I equals the column space of A (test this).
- Construct a 3 by 3 matrix whose column space contains (1, 1, 0) and (1, 0, 1) but not (1, 1, 1). Construct a 3 by 3 matrix whose column space is only a line.
- 29 If the 9 by 12 system Ax = b is solvable for every b, then C(A) =_____.

pace and umn

lumn e an

able. then

t not

Challenge Problems

- Suppose S and T are two subspaces of a vector space V. 30
 - (a) **Definition**: The sum S + T contains all sums s + t of a vector s in S and a vector t in T. Show that S + T satisfies the requirements (addition and scalar multiplication) for a vector space.
 - (b) If S and T are lines in \mathbb{R}^m , what is the difference between S + T and $S \cup T$? That union contains all vectors from S or T or both. Explain this statement: The span of $S \cup T$ is S + T. (Section 3.5 returns to this word "span".)
- If S is the column space of A and T is C(B), then S + T is the column space of what 31 matrix M? The columns of A and B and M are all in \mathbb{R}^m . (I don't think A + B is always a correct M.)
- Show that the matrices A and $\begin{bmatrix} A & AB \end{bmatrix}$ (with extra columns) have the same column 32 space. But find a square matrix with $C(A^2)$ smaller than C(A). Important point:

An *n* by *n* matrix has $C(A) = \mathbb{R}^n$ exactly when *A* is an _____ matrix.

Now suppose $c \neq 1$. Then the matrix M is invertible. So if x is any nonzero vector we know that Mx is nonzero. Since the w's are given as independent, we further know that WMx is nonzero. Since V = WM, this says that x is not in the nullspace of V. In other words v_1, v_2, v_3 are independent.

The general rule is "independent v's from independent w's when M is invertible". And if these vectors are in \mathbb{R}^3 , they are not only independent—they are a basis for \mathbb{R}^3 . "Basis of v's from basis of w's when the change of basis matrix M is invertible."

3.5 C (*Important example*) Suppose v_1, \ldots, v_n is a basis for \mathbb{R}^n and the n by n matrix A is invertible. Show that Av_1, \ldots, Av_n is also a basis for \mathbb{R}^n .

Solution In matrix language: Put the basis vectors v_1, \ldots, v_n in the columns of an invertible(!) matrix V. Then Av_1, \ldots, Av_n are the columns of AV. Since A is invertible, so is AV and its columns give a basis.

In vector language: Suppose $c_1Av_1 + \cdots + c_nAv_n = \mathbf{0}$. This is $Av = \mathbf{0}$ with $v = c_1v_1 + \cdots + c_nv_n$. Multiply by A^{-1} to reach $v = \mathbf{0}$. By linear independence of the v's, all $c_i = \mathbf{0}$. This shows that the Av's are independent.

To show that the Av's span \mathbb{R}^n , solve $c_1 Av_1 + \cdots + c_n Av_n = b$ which is the same as $c_1v_1 + \cdots + c_nv_n = A^{-1}b$. Since the v's are a basis, this must be solvable.

Problem Set 3.5

Questions 1-10 are about linear independence and linear dependence.

1 Show that v_1, v_2, v_3 are independent but v_1, v_2, v_3, v_4 are dependent:

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $v_4 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.

Solve $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = \mathbf{0}$ or $Ax = \mathbf{0}$. The v's go in the columns of A.

2 (Recommended) Find the largest possible number of independent vectors among

$$v_{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \quad v_{2} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \quad v_{3} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \quad v_{4} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} \quad v_{5} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \quad v_{6} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

3 Prove that if a = 0 or d = 0 or f = 0 (3 cases), the columns of U are dependent:

$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}.$$

- If a, d, f in Question 3 are all nonzero, show that the only solution to Ux = 0 is x = 0. Then the upper triangular U has independent columns.
- 5 Decide the dependence or independence of
 - (a) the vectors (1, 3, 2) and (2, 1, 3) and (3, 2, 1)
 - (b) the vectors (1, -3, 2) and (2, 1, -3) and (-3, 2, 1).
- 6 Choose three independent columns of U. Then make two other choices. Do the same for A.

$$U = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 4 & 6 & 8 & 2 \end{bmatrix}.$$

- If w_1, w_2, w_3 are independent vectors, show that the differences $v_1 = w_2 w_3$ and $v_2 = w_1 w_3$ and $v_3 = w_1 w_2$ are dependent. Find a combination of the v's that gives zero. Which matrix A in $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} A$ is singular?
- If w_1, w_2, w_3 are independent vectors, show that the sums $v_1 = w_2 + w_3$ and $v_2 = w_1 + w_3$ and $v_3 = w_1 + w_2$ are independent. (Write $c_1v_1 + c_2v_2 + c_3v_3 = 0$ in terms of the w's. Find and solve equations for the c's, to show they are zero.)
- 9 Suppose v_1, v_2, v_3, v_4 are vectors in \mathbb{R}^3 .

as

nt:

- (a) These four vectors are dependent because _____.
- (b) The two vectors v_1 and v_2 will be dependent if _____.
- (c) The vectors v_1 and (0,0,0) are dependent because _____.
- Find two independent vectors on the plane x + 2y 3z t = 0 in \mathbb{R}^4 . Then find three independent vectors. Why not four? This plane is the nullspace of what matrix?

Questions 11-15 are about the space *spanned* by a set of vectors. Take all linear combinations of the vectors.

- Describe the subspace of \mathbb{R}^3 (is it a line or plane or \mathbb{R}^3 ?) spanned by
 - (a) the two vectors (1, 1, -1) and (-1, -1, 1)
 - (b) the three vectors (0, 1, 1) and (1, 1, 0) and (0, 0, 0)
 - (c) all vectors in \mathbb{R}^3 with whole number components
 - (d) all vectors with positive components.
- The vector **b** is in the subspace spanned by the columns of A when _____ has a solution. The vector **c** is in the row space of A when _____ has a solution.

 True or false: If the zero vector is in the row space, the rows are dependent.

Find the dimensions of these 4 spaces. Which two of the spaces are the same? (a) column space of A, (b) column space of U, (c) row space of A, (d) row space of U:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 3 & 1 & -1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

14 v + w and v - w are combinations of v and w. Write v and w as combinations of v + w and v - w. The two pairs of vectors _____ the same space. When are they a basis for the same space?

Questions 15-25 are about the requirements for a basis.

- 15 If v_1, \ldots, v_n are linearly independent, the space they span has dimension _____. These vectors are a _____ for that space. If the vectors are the columns of an m by n matrix, then m is _____ than n. If m = n, that matrix is _____.
- 16 Find a basis for each of these subspaces of \mathbb{R}^4 :
 - (a) All vectors whose components are equal.
 - (b) All vectors whose components add to zero.
 - (c) All vectors that are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1).
 - (d) The column space and the nullspace of I (4 by 4).
- Find three different bases for the column space of $U = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$. Then find two different bases for the row space of U.
- 18 Suppose v_1, v_2, \dots, v_6 are six vectors in \mathbb{R}^4 .
 - (a) Those vectors (do)(do not)(might not) span R⁴.
 - (b) Those vectors (are)(are not)(might be) linearly independent.
 - (c) Any four of those vectors (are)(are not)(might be) a basis for R⁴.
- The columns of A are n vectors from \mathbb{R}^m . If they are linearly independent, what is the rank of A? If they span \mathbb{R}^m , what is the rank? If they are a basis for \mathbb{R}^m , what then? Looking ahead: The rank r counts the number of _____ columns.
- Find a basis for the plane x-2y+3z=0 in \mathbb{R}^3 . Then find a basis for the intersection of that plane with the xy plane. Then find a basis for all vectors perpendicular to the plane.
- 21 Suppose the columns of a 5 by 5 matrix A are a basis for \mathbb{R}^5 .
 - (a) The equation Ax = 0 has only the solution x = 0 because _____.
 - (b) If b is in \mathbb{R}^5 then Ax = b is solvable because the basis vectors \mathbb{R}^5 .

Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for \mathbb{R}^5 .

- Suppose S is a 5-dimensional subspace of \mathbb{R}^6 . True or false (example if false):
 - (a) Every basis for S can be extended to a basis for R^6 by adding one more vector.
 - (b) Every basis for \mathbb{R}^6 can be reduced to a basis for \mathbb{S} by removing one vector.
- 23 U comes from A by subtracting row 1 from row 3:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Find bases for the two column spaces. Find bases for the two row spaces. Find bases for the two nullspaces. Which spaces stay fixed in elimination?

- 24 True or false (give a good reason):
 - (a) If the columns of a matrix are dependent, so are the rows.
 - (b) The column space of a 2 by 2 matrix is the same as its row space.
 - (c) The column space of a 2 by 2 matrix has the same dimension as its row space.
 - (d) The columns of a matrix are a basis for the column space.
- 25 For which numbers c and d do these matrices have rank 2?

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}.$$

Questions 26-30 are about spaces where the "vectors" are matrices.

- 26 Find a basis (and the dimension) for each of these subspaces of 3 by 3 matrices:
 - (a) All diagonal matrices.

ıat

on

he

- (b) All symmetric matrices $(A^{T} = A)$.
- (c) All skew-symmetric matrices $(A^{T} = -A)$.
- 27 Construct six linearly independent 3 by 3 echelon matrices U_1, \ldots, U_6 .
- Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a basis for the subspace whose rows also add to zero.
- 29 What subspace of 3 by 3 matrices is spanned (take all combinations) by
 - (a) the invertible matrices?
 - (b) the rank one matrices?
 - (c) the identity matrix?
- 30 Find a basis for the space of 2 by 3 matrices whose nullspace contains (2, 1, 1).

AND THE PROPERTY OF THE PROPER

Questions 31-35 are about spaces where the "vectors" are functions.

- 31 (a) Find all functions that satisfy $\frac{dy}{dx} = 0$.
 - (b) Choose a particular function that satisfies $\frac{dy}{dx} = 3$.
 - (c) Find all functions that satisfy $\frac{dy}{dx} = 3$.
- The cosine space F_3 contains all combinations $y(x) = A \cos x + B \cos 2x + C \cos 3x$. Find a basis for the subspace with y(0) = 0.
- 33 Find a basis for the space of functions that satisfy
 - $(a) \ \frac{dy}{dx} 2y = 0$
 - (b) $\frac{dy}{dx} \frac{y}{x} = 0.$
- Suppose $y_1(x)$, $y_2(x)$, $y_3(x)$ are three different functions of x. The vector space they span could have dimension 1, 2, or 3. Give an example of y_1 , y_2 , y_3 to show each possibility.
- 35 Find a basis for the space of polynomials p(x) of degree ≤ 3 . Find a basis for the subspace with p(1) = 0.
- Find a basis for the space S of vectors (a, b, c, d) with a + c + d = 0 and also for the space T with a + b = 0 and c = 2d. What is the dimension of the intersection $S \cap T$?
- 37 If AS = SA for the shift matrix S, show that A must have this special form:

If
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 then $A = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$.

"The subspace of matrices that commute with the shift S has dimension _____."

- 38 Which of the following are bases for \mathbb{R}^3 ?
 - (a) (1,2,0) and (0,1,-1)
 - (b) (1, 1, -1), (2, 3, 4), (4, 1, -1), (0, 1, -1)
 - (c) (1,2,2), (-1,2,1), (0,8,0)
 - (d) (1,2,2), (-1,2,1), (0,8,6)
- Suppose A is 5 by 4 with rank 4. Show that Ax = b has no solution when the 5 by 5 matrix $\begin{bmatrix} A & b \end{bmatrix}$ is invertible. Show that Ax = b is solvable when $\begin{bmatrix} A & b \end{bmatrix}$ is singular.
- **40** (a) Find a basis for all solutions to $d^4y/dx^4 = y(x)$.
 - (b) Find a particular solution to $d^4y/dx^4 = y(x) + 1$. Find the complete solution.

х.

ne

or

n.

Challenge Problems

- Write the 3 by 3 identity matrix as a combination of the other five permutation matrices! Then show that those five matrices are linearly independent. (Assume a combination gives $c_1 P_1 + \cdots + c_5 P_5 = \text{zero matrix}$, and check entries to prove c_i is zero.) The five permutations are a basis for the subspace of 3 by 3 matrices with row and column sums all equal.
- Choose $x = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 . It has 24 rearrangements like (x_2, x_1, x_3, x_4) and (x_4, x_3, x_1, x_2) . Those 24 vectors, including x itself, span a subspace S. Find specific vectors x so that the dimension of S is: (a) zero, (b) one, (c) three, (d) four.
- Intersections and sums have $\dim(V) + \dim(W) = \dim(V \cap W) + \dim(V + W)$. Start with a basis u_1, \ldots, u_r for the intersection $V \cap W$. Extend with v_1, \ldots, v_s to a basis for V, and separately with w_1, \ldots, w_t to a basis for W. Prove that the u's, v's and w's together are *independent*. The dimensions have (r+s) + (r+t) = (r) + (r+s+t) as desired.
- Mike Artin suggested a neat higher-level proof of that dimension formula in Problem 43. From all inputs v in V and w in W, the "sum transformation" produces v+w. Those outputs fill the space V+W. The nullspace contains all pairs v=u, w=-u for vectors u in $V\cap W$. (Then v+w=u-u=0.) So $\dim(V+W)+\dim(V\cap W)$ equals $\dim(V)+\dim(W)$ (input dimension from V and W) by the crucial formula

dimension of outputs + dimension of nullspace = dimension of inputs.

Problem For an m by n matrix of rank r, what are those 3 dimensions? Outputs = column space. This question will be answered in Section 3.6, can you do it now?

- Inside \mathbb{R}^n , suppose dimension (\mathbb{V}) + dimension $(\mathbb{W}) > n$. Show that some nonzero vector is in both \mathbb{V} and \mathbb{W} .
- Suppose A is 10 by 10 and $A^2 = 0$ (zero matrix). This means that the column space of A is contained in the _____. If A has rank r, those subspaces have dimension $r \le 10 r$. So the rank is $r \le 5$.

(This problem was added to the second printing: If $A^2 = 0$ it says that r < n/2.)