Quadratic Forms

A quadratic form on \mathbb{R}^2 is a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ of the form

$$f(x, y) = ax^2 + bxy + cy^2$$

where a, b, and c are constants. Such functions can be thought of as two-variable analogues of quadratic functions like $f(x) = ax^2$.

EXAMPLE 1 Consider the quadratic form

$$f(x, y) = x^2 + y^2.$$

The graph of this function is shown in Figure 1. As you can see, the graph is something like a three-dimensional version of a parabola. This shape is called a **paraboloid**, and can be described as the surface obtained by rotating a parabola around its central axis. Note that the level curves for this function are concentric circles centered at the origin.

EXAMPLE 2 The graph of the quadratic form

$$f(x, y) = 4x^2 + y^2$$

is shown in Figure 2. This shape is similar to a paraboloid, but it has been compressed in the x-direction by a factor of two. The result is called an **elliptic paraboloid** since its level curves are ellipses.

The intersection of this elliptic paraboloid with any vertical plane through the origin is a parabola, but the shape of the parabola varies depending on the plane. For example, the intersection of the graph with the yz-plane is the parabola $z = y^2$, while the intersection with the xz-plane is the steeper (or thinner) parabola $z = 4x^2$.

EXAMPLE 3 The graph of the quadratic form

$$f(x, y) = x^2 - y^2.$$

is shown in Figure 3. This surface is known as a **saddle surface**, and its level curves are a family of hyperbolas in the plane.

Like an elliptic paraboloid, the intersection of the saddle surface with any vertical plane through the origin is a parabola. But unlike the elliptic paraboloid, these parabolas open in opposite directions. In this example, the intersection of the saddle with the xz-plane is the upward-facing parabola $z = x^2$, while the intersection of the saddle with the yz-plane is the downward-facing parabola $z = -y^2$.

In general, a quadratic form is said to be **elliptic** if its level curves are ellipses (or circles), and **hyperbolic** if its level curves are hyperbolas. The graph of an elliptic quadratic form is an elliptic paraboloid—which may open either upwards or downwards—while the graph of a hyperbolic quadratic form is a saddle surface.

Quadratic Forms and Matrices

There is a nice way of representing any quadratic form using a matrix. Given a quadratic form

$$f(x, y) = ax^2 + bxy + cy^2$$

...
we can rewrite the formula as

\[f(x, y) = \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. \]

The matrix in the middle is a symmetric 2 × 2 matrix, and is called the **matrix for the quadratic form**. If \(A \) is the matrix for a quadratic form, then the formula for the form can be written

\[f(x) = x^T A x \]

where \(x \) denotes the vector \((x, y)\).

We can use the matrix to classify a quadratic form as elliptic or hyperbolic. The simplest case is the diagonal case:

CLASSIFICATION OF QUADRATIC FORMS: DIAGONAL CASE

Let \(f: \mathbb{R}^2 \to \mathbb{R} \) be a quadratic form associated to a 2 × 2 diagonal matrix \[
\begin{bmatrix}
a & 0 \\
0 & c
\end{bmatrix}.
\]

1. If \(a > 0 \) and \(c > 0 \), then the graph of \(f \) is an upward-facing paraboloid.
2. If \(a < 0 \) and \(c < 0 \), then the graph of \(f \) is a downward-facing paraboloid.
3. If \(a \) and \(c \) have opposite signs, then the graph of \(f \) is a saddle surface.

For the general case, recall that a matrix \(A \) is **diagonalizable** if there exists an invertible matrix \(P \) so that \(P^{-1} A P \) is a diagonal matrix. In this case, the diagonal entries of the diagonal matrix are precisely the eigenvalues of \(A \). We will need the following theorem, whose proof can be found in any linear algebra textbook.

SPECTRAL THEOREM

Any symmetric matrix \(A \) is diagonalizable. Moreover:

1. The eigenvalues of \(A \) are real numbers, and
2. Eigenvectors corresponding to different eigenvalues are orthogonal.

Based on our classification in the diagonal case, it is not hard to guess the general classification theorem.

CLASSIFICATION OF QUADRATIC FORMS: GENERAL CASE

Let \(f: \mathbb{R}^2 \to \mathbb{R} \) be a quadratic form, and let \(\lambda \) and \(\mu \) be the eigenvalues of the associated matrix.

1. If \(\lambda > 0 \) and \(\mu > 0 \), then the graph of \(f \) is an upward-facing paraboloid.
2. If \(\lambda < 0 \) and \(\mu < 0 \), then the graph of \(f \) is a downward-facing paraboloid.
3. If \(\lambda \) and \(\mu \) have opposite signs, then the graph of \(f \) is a saddle surface.

By the way, there is a nice trick for finding the eigenvalues of any 2 × 2 matrix. Recall the following facts:
TRACE AND DETERMINANT

For any $n \times n$ matrix A:

- The trace of A is the sum of its eigenvalues (counting multiplicities).
- The determinant of A is the product of its eigenvalues (counting multiplicities).

For a 2×2 matrix, these facts are sufficient to reconstruct the eigenvalues.

EXAMPLE 4 Is the graph of $f(x, y) = 3x^2 + 4xy + 6y^2$ an upward-facing paraboloid, a downward-facing paraboloid, or a saddle surface?

SOLUTION This quadratic form can be written

$$f(x, y) = 3x^2 + 4xy + 6y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The matrix has a trace of 9 and a determinant of 14, so its two eigenvalues have a sum of 9 and a product of 14. It follows that the two eigenvalues are 2 and 7. Since both of these are positive, the graph is an upward-facing paraboloid.

This technique can also be used to classify a conic section as an ellipse or hyperbola.

EXAMPLE 5 Is the conic section $3x^2 + 4xy = 2$ an ellipse or a hyperbola?

SOLUTION Consider the quadratic form

$$f(x, y) = 3x^2 + 4xy = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The matrix has a trace of 3 and a determinant of -4, so its two eigenvalues are -1 and 4. Since these have opposite signs, f is hyperbolic, so this level curve must be a hyperbola.

Quadratic Forms on \mathbb{R}^n

The idea of quadratic forms can be generalized to any number of variables. For example, a quadratic form on \mathbb{R}^3 is a function $f : \mathbb{R}^3 \to \mathbb{R}$ of the form

$$f(x, y, z) = ax^2 + by^2 + cz^2 + pxy + qxz + ryz$$

where a, b, c, p, q, and r are constants. Such a form can be described by a 3×3 symmetric matrix:

$$f(x, y, z) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} a & p/2 & q/2 \\ p/2 & b & r/2 \\ q/2 & r/2 & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

The level surfaces of a quadratic form in \mathbb{R}^3 are **quadric surfaces** (see pg. 93–95 in the textbook). As with a quadratic form in \mathbb{R}^2, we can use the eigenvalues of the matrix to classify quadratic forms.
CLASSIFICATION OF QUADRATIC FORMS ON \mathbb{R}^3

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a quadratic form, and let λ, μ, and ν be the eigenvalues of the associated 3×3 symmetric matrix.

1. If λ, μ, and ν are all positive, then $f(x, y, z) \geq 0$ for all $(x, y, z) \in \mathbb{R}^3$, the origin is a local minimum for f, and the level surfaces for f are ellipsoids centered at the origin.

2. If λ, μ, and ν are all negative, then $f(x, y, z) \leq 0$ for all $(x, y, z) \in \mathbb{R}^3$, the origin is a local maximum for f, and the level surfaces for f are ellipsoids centered at the origin.

3. If λ, μ, and ν are all nonzero but have different signs, then $f(x, y, z)$ takes both positive and negative values, and the level surfaces for f are hyperboloids.

In general, a quadratic form $f: \mathbb{R}^n \to \mathbb{R}$ is said to be **positive definite** if $f(x) \geq 0$ for all $x \in \mathbb{R}^n$. As you might imagine, a quadratic form is positive definite if and only if all of the eigenvalues of the associated matrix are positive.

Similarly, a quadratic form is **negative definite** if $f(x) \leq 0$ for all $x \in \mathbb{R}^n$. This occurs when all of the eigenvalues of the associated matrix are negative.

There is actually a simple test for whether a given symmetric matrix is positive definite. We shall state it only for the 3×3 case.

SYLVESTER’S CRITERION

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be the quadratic form

$$f(x) = x^T \begin{bmatrix} a & u & v \\ u & b & w \\ v & w & c \end{bmatrix} x.$$

Then f is positive definite if and only if

$$a > 0 \quad \text{and} \quad \begin{vmatrix} a & u \\ u & b \end{vmatrix} > 0 \quad \text{and} \quad \begin{vmatrix} a & u & v \\ u & b & w \\ v & w & c \end{vmatrix} > 0.$$

The three quantities in this criterion are known as **leading principal minors**. A similar criterion works for quadratic forms on \mathbb{R}^n, except that there are n leading principal minors, namely the determinants of the n square submatrices in the upper-left corner.

This criterion can also be used to test for negative definiteness. Specifically, a quadratic form f is negative definite if and only if $-f$ is positive definite.