These problems must be written up in LaTeX, and are due next Friday, April 1.

1. Let V and W be normed vector spaces, and let $T: V \to W$ be a linear function. Prove that T is continuous if and only if there exists an $M > 0$ such that $\|T(v)\| \leq M\|v\|$ for all $v \in V$.

2. Let V be a Hilbert space, and let $\{u_n\}$ be an orthonormal sequence of vectors in V. Let S be the space of all finite linear combinations of the u_n's, and let

$$T = \left\{ \sum_{n=1}^{\infty} a_n u_n \left| \{a_n\} \in \ell^2 \right. \right\}.$$

(a) Prove that T is the closure of S in V. (Hint: Use the completeness of ℓ^2.)

(b) Deduce that $\{u_n\}$ is a Hilbert basis for V if and only if S is dense in V.

3. Let (X,μ) be a measure space, let $f,g,h: X \to [0,\infty)$ be measurable functions, and let $p,q,r \in (1,\infty)$ so that $1/p + 1/q + 1/r = 1$. Prove that

$$\int_X fgh \leq \left(\int_X f^p \right)^{1/p} \left(\int_X g^q \right)^{1/q} \left(\int_X h^r \right)^{1/r}$$