Show all appropriate work.

1. How long did the assignment take you?
2. Let $f(x, y, z)=x e^{2 y z}$.
(a) Find the gradient of f.
(b) Evaluate the gradient at the point $P=(3,0,2)$.
(c) Find the rate of change of f at P in the direction of $\mathbf{u}=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle$. (Recall that the derivative of f in the direction of the unit vector \mathbf{u} is $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}$.)
3. Find the maximum rate of change $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at the point $(3,6,-2)$ and the direction in which it occurs.
4. Find the directions in which the directional derivative of $f(x, y)=y e^{-x y}$ at the point $(0,2)$ has the value 1 .
5. Let u and v be differential functions of x and y. Show that $\nabla(u v)=u \nabla v+v \nabla u$.
6. The second directional derivative of $f(x, y)$ is

$$
D_{\mathbf{u}}^{2} f=D_{\mathbf{u}}\left[D_{\mathbf{u}} f(x, y)\right] .
$$

(a) If $\mathbf{u}=\langle a, b\rangle$ is a unit vector and f has continuous second partial derivatives, show that

$$
D_{\mathbf{u}}^{2} f=\frac{\partial^{2} f}{\partial x^{2}} a^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} a b+\frac{\partial^{2} f}{\partial y^{2}} b^{2} .
$$

(b) Find the second directional derivative of $f(x, y)=x e^{2 y}$ in the direction of $\mathbf{v}=$ $\langle 4,6\rangle$.
7. If $f(x, y)=x y$, find the gradient vector $\nabla f(3,2)$ and use it to find the tangent line to the level curve $f(x, y)=6$ at the point $(3,2)$.
8. (a) Two surfaces are called orthogonal at a point of intersection if their normal lines are perpendicular at that point. Show that surfaces with equations $F(x, y, z)=0$ and $G(x, y, z)=0$ are orthogonal at a point P where $\nabla F \neq \mathbf{0}$ and $\nabla G \neq \mathbf{0}$ if and only if

$$
\frac{\partial F}{\partial x} \frac{\partial G}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial G}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial G}{\partial z}=0 \text { at } P .
$$

(b) Use (a) to show that the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+y^{2}+z^{2}=r^{2}$ are orthogonal at every point of intersection. Can you see why this is true without using calculus?
9. Find the divergence and curl of $\mathbf{F}(x, y, z)=x y e^{z} \mathbf{i}+y z e^{x} \mathbf{k}$.
10. Show that the any vector field of the form $\mathbf{F}(x, y, z)=f(x) \mathbf{i}+g(y) \mathbf{j}+h(z) \mathbf{k}$ where f, g, h are differentiable functions, is irrotational.
11. Prove the following identities, assuming the appropriate partial derivatives exist and are continuous:
(a) $\nabla \cdot(\nabla \times \mathbf{F})=0$.
(b) $\nabla \cdot(f(x, y, z) \mathbf{F}(x, y, z))=f(\nabla \cdot \mathbf{F})+\mathbf{F} \cdot \nabla f$.
(c) $\nabla \cdot(\nabla f \times \nabla g)=0$.

