Show all appropriate work.

- 1. (a) Let $V = \{x \in \mathbb{R} \mid x > 0\}$ with addition defined by $x + y \equiv xy$ and scalar multiplication defined by $cx \equiv x^c$ for $c \in \mathbb{R}$. Is V a vector space?
 - (b) Redefine scalar multiplication in \mathbb{R}^2 to be $c < x_1, x_2 \ge cx_1, 0 >$. If we keep the usual definition of addition, is this a vector space?
- 2. Let $\mathcal{P}_3 = \{ \text{Polynomials of deg} \leq 3 \}.$
 - (a) Show that \mathcal{P}_3 is a vector space.
 - (b) What is the dimension of \mathcal{P}_3 ? Justify your answer finding a basis.
 - (c) Find a basis for the following subspace of \mathcal{P}_3 , $S = \{p(x) \in \mathcal{P}_3 | p(1) = 0\}$.
- 3. Recall that for a vector space V, the covector space V^* , the set of all covectors, is the set of all linear maps from V to \mathbb{R} . That is, if $\omega \in V^*$ then

$$\omega(a\mathbf{u} + b\mathbf{v}) = a\omega(\mathbf{u}) + b\omega(\mathbf{v}) \in \mathbb{R},$$

for all $\mathbf{u}, \mathbf{v} \in V$ and $a, b \in \mathbb{R}$.

- (a) Show that V^* is a vector space.
- (b) Justify the following claim: If $\{\hat{\mathbf{e}}_{\mathbf{i}} \in V | i = 1, ..., n\}$ is a basis for V then $\{\hat{\theta}^{(i)} \in V^* | i = 1, ..., n\}$ such that $\hat{\theta}^{(i)}(\hat{\mathbf{e}}_{\mathbf{j}}) = 1$ if i = j and 0 otherwise, is a basis for V^* .
- 4. Suppose W and U are subspaces of a vector space V. Define $U + W \equiv \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$.
 - (a) Show that U + W is a vector space.
 - (b) If U and W are both lines through the origin in \mathbb{R}^n , what is the difference between U + W and $U \cup W$?
 - (c) What is the span of $U \cup W$?
- 5. Let $\mathbf{q}_1, \ldots, \mathbf{q}_r$ be a basis for $U \cap W$. Extend them with $\mathbf{u}_1, \ldots, \mathbf{u}_s$ to a basis for U. Separately extend the q's with $\mathbf{w}_1, \ldots, \mathbf{w}_t$ to a basis for W.
 - (a) Show that the q's, u's and w's together and linearly independent.
 - (b) Deduce from part (a) that

 $\dim (U) + \dim (W) = \dim (U \cap W) + \dim (U + W).$