Show all appropriate work.

- 1. Problems from the book: (Again, a scan of the problems are attached to the end of this pdf.)
 - (a) Section 2.3: 3, 18, 21, 28.
 - (b) Section 2.4: 7, 8, 17.
 - (c) Section 2.5: 7, 17, 23, 30.
 - (d) MATLAB problems: 2.2.28, 2.5.38, 2.5.39.

- Construct a 3 by 3 example that has 9 different coefficients on the left side, but 18 rows 2 and 3 become zero in elimination. How many solutions to your system with b = (1, 10, 100) and how many with b = (0, 0, 0)?
- Which number q makes this system singular and which right side t gives it infinitely 19 many solutions? Find the solution that has z = 1.

$$x + 4y - 2z = 1$$
$$x + 7y - 6z = 6$$
$$3y + qz = t$$

Three planes can fail to have an intersection point, even if no planes are parallel. The 20 system is singular if row 3 of A is a _____ of the first two rows. Find a third equation that can't be solved together with x + y + z = 0 and x - 2y - z = 1.

21 Find the pivots and the solution for both systems (Ax = b and Kx = b):

2x + y	= 0	2x - y = 0	
x + 2y + z	= 0	-x + 2y - z = 0	
y + 2z +	t = 0	-y+2z-t=0	
	2t = 5	-z+2t=5.	

- **22** If you extend Problem 21 following the 1, 2, 1 pattern or the -1, 2, -1 pattern, what is the fifth pivot? What is the nth pivot? K is my favorite matrix.
- If elimination leads to x + y = 1 and 2y = 3, find three possible original problems. 23
- For which two numbers a will elimination fail on $A = \begin{bmatrix} a & 2 \\ a & a \end{bmatrix}$? 24
- For which three numbers a will elimination fail to give three pivots? 25

$$A = \begin{bmatrix} a & 2 & 3 \\ a & a & 4 \\ a & a & a \end{bmatrix}$$
 is singular for three values of a.

Look for a matrix that has row sums 4 and 8, and column sums 2 and s: 26

Matrix = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\begin{array}{c} a+b=4 & a+c=2 \\ c+d=8 & b+d=s \end{array}$

The four equations are solvable only if s =_____. Then find two different matrices that have the correct row and column sums. Extra credit: Write down the 4 by 4 system Ax = b with x = (a, b, c, d) and make A triangular by elimination.

Elimination in the usual order gives what matrix U and what solution to this "lower 27 triangular" system? We are really solving by forward substitution:

$$3x = 3$$

$$6x + 2y = 8$$

$$9x - 2y + z = 9.$$

- 2.2. The Idea of Elimination
- 28 1 from the existing row 2 if the matrix A is already known.

- 29 between 0 and 1.
- different entry A(5, 5) would have made A singular?
- 31 If A starts out lower triangular, what is the upper triangular U?
- 32

 - linear combination of the 100 *columns* is _____.
 - (c) Invent a 100 by 100 singular matrix with no zero entries.
 - Ax = 0. Not necessary to draw 100-dimensional space.

Create a MATLAB command A(2, :) = ... for the new row 2, to subtract 3 times row

Challenge Problems

Find experimentally the average 1st and 2nd and 3rd pivot sizes from MATLAB 's [L, U] = lu(rand(3)). The average size abs(U(1, 1)) is above $\frac{1}{2}$ because lu picks the largest available pivot in column 1. Here A = rand(3) has random entries

30 If the last corner entry is A(5,5) = 11 and the last pivot of A is U(5,5) = 4, what

Suppose elimination takes A to U without row exchanges. Then row j of U is a combination of which rows of A? If Ax = 0, is Ux = 0? If Ax = b, is Ux = b?

Start with 100 equations $A\mathbf{x} = \mathbf{0}$ for 100 unknowns $\mathbf{x} = (x_1, \dots, x_{100})$. Suppose elimination reduces the 100th equation to 0 = 0, so the system is "singular".

(a) Elimination takes linear combinations of the rows. So this singular system has the singular property: Some linear combination of the 100 rows is _____.

(b) Singular systems Ax = 0 have infinitely many solutions. This means that some

(d) For your matrix, describe in words the row picture and the column picture of

Problem Set 2.3

Problems 1–15 are about elimination matrices.

- 1 Write down the 3 by 3 matrices that produce these elimination steps:
 - (a) E_{21} subtracts 5 times row 1 from row 2.
 - (b) E_{32} subtracts -7 times row 2 from row 3.
 - (c) P exchanges rows 1 and 2, then rows 2 and 3.
- **2** In Problem 1, applying E_{21} and then E_{32} to $\boldsymbol{b} = (1, 0, 0)$ gives $E_{32}E_{21}\boldsymbol{b} =$ _____. Applying E_{32} before E_{21} gives $E_{21}E_{32}\boldsymbol{b} =$ _____. When E_{32} comes first, row _____ feels no effect from row _____.
- **3** Which three matrices E_{21} , E_{31} , E_{32} put A into triangular form U?

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{bmatrix} \text{ and } E_{32}E_{31}E_{21}A = U.$$

Multiply those E's to get one matrix M that does elimination: MA = U.

- 4 Include b = (1, 0, 0) as a fourth column in Problem 3 to produce $\begin{bmatrix} A & b \end{bmatrix}$. Carry out the elimination steps on this augmented matrix to solve Ax = b.
- 5 Suppose $a_{33} = 7$ and the third pivot is 5. If you change a_{33} to 11, the third pivot is _____. If you change a_{33} to _____, there is no third pivot.
- 6 If every column of A is a multiple of (1, 1, 1), then Ax is always a multiple of (1, 1, 1). Do a 3 by 3 example. How many pivots are produced by elimination?
- 7 Suppose *E* subtracts 7 times row 1 from row 3.
 - (a) To *invert* that step you should _____ 7 times row _____ to row _____.
 - (b) What "inverse matrix" E^{-1} takes that reverse step (so $E^{-1}E = I$)?
 - (c) If the reverse step is applied first (and then E) show that $EE^{-1} = I$.
 - The *determinant* of $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is det M = ad bc. Subtract ℓ times row 1 from row 2 to produce a new M^* . Show that det $M^* = \det M$ for every ℓ . When $\ell = c/a$, the product of pivots equals the determinant: $(a)(d \ell b)$ equals ad bc.

(a) E_{21} subtracts row 1 from row 2 and then P_{23} exchanges rows 2 and 3. What matrix $M = P_{23}E_{21}$ does both steps at once?

(b) P₂₃ exchanges rows 2 and 3 and then E₃₁ subtracts row 1 from row 3. What matrix M = E₃₁P₂₃ does both steps at once? Explain why the M's are the same but the E's are different.

of *B*. s that

ations

8

10 (a) What 3 by 3 matrix E_{13} will add row 3 to row 1?

- (b) What matrix adds row 1 to row 3 and at the same time row 3 to row 1?
- (c) What matrix adds row 1 to row 3 and then adds row 3 to row 1?
- 11 Create a matrix that has $a_{11} = a_{22} = a_{33} = 1$ but elimination produces two negative pivots without row exchanges. (The first pivot is 1.)
- **12** Multiply these matrices:

Γo	0	1	[1	2	3	0	0	1	1	0	0	[1	2	3	
0	1	0	4	5	6	0	1	0	-1	1	0	1	3	1	١.
$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	0	0	7	8	9	1	0	0	$\begin{bmatrix} 1\\ -1\\ -1 \end{bmatrix}$	0	1	[1	4	0	

- 13 Explain these facts. If the third column of B is all zero, the third column of EB is all zero (for any E). If the third row of B is all zero, the third row of EB might not be zero.
- 14 This 4 by 4 matrix will need elimination matrices E_{21} and E_{32} and E_{43} . What are those matrices?

	Γ2	-1	0	0	
4	1	2 -1	-1	0	
A = 1	0	-1	2	-1	•
	0	0	-1	2	

15 Write down the 3 by 3 matrix that has $a_{ij} = 2i - 3j$. This matrix has $a_{32} = 0$, but elimination still needs E_{32} to produce a zero in the 3, 2 position. Which previous step destroys the original zero and what is E_{32} ?

Problems 16–23 are about creating and multiplying matrices.

16 Write these ancient problems in a 2 by 2 matrix form Ax = b and solve them:

(a) X is twice as old as Y and their ages add to 33.

- (b) (x, y) = (2, 5) and (3, 7) lie on the line y = mx + c. Find m and c.
- 17 The parabola $y = a + bx + cx^2$ goes through the points (x, y) = (1, 4) and (2, 8) and (3, 14). Find and solve a matrix equation for the unknowns (a, b, c).
- 18 Multiply these matrices in the orders *EF* and *FE*:

	Γ1	0	0		[1	0	0	
E =	a	1	0	F =	0	1	0	
	b	0	1	F =	0	С	1_	

Also compute $E^2 = EE$ and $F^3 = FFF$. You can guess F^{100} .

tions

2.3. Elimination Using Matrices

20

Multiply these row exchange matrices in the orders PQ and QP and P^2 : 19

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Find another non-diagonal matrix whose square is $M^2 = I$.

- (a) Suppose all columns of B are the same. Then all columns of EB are the same, because each one is E times _____.
 - (b) Suppose all rows of B are $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$. Show by example that all rows of EB are not [1 2 4]. It is true that those rows are _____.
- If E adds row 1 to row 2 and F adds row 2 to row 1, does EF equal FE? 21
- The entries of A and x are a_{ij} and x_j . So the first component of Ax is $\sum a_{1j}x_j =$ 22 $a_{11}x_1 + \cdots + a_{1n}x_n$. If E_{21} subtracts row 1 from row 2, write a formula for
 - (a) the third component of Ax
 - (b) the (2, 1) entry of $E_{21}A$
 - (c) the (2, 1) entry of $E_{21}(E_{21}A)$
 - (d) the first component of $E_{21}Ax$.
- The elimination matrix $E = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ subtracts 2 times row 1 of A from row 2 of A. 23 The result is EA. What is the effect of E(EA)? In the opposite order AE, we are subtracting 2 times _____ of A from _____. (Do examples.)

Problems 24–27 include the column b in the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Apply elimination to the 2 by 3 augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$. What is the triangular 24 system Ux = c? What is the solution x?

$$A\mathbf{x} = \begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1\\ 17 \end{bmatrix}.$$

Apply elimination to the 3 by 4 augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$. How do you know this 25 system has no solution? Change the last number 6 so there is a solution.

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}.$$

The equations Ax = b and $Ax^* = b^*$ have the same matrix A. What double 26 augmented matrix should you use in elimination to solve both equations at once? Solve both of these equations by working on a 2 by 4 matrix:

$$\begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

ative

EB is tht not

nat are

= 0, but revious

n:

1d(2,8)

27 Choose the numbers a, b, c, d in this augmented matrix so that there is (a) no solution(b) infinitely many solutions.

	[1	2	3	a	
$\begin{bmatrix} A & b \end{bmatrix}$	= 0	4	5	b	
$\begin{bmatrix} A & b \end{bmatrix}$	0	0	d	с	

Which of the numbers a, b, c, or d have no effect on the solvability?

28 If AB = I and BC = I use the associative law to prove A = C.

Challenge Problems

29 Find the triangular matrix E that reduces "*Pascal's matrix*" to a smaller Pascal:

	[-1	0	0	0		$\lceil 1 \rceil$	0	0	0	
	_	1	1	0	0	ł	0	1	0	0	
Eliminate column 1	E	1	2	1	0		0	1	1	0	•
		1	3	3	1		0	1	2	1_	

Which matrix M (multiplying several E's) reduces Pascal all the way to I? Pascal's triangular matrix is exceptional, all of its multipliers are $\ell_{ij} = 1$.

30 Write $M = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$ as a product of many factors $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

- (a) What matrix E subtracts row 1 from row 2 to make row 2 of EM smaller?
- (b) What matrix F subtracts row 2 of EM from row 1 to reduce row 1 of FEM?
- (c) Continue E's and F's until (many E's and F's) times (M) is (A or B).
- (d) E and F are the inverses of A and B! Moving all E's and F's to the right side will give you the desired result M = product of A's and B's.

This is possible for integer matrices $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} > 0$ that have ad - bc = 1.

31 Find elimination matrices E_{21} then E_{32} then E_{43} to change K into U:

$$E_{43} E_{32} E_{21} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 0 & 4/3 & -1 \\ 0 & 0 & 0 & 5/4 \end{bmatrix}.$$

Apply those three steps to the identity matrix I, to multiply $E_{43}E_{32}E_{21}$.

2.4. Rules for Matrix Operations

The 3-step paths are counted by A^3 ; we look at paths to node 2:

$$A^{3} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{counts the paths} \quad \begin{bmatrix} \cdots & 1 \text{ to } 1 \text{ to } 2, 1 \text{ to } 2 \text{ to } 1 \text{ to } 2 \end{bmatrix}$$

with three steps
$$\begin{bmatrix} \cdots & 2 \text{ to } 1 \text{ to } 1 \text{ to } 2, 1 \text{ to } 2 \text{ to } 1 \text{ to } 2 \end{bmatrix}$$

These A^k contain the Fibonacci numbers $0, 1, 1, 2, 3, 5, 8, 13, \ldots$ coming in Section 6.2. Multiplying A by A^k involves Fibonacci's rule $F_{k+2} = F_{k+1} + F_k$ (as in 13 = 8 + 5):

$$(A)(A^{k}) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k+1} & F_{k} \\ F_{k} & F_{k-1} \end{bmatrix} = \begin{bmatrix} F_{k+2} & F_{k+1} \\ F_{k+1} & F_{k} \end{bmatrix} = A^{k+1}.$$

There are 13 six-step paths from node 1 to node 1, but I can't find them all.

 A^k also counts words. A path like 1 to 1 to 2 to 1 corresponds to the word **aaba**. The letter **b** can't repeat because there is no edge from 2 to 2. The *i*, *j* entry of A^k counts the words of length k + 1 that start with the *i*th letter and end with the *j*th.

Problem Set 2.4

1

2

3

4

Problems 1–16 are about the laws of matrix multiplication.

A is 3 by 5, B is 5 by 3, C is 5 by 1, and D is 3 by 1. All entries are 1. Which of these matrix operations are allowed, and what are the results?

BA AB ABD DBA A(B+C).

What rows or columns or matrices do you multiply to find

(a) the third column of AB?

- (b) the first row of AB?
- (c) the entry in row 3, column 4 of AB?
- (d) the entry in row 1, column 1 of CDE?

Add AB to AC and compare with A(B + C):

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}.$$

In Problem 3, multiply A times BC. Then multiply AB times C.

um ths:

)t

ch I,

: 1

an 10se 10se 5 Compute A^2 and A^3 . Make a prediction for A^5 and A^n :

$$A = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}.$$

6 Show that $(A + B)^2$ is different from $A^2 + 2AB + B^2$, when

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}.$$

Write down the correct rule for $(A + B)(A + B) = A^2 + ___ + B^2$.

- 7 True or false. Give a specific example when false:
 - (a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.
 - (b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.
 - (c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of ABC.
 - (d) $(AB)^2 = A^2 B^2$.

8 How is each row of DA and EA related to the rows of A, when

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \text{ and } E = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}?$$

How is each column of AD and AE related to the columns of A?

9 Row 1 of A is added to row 2. This gives EA below. Then column 1 of EA is added to column 2 to produce (EA)F:

$$EA = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ a+c & b+d \end{bmatrix}$$

and $(EA)F = (EA) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & a+b \\ a+c & a+c+b+d \end{bmatrix}$

- (a) Do those steps in the opposite order. First add column 1 of A to column 2 by AF, then add row 1 of AF to row 2 by E(AF).
- (b) Compare with (EA)F. What law is obeyed by matrix multiplication?
- 10 Row 1 of A is again added to row 2 to produce EA. Then F adds row 2 of EA to row 1. The result is F(EA):

$$F(EA) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ a+c & b+d \end{bmatrix} = \begin{bmatrix} 2a+c & 2b+d \\ a+c & b+d \end{bmatrix}.$$

- (a) Do those steps in the opposite order: first add row 2 to row 1 by FA, then add row 1 of FA to row 2.
- (b) What law is or is not obeyed by matrix multiplication?

2.4. Rules for Matrix Operations

uations

is added

column 2

2 of EA to

A, then add

1?

11 (3 by 3 matrices) Choose the only B so that for every matrix A

- (a) BA = 4A
- (b) BA = 4B
- (c) BA has rows 1 and 3 of A reversed and row 2 unchanged
- (d) All rows of BA are the same as row 1 of A.
- 12 Suppose AB = BA and AC = CA for these two particular matrices B and C:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{commutes with} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Prove that a = d and b = c = 0. Then A is a multiple of I. The only matrices that commute with B and C and all other 2 by 2 matrices are A = multiple of I.

13 Which of the following matrices are guaranteed to equal $(A - B)^2$: $A^2 - B^2$, $(B - A)^2$, $A^2 - 2AB + B^2$, A(A - B) - B(A - B), $A^2 - AB - BA + B^2$?

- 14 True or false:
 - (a) If A^2 is defined then A is necessarily square.
 - (b) If AB and BA are defined then A and B are square.
 - (c) If AB and BA are defined then AB and BA are square.
 - (d) If AB = B then A = I.

15 If A is m by n, how many separate multiplications are involved when

- (a) A multiplies a vector x with n components?
- (b) A multiplies an n by p matrix B?
- (c) A multiplies itself to produce A^2 ? Here m = n.

16 For $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 4 \\ 1 & 0 & 6 \end{bmatrix}$, compute these answers and nothing more:

- (a) column 2 of AB
- (b) row 2 of AB
- (c) row 2 of $AA = A^2$
- (d) row 2 of $AAA = A^3$.

Problems 17–19 use a_{ii} for the entry in row i, column j of A.

- 17 Write down the 3 by 3 matrix A whose entries are
 - (a) $a_{ij} = \text{minimum of } i \text{ and } j$
 - (b) $a_{ij} = (-1)^{i+j}$
 - (c) $a_{ij} = i/j$.

What words would you use to describe each of these classes of matrices? Give a 3 by 3 example in each class. Which matrix belongs to all four classes? 18

- (a) $a_{ij} = 0$ if $i \neq j$
- (b) $a_{ij} = 0$ if i < j
- (c) $a_{ij} = a_{ji}$
- (d) $a_{ij} = a_{1j}$.

19

लेख

The entries of A are a_{ij} . Assuming that zeros don't appear, what is

- (a) the first pivot?
- (b) the multiplier ℓ_{31} of row 1 to be subtracted from row 3?
- (c) the new entry that replaces a_{32} after that subtraction?
- (d) the second pivot?

Problems 20–24 involve powers of A.

Compute A^2 , A^3 , A^4 and also Av, A^2v , A^3v , A^4v for 20

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix}.$$

Find all the powers A^2, A^3, \ldots and $AB, (AB)^2, \ldots$ for 21

 $A = \begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$

By trial and error find real nonzero 2 by 2 matrices such that 22

 $A^2 = -I$ BC = 0 DE = -ED (not allowing DE = 0).

- (a) Find a nonzero matrix A for which $A^2 = 0$. 23 (b) Find a matrix that has $A^2 \neq 0$ but $A^3 = 0$.

By experiment with n = 2 and n = 3 predict A^n for these matrices: 24

$$A_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad A_3 = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$$

2.4. Rules for Matrix Operations

Problems 25-31 use column-row multiplication and block multiplication.

25 Multiply A times I using columns of A (3 by 3) times rows of I.

26 Multiply AB using columns times rows:

$${}_{*} AB = \begin{bmatrix} 1 & 0 \\ 2 & 4 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 3 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 0 \end{bmatrix} + \underline{\qquad} = \underline{\qquad}.$$

27 Show that the product of upper triangular matrices is always upper triangular:

$$AB = \begin{bmatrix} x & x & x \\ 0 & x & x \\ 0 & 0 & x \end{bmatrix} \begin{bmatrix} x & x & x \\ 0 & x & x \\ 0 & 0 & x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 & 0 \end{bmatrix}$$

Proof using dot products (Row times column) (Row 2 of A) \cdot (column 1 of B)= 0. Which other dot products give zeros?

Proof using full matrices (*Column times row*) Draw x's and 0's in (column 2 of A) times (row 2 of B). Also show (column 3 of A) times (row 3 of B).

28 Draw the cuts in A (2 by 3) and B (3 by 4) and AB to show how each of the four multiplication rules is really a block multiplication:

(1)	Matrix A times columns of B.	Columns of <i>AB</i>
-----	------------------------------	----------------------

- (2) Rows of A times the matrix B. Rows of AB
- (3) Rows of A times columns of B. Inner products (numbers in AB)
- (4) Columns of A times rows of B. Outer products (matrices add to AB)

29 Which matrices E_{21} and E_{31} produce zeros in the (2, 1) and (3, 1) positions of $E_{21}A$ and $E_{31}A$?

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -2 & 0 & 1 \\ 8 & 5 & 3 \end{bmatrix}$$

Find the single matrix $E = E_{31}E_{21}$ that produces both zeros at once. Multiply EA.

30 Block multiplication says that column 1 is eliminated by

$$EA = \begin{bmatrix} 1 & \mathbf{0} \\ -\mathbf{c}/a & I \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & D \end{bmatrix} = \begin{bmatrix} a & \mathbf{b} \\ \mathbf{0} & D - \mathbf{c}\mathbf{b}/a \end{bmatrix}.$$

In Problem 29, what are c and D and what is D - cb/a?

31 With $i^2 = -1$, the product of (A + iB) and (x + iy) is Ax + iBx + iAy - By. Use blocks to separate the real part without *i* from the imaginary part that multiplies *i*:

$$\begin{bmatrix} A & -B \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Ax - By \\ ? \end{bmatrix}$$
 real part
imaginary part

79

ions

a 3

(Very important) Suppose you solve Ax = b for three special right sides b: 32

$$Ax_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 and $Ax_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $Ax_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$

If the three solutions x_1, x_2, x_3 are the columns of a matrix X, what is A times X?

If the three solutions in Question 32 are $x_1 = (1, 1, 1)$ and $x_2 = (0, 1, 1)$ and $x_3 = (0, 0, 1)$, solve Ax = b when b = (3, 5, 8). Challenge problem: What is A? 33

Find all matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ that satisfy $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A$. 34

Suppose a "circle graph" has 4 nodes connected (in both directions) by edges around a circle. What is its adjacency matrix from Worked Example 2.4 C? What is A^2 ? 35 Find all the 2-step paths (or 3-letter words) predicted by A^2 .

Challenge Problems

- **Practical question** Suppose A is m by n, B is n by p, and C is p by q. Then the multiplication count for (AB)C is mnp + mpq. The same answer comes from 36 A times BC with mnq + npq separate multiplications. Notice npq for BC.
 - (a) If A is 2 by 4, B is 4 by 7, and C is 7 by 10, do you prefer (AB)C or A(BC)?
 - (b) With *N*-component vectors, would you choose $(\boldsymbol{u}^{\mathrm{T}}\boldsymbol{v})\boldsymbol{w}^{\mathrm{T}}$ or $\boldsymbol{u}^{\mathrm{T}}(\boldsymbol{v}\boldsymbol{w}^{\mathrm{T}})$?
 - (c) Divide by mnpq to show that (AB)C is faster when $n^{-1} + q^{-1} < m^{-1} + p^{-1}$.
- To prove that (AB)C = A(BC), use the column vectors b_1, \ldots, b_n of B. First 37 suppose that C has only one column c with entries c_1, \ldots, c_n :

AB has columns Ab_1, \ldots, Ab_n and then (AB)c equals $c_1Ab_1 + \cdots + c_nAb_n$. Bc has one column $c_1 b_1 + \cdots + c_n b_n$ and then A(Bc) equals $A(c_1 b_1 + \cdots + c_n b_n)$. Linearity gives equality of those two sums. This proves (AB)c = A(Bc). The same is true for all other _____ of C. Therefore (AB)C = A(BC). Apply to inverses: If BA = I and AC = I, prove that the left-inverse B equals the right-inverse C.

2.5. Inverse Matrices

3

4

5

6

7

9

Problem Set 2.5

1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C:

$$A = \begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 0 \\ 4 & 2 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}.$$

2 For these "permutation matrices" find P^{-1} by trial and error (with 1's and 0's):

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Solve for the first column (x, y) and second column (t, z) of A^{-1} :

$$\begin{bmatrix} 10 & 20 \\ 20 & 50 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 10 & 20 \\ 20 & 50 \end{bmatrix} \begin{bmatrix} t \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Show that $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is not invertible by trying to solve $AA^{-1} = I$ for column 1 of A^{-1} :

$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{pmatrix} \text{For a different } A, \text{ could column 1 of } A^{-1} \\ \text{be possible to find but not column 2?} \end{pmatrix}$$

Find an upper triangular U (not diagonal) with $U^2 = I$ which gives $U = U^{-1}$.

(a) If A is invertible and AB = AC, prove quickly that B = C.

(b) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find two different matrices such that AB = AC.

- (Important) If A has row 1 + row 2 = row 3, show that A is not invertible:
 - (a) Explain why Ax = (1, 0, 0) cannot have a solution.
 - (b) Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b?
 - (c) What happens to row 3 in elimination?
- 8 If A has column 1 + column 2 = column 3, show that A is not invertible:
 - (a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.
 - (b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no third pivot.
 - Suppose A is invertible and you exchange its first two rows to reach B. Is the new matrix B invertible and how would you find B^{-1} from A^{-1} ?
- 10 Find the inverses (in any legal way) of

	0	0	0	2			3	2	0	0	
	0	0	3	0	and	B =	4	3	0	0	
A =	0	4	0	0			0	0	6	5	ŀ
	5	0	0	0			0	0	7	6	

se ro

ns

not :ow imn)).

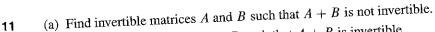
L. low.

```
•
```

n the

 $L^{-1}].$

nverse mals".



- (b) Find singular matrices A and B such that A + B is invertible.
- If the product C = AB is invertible (A and B are square), then A itself is invertible. 12 Find a formula for A^{-1} that involves C^{-1} and B.
- If the product M = ABC of three square matrices is invertible, then B is invertible. (So are A and C.) Find a formula for B^{-1} that involves M^{-1} and A and C. 13*
- If you add row 1 of A to row 2 to get B, how do you find B^{-1} from A^{-1} ? 14

Notice the order. The inverse of $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$ is _____.

- Prove that a matrix with a column of zeros cannot have an inverse. 15
- Multiply $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ times $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. What is the inverse of each matrix if $ad \neq bc$?
- 16 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1 from row 2, subtract row 1 from row 3, then subtract row 2 from row 3. 17
 - (b) What single matrix L has the same effect as these three reverse steps? Add row 2 to row 3, add row 1 to row 3, then add row 1 to row 2.
 - If B is the inverse of A^2 , show that AB is the inverse of A.
- 18 Find the numbers a and b that give the inverse of 5 * eye(4) - ones(4,4):

Į	-1	4	-1	-1 -1 -1	-1	a b b	b a b b	b b a	$b \\ b \\ b$	
ł	-1	$^{-1}$	4	-1 4]	b	b b	a b	в а_	

What are a and b in the inverse of 6 * eye(5) - ones(5,5)?

- Show that A = 4 * eye(4) ones(4,4) is *not* invertible: Multiply A * ones(4,1). 20
- There are sixteen 2 by 2 matrices whose entries are 1's and 0's. How many of them 21 are invertible?

Questions 22–28 are about the Gauss-Jordan method for calculating A^{-1} .

Change I into A^{-1} as you reduce A to I (by row operations): 22

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 3 & 9 & 0 & 1 \end{bmatrix}$$

Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below 23 the pivots to reduce $\begin{bmatrix} A & I \end{bmatrix}$ to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}.$$

90

2.5. Inverse Matrices

24 Use Gauss-Jordan elimination on $\begin{bmatrix} U & I \end{bmatrix}$ to find the upper triangular U^{-1} :

ations

rtible.

- row 1
- ld row

f them

below

- $UU^{-1} = I \qquad \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
- **25** Find $A^{\approx 1}$ and B^{-1} (*if they exist*) by elimination on $\begin{bmatrix} A & I \end{bmatrix}$ and $\begin{bmatrix} B & I \end{bmatrix}$:

	2	1	1]			Γ2	-1	-1	1
A =	1	2	1	and	B =	-1	2	-1	
	$\lfloor 1$	1	2			$\lfloor -1 \rfloor$	-1	2_	

26 What three matrices E_{21} and E_{12} and D^{-1} reduce $A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$ to the identity matrix? Multiply $D^{-1}E_{12}E_{21}$ to find A^{-1} .

27 Invert these matrices A by the Gauss-Jordan method starting with $\begin{bmatrix} A & I \end{bmatrix}$:

	[1	0	0]			[1	1	1	
A =	2	1	3	and	A =	1	2	2	
	Lu	U	1			L	4	<u>ں</u>	

28 Exchange rows and continue with Gauss-Jordan to find A^{-1} :

Гл	I] =	0	2	1	0	
A	<i>I</i>] ==	2	2	0	1	•

29

True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) Every matrix with 1's down the main diagonal is invertible.

(c) If A is invertible then A^{-1} and A^2 are invertible.

30 For which three numbers c is this matrix not invertible, and why not?

$$A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}.$$

31 Prove that A is invertible if $a \neq 0$ and $a \neq b$ (find the pivots or A^{-1}):

	Гa	b	b^{-}	Į
A =	a	а	b	
	La	а	a_{\perp}	

32 This matrix has a remarkable inverse. Find A^{-1} by elimination on $\begin{bmatrix} A & I \end{bmatrix}$. Extend to a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm.

Invert
$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and solve $Ax = (1, 1, 1, 1)$.

- **33** Suppose the matrices P and Q have the same rows as I but in any order. They are "permutation matrices". Show that P Q is singular by solving (P Q)x = 0.
- **34** Find and check the inverses (assuming they exist) of these block matrices:

[]	0]	$\int A$	0]	[0]	I
$\lfloor C$	I	$\lfloor C$	D	I	$\begin{bmatrix} I \\ D \end{bmatrix}$.

- **35** Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1, 2, 3 in some order? What if every row of B contains 0, 1, 2, -3 in some order?
- 36 In the Worked Example 2.5 C, the triangular Pascal matrix L has an inverse with "alternating diagonals". Check that this L^{-1} is DLD, where the diagonal matrix D has alternating entries 1, -1, 1, -1. Then LDLD = I, so what is the inverse of LD = pascal (4,1)?
- **37** The Hilbert matrices have $H_{ij} = 1/(i + j 1)$. Ask MATLAB for the exact 6 by 6 inverse invhilb(6). Then ask it to compute inv(hilb(6)). How can these be different, when the computer never makes mistakes?
- **38** (a) Use inv(P) to invert MATLAB's 4 by 4 symmetric matrix P = pascal(4).
 - (b) Create Pascal's lower triangular L = abs(pascal(4,1)) and test $P = LL^{T}$.
- **39** If A = ones(4) and b = rand(4,1), how does MATLAB tell you that Ax = b has no solution? For the special b = ones(4,1), which solution to Ax = b is found by $A \setminus b$?

Challenge Problems

- 40 (Recommended) A is a 4 by 4 matrix with 1's on the diagonal and -a, -b, -c on the diagonal above. Find A^{-1} for this bidiagonal matrix.
- 41 Suppose E_1, E_2, E_3 are 4 by 4 identity matrices, except E_1 has a, b, c in column 1 and E_2 has d, e in column 2 and E_3 has f in column 3 (below the 1's). Multiply $L = E_1 E_2 E_3$ to show that all these nonzeros are copied into L.

 $E_1E_2E_3$ is in the *opposite* order from elimination (because E_3 is acting first). But $E_1E_2E_3 = L$ is in the *correct* order to invert elimination and recover A.