Show all appropriate work.

1. (a) Let $V=\{x \in \mathbb{R} \mid x>0\}$ with addition defined by $x+y \equiv x y$ and scalar multiplication defined by $c x \equiv x^{c}$ for $c \in \mathbb{R}$. Is V a vector space?
(b) Redefine scalar multiplication in \mathbb{R}^{2} to be $\left.c<x_{1}, x_{2}\right\rangle \equiv<c x_{1}, 0>$. If we keep the usual definition of addition, is this a vector space?
2. Let $\mathcal{P}_{3}=\{$ Polynomials of $\operatorname{deg} \leq 3\}$.
(a) Show that \mathcal{P}_{3} is a vector space.
(b) What is the dimension of \mathcal{P}_{3} ? Justify your answer finding a basis.
(c) Find a basis for the following subspace of $\mathcal{P}_{3}, S=\left\{p(x) \in \mathcal{P}_{3} \mid p(1)=0\right\}$.
3. Recall that for a vector space V, the covector space V^{*}, the set of all covectors, is the set of all linear maps from V to \mathbb{R}. That is, if $\omega \in V^{*}$ then

$$
\omega(a \mathbf{u}+b \mathbf{v})=a \omega(\mathbf{u})+b \omega(\mathbf{v}) \in \mathbb{R}
$$

for all $\mathbf{u}, \mathbf{v} \in V$ and $a, b \in \mathbb{R}$.
(a) Show that V^{*} is a vector space.
(b) Justify the following claim: If $\left\{\hat{\mathbf{e}}_{\mathbf{i}} \in V \mid i=1, \ldots, n\right\}$ is a basis for V then $\left\{\hat{\theta}^{(i)} \in V^{*} \mid i=1, \ldots, n\right\}$ such that $\hat{\theta}^{(i)}\left(\hat{\mathbf{e}}_{\mathbf{j}}\right)=1$ if $i=j$ and 0 otherwise, is a basis for V^{*}.
4. Suppose W and U are subspaces of a vector space V. Define $U+W \equiv\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in$ $U, \mathbf{w} \in W\}$.
(a) Show that $U+W$ is a vector space.
(b) If U and W are both lines through the origin in \mathbb{R}^{n}, what is the difference between $U+W$ and $U \cup W$?
(c) What is the span of $U \cup W$?
5. Let $\mathbf{q}_{1}, \ldots, \mathbf{q}_{r}$ be a basis for $U \cap W$. Extend them with $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s}$ to a basis for U. Separately extend the q 's with $\mathbf{w}_{1}, \ldots, \mathbf{w}_{t}$ to a basis for W.
(a) Show that the q 's, u 's and w 's together and linearly independent.
(b) Deduce from part (a) that

$$
\operatorname{dim}(U)+\operatorname{dim}(W)=\operatorname{dim}(U \cap W)+\operatorname{dim}(U+W) .
$$

