
MATH 242 Elementary Linear Algebra Spring 2018

Study Sheet for Final Exam

• This exam will be closed book.

• This study sheet will not be allowed during the test.

• Books, notes and online resources will not be allowed during the test.

• Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

Topics

1. Linear independence in Rn

2. Bases of subspaces of Rn

3. Dimension of subspaces of Rn

4. Three important subspaces

5. Determinants

6. Applications of determinants

7. Eigenvalues, eigenvectors and eigenspaces

8. Complex numbers

9. Systems of first order linear differential equations

10. Dot product in Rn

11. Orthogonal sets and orthogonal bases

12. Orthogonal projection

13. Gram-Schmidt

14. Vector spaces

15. Inner products

16. Fourier approximations

1



Tips for Studying for a Quiz or Exam

× Bad Forgetting about the homework and the previous quizzes.

X Good Making sure you know how to do all the problems on the homework and previous quizzes;
seeking help seeking help from the instructor and the tutors about the problems you do not
know how to do.

× Bad Doing all the practice problems from some of the sections, and not having enough time to do
practice problems from the rest of the sections.

X Good Doing a few practice problems of each type from every sections.

× Bad Studying only by reading the book.

X Good Doing a lot of practice problems, and reading the book as needed.

× Bad Studying only by yourself.

X Good Trying some practice problems by yourself (or with friends), and then seeking help from the
instructor and the tutors about the problems you do not know how to do.

× Bad Doing practice problems while looking everything up in the book.

X Good Doing some of the practice problems the way you would do them on the quiz or exam, which
is with closed book and no calculator.

× Bad Staying up late (or all night) the night before the exam.

X Good Studying hard up through the day before the exam, but getting a good night’s sleep the night
before the exam.

Ethan’s Office Hours

• Monday: 4:00-5:30

• Wednesday: 2:00-3:30

• Thursday: 10:30-12:00

• Or by appointment

Tutor

• Eric Zhang:

– Office Hour: Monday, 6:00-7:00, Mathematics Common Room (third floor of Albee)
– Email: jz2226@bard.edu
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Practice Problems from Holt, 2nd ed.

Section 2.3: 1, 3, 5, 7, 9, 11, 19, 21, 23, 37, 39

Section 4.2: 11, 13, 15, 23, 25, 27, 29, 31

Section 4.3: 5, 7, 13, 15, 17, 19, 21, 23, 25

Section 5.1: Just find the determinant: 11, 13, 15, 17, 19, 21, 23, 25

Do the exercise as written: 27, 29, 31, 33, 35, 37, 39, 61, 63

Section 5.2: 1, 3, 5, 15, 17, 23, 25

Section 5.3: 1, 3, 5, 7, 9, 11, 19, 21, 23, 25, 27, 35

Section 6.1: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 47

Complex Numbers Handout: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 41, 43, 45

Section 6.4: 1, 3, 5, 7, 9, 11, 13, 15, 17

Section 8.1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 37, 39, 41, 43

Section 8.2: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35

Section 7.1: 13, 15, 21, 23, 25

Section 7.2: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25

Section 7.3: 1, 3, 5, 7, 9, 11, 13, 15

Section 9.1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21

Section 10.1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29

Section 10.2: 15, 17
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Some Important Concepts and Formulas

1. Linear Dependence and Linear Independence
Let n be a positive integer. Let v1 , . . . , vk be in Rn .

1. The vectors v1 , . . . , vk are linearly dependent if there are a1 , a2 , . . . ak in R that are not all 0,
such that a1v1 + . . . + ak vk � 0.

2. The vectors v1 , . . . , vk are linearly independent if they are not linearly dependent.

2. Strategy for Proving Linear Independence
Let n be a positive integer. Let v1 , . . . , vk be inRn . The standard strategy for showing that v1 , . . . , vk

are linearly independent is as follows:

Suppose that a1v1 + . . . + ak vk � 0 for some a1 , a2 , . . . ak in R.
...

(argumentation)
...

Then a1 � 0, . . ., an � 0. Hence v1 , . . . , vk are linearly independent.

3. Linear Independence and Systems of Linear Equations
Let n be a positive integer. Let v1 , . . . , vk be in Rn . Let A � [v1 v2 · · · vk]. The following are
equivalent.

(a) The vectors {v1 , . . . , vk} are linearly independent.

(b) The system of linear equations x1v1 + · · · xk vk � 0 has a unique solution.

(c) The matrix equation Ax � 0 has a unique solution.

4. Linear Dependence and Linear Independence in Rn

Let n be a positive integer. Let v1 , . . . , vk be in Rn .

1. If one of v1 , . . . , vk is 0, then v1 , . . . , vk are linearly dependent.

2. If k > n, then v1 , . . . , vk are linearly dependent.

3. If k ≤ n, then v1 , . . . , vk might be linearly dependent or linearly independent.

4. Suppose k ≤ n. Let A � [v1 v2 · · · vk]. Suppose that A is row equivalent to B, where B is in
echelon form. Then v1 , . . . , vk is linearly independent if and only if B has a pivot position
in every column.
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5. Bases of Subspaces of Rn

Let n be a positive integer. Let W be a subspace of Rn . Let v1 , . . . , vk be in W .

1. The vectors v1 , . . . , vk are a basis for W if they are linearly independent and they span W .

2. If v1 , . . . , vk are a basis for W , then every vector v in W can be expressed uniquely as a linear
combination of v1 , . . . , vk .

3. If every vector v in W can be expressed uniquely as a linear combination of v1 , . . . , vk , then
v1 , . . . , vk are a basis for W .

4. The subspace W has a basis, and all bases of W have the same number of vectors.

5. Any linearly independent set in W can be expanded to be a basis of W .

6. Any set that spans W can be reduced to be a basis of W .

6. Bases of Subspaces of Rn via Row Equivalence
Let n be a positive integer. Let v1 , . . . , vk be in Rn . Let T � span{v1 , . . . , vk}.

1. Let A � [v1 v2 · · · vk]. Suppose that A is row equivalent to B � [u1 u2 · · · uk], where B is in
echelon form or reduced row echelon form.

2. The columns in B with pivot positions are linearly independent, and are a basis for T.

3. The columns of A that correspond to the columns of B with pivot positions are linearly
independent, and are a basis for T.

4. If a column ui of B does not have a pivot position and is expressed as a linear combination of
columns in B with pivot positions, then the column vi of A is expressed as the same linear
combination of the corresponding columns in A with pivot positions.

7. Dimension of Subspaces of Rn

Let n be a positive integer. Let W be a subspace of Rn . The dimension of W , denoted dim W , is
the number of vectors in any basis for W .

8. Dimension of Subspaces of Subspaces of Rn

Let n be a positive integer. Let U and W be subspaces of Rn . Suppose that U is contained in W .

1. dim U ≤ dim W .

2. If dim U � dim W , then U � W .
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9. Properties of Linearly Independent and Spanning Sets in Subspaces of Rn

Let n be a positive integer. Let W be a subspace of Rn . Let m � dim W . Let v1 , . . . , vk be in W .

1. If v1 , . . . , vk span W , then k ≥ m.

2. If v1 , . . . , vk span W and k � m, then v1 , . . . , vn are a basis for W .

3. If v1 , . . . , vk are linearly independent, then k ≤ m.

4. If v1 , . . . , vk are linearly independent and k � m, then v1 , . . . , vn are a basis for W .

5. If v1 , . . . , vk is spans W , then it contains a basis for W .

6. If v1 , . . . , vk is linearly independent, then it can be extended to a basis for W .

10. Properties of Linearly Independent and Spanning Sets in Rn

Let n be a positive integer. Let v1 , . . . , vk be in Rn .

1. If v1 , . . . , vk span Rn , then k ≥ n.

2. If v1 , . . . , vk span Rn and k � n, then v1 , . . . , vn are a basis for Rn .

3. If v1 , . . . , vk are linearly independent, then k ≤ n.

4. If v1 , . . . , vk are linearly independent and k � n, then v1 , . . . , vn are a basis for Rn .

5. If v1 , . . . , vk is spans Rn , then it contains a basis for Rn .

6. If v1 , . . . , vk is linearly independent, then it can be extended to a basis for Rn .

11. Three Important Spaces
Let m and n be positive integers. Let A be an m × n matrix.

1. The column space of A, denoted col(A), is the subspace of Rm that is the span of the columns
of A.

2. The row space of A, denoted row(A), is the subspace of Rn that is the span of the rows of A.

3. The null space of A, denoted null(A), is the subspace of Rn that consists of all vectors v in Rn

such that Av � 0.

12. Two Important Spaces and Linear Maps
Let m and n be positive integers. Let A be an m × n matrix.

1. col(A) � im LA.

2. null(A) � ker LA.
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13. Three Important Spaces: Row Equivalence
Let m and n be positive integers. Let A be an m × n matrix. Suppose that A is row equivalent to
B. Then the column space, row space and null space for A and B are the same.

14. Three Important Spaces: Bases
Let m and n be positive integers. Let A be an m × n matrix. Suppose that A is row equivalent to
B, where B is in echelon form.

1. The columns of B with pivot positions are a basis of the column space of A.

2. The non-zero rows of B are a basis for the row space of A.

3. A basis for the solution set of Bv � 0 is a basis for the null space of A.

15. Three Important Spaces: Dimension
Let m and n be positive integers. Let A be an m × n matrix.

1. The column rank of A, denoted columnrank A, is the dimension of the column space of A.

2. The row rank of A, denoted rowrank A, is the dimension of the row space of A.

3. The nullity of A, denoted nullity A, is the dimension of the null space of A.

16. Three Important Spaces: Dimension via Row Equivalence
Let m and n be positive integers. Let A be an m × n matrix. Suppose that A is row equivalent to
B, where B is in echelon form.

1. The column rank of A equals the number of columns of B with pivot positions.

2. The row rank of A equals the number of non-zero rows of B.

3. The nullity of A equals the number of free variables of B.

17. Column Rank Equals Row Rank
Let m and n be positive integers. Let A be an m × n matrix. Then the column rank of A equals the
row rank of A.

18. Rank of a Matrix
Let m and n be positive integers. Let A be an m × n matrix. The rank of A, denoted rank A, is the
column rank of A and row rank of A.
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19. Rank-Nullity Theorem for Matrices
Let m and n be positive integers. Let A be an m × n matrix. Then

rank A + nullity A � n.

20. Rank-Nullity Theorem for Linear Maps Given by Matrix Multiplication
Let m and n be positive integers. Let A be an m × n matrix. Then

dim(im LA) + dim(ker LA) � dim(Rn).

21. Determinants of 2 × 2 Matrices
Let A �

[
a b
c d

]
be a 2 × 2 matrix. The determinant of A, denoted det A, is defined by

det A � det
[

a b
c d

]
� ad − bc.

22. Minors and Cofactors
Let n be a positive integer. Let A be an n × n matrix. Let i and j be positive integers such that
1 ≤ i ≤ n and 1 ≤ j ≤ n.

1. The i jth minor of A, denoted Mi j , is the determinant of the (n − 1) × (n − 1) submatrix of A
obtained by deleting the ith row and jth column of A.

2. The i jth cofactor of A, denoted Ci j , is (−1)i+ j Mi j .

3. The cofactor matrix of A, denoted cof A, is the matrix
[
Ci j

]
.

4. The adjoint of A, denoted adj A, is the matrix (cof A)T .

23. Determinants of n × n Matrices
Let n be a positive integer. Let A be an n × n matrix. The determinant of A, denoted det A, can
be obtained by expanding along any row or any column and using minors or cofactors. The same
result will be obtained no matter which row or column is chosen.

1. Let i be a positive integer such that 1 ≤ i ≤ n. Then expanding along the ith row yields

det A � (−1)i+1ai1Mi1 + (−1)i+2ai2Mi2 + · · · + (−1)i+n ain Min

� ai1Ci1 + ai2Ci2 + · · · + ainCin .

2. Let j be a positive integer such that 1 ≤ j ≤ n. Then expanding along the jth column yields

det A � (−1)1+ j a1 j M1 j + (−1)2+ j a2 j M2 j + · · · + (−1)n+ j an j Mn j

� a1 jC1 j + a2 jC2 j + · · · + an jCn j .
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24. Properties of Determinants
Let n be a positive integer. Let A, B and C be n × n matrices, and let k be a real number.

1. If B is obtained from A by multiplying a row (or column) of by k, then det B � k det A.

2. If B is obtained from A by interchanging two rows (or two columns), then det B � −det A.

3. If B is obtained from A by adding a multiple of one row (or column, respectively) to another
row (or column, respectively), then det B � det A.

4. If A is a triangular matrix, then det A is the product of the diagonal elements of A.

5. If two rows (or two columns) of A are equal, then det A � 0.

6. If A, B and C are identical except for one row (or one column), and if that row (or column) in
C is the sum of the corresponding rows (or columns) in A and B, then det C � det A+det B.

7. det(AT) � det A.

8. det(AB) � det A · det B.

25. Determinants: Area
Let v1 and v2 be vectors in R2. Let A � [v1 v2]. Then the area of the parallelogram formed by v1
and v2 is | det A|.

26. Determinants: Volume
Let v1, v2 and v3 be vectors in R3. Let A � [v1 v2 v3]. Then the area of the parallelepiped formed
by v1, v2 and v3 is | det A|.

27. Determinants and Inverse Matrices
Let n be a positive integer. Let A be an n × n matrix.

1. The matrix A is invertible if and only if det A , 0.

2. If A is invertible, then
det(A−1) � 1

det A
.

3. If A is invertible, then
A−1

�
1

det A
(cof A)T �

1
det A

adj A.
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28. Determinants and Solutions of Systems of Linear Equations
Determinants are useful for solutions of systems of linear equationswhen the number of equations
is the same as the number of unknowns.

Let n be a positive integer. Let A be an n × n matrix, let b be in Rn , and let v �

[ x1
x2
...

xn

]
.

1. If det A , 0, then Av � b has a unique solution, which is v � A−1b.

2. If det A , 0, then Av � 0 has a unique solution, which is v � 0.

3. If det A � 0, then Av � b either has no solution or it has infinitely many solutions.

4. If det A � 0, then Av � 0 has infinitely many solutions.

29. Cramer’s Rule

Let n be a positive integer. Let A be an n × n matrix, let b be in Rn , and let v �

[ x1
x2
...

xn

]
.

1. For each i in 1, . . . , n, let Ai be the matrix obtained by replacing the ith column of A with b.

2. Suppose that A is invertible. Then the system of linear equations Av � b has a unique
solution, which is given by

xi �
det Ai

det A
for each i in 1, . . . , n.

30. Eigenvalues and Eigenvectors
Let n be a positive integer. Let A be an n × n matrix.

1. Let λ be a real number. The number λ is an eigenvalue of A if there is a non-zero vector v in
Rn such that Av � λv; such a vector v is an eigenvector of A corresponding to λ.

2. The characteristic polynomial of A is the polynomial det(A − λIn).

3. The eigenvalues of A, if there are any, are the roots of the characteristic polynomial. For each
eigenvalue, the corresponding eigenvectors can be found by substituting the eigenvalue λ
into the equation (A − λIn)v � 0, and finding non-zero solutions for v.

31. Eigenvalues of Triangular Matrices
Let n be a positive integer. Let A be an n × n matrix. If A is a triangular matrix, then the the
eigenvalues of A are the diagonal elements of A.

32. Unifying Theorem with Eigenvalues
Let n be a positive integer. Let A be an n × n matrix. Then det A , 0 if and only if λ � 0 is not an
eigenvalue of A.
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33. Eigenspaces
Let n be a positive integer. Let A be an n × n matrix. Let λ be an eigenvalue of A.

1. The eigenspace of A associated with λ, denoted Eλ, is the set of all eigenvectors of A
corresponding to λ together with 0.

2. The eigenspace Eλ is the solution set of the equation (A − λIn)v � 0.

3. The eigenspace Eλ is a subspace of Rn .

4. The dimension of Eλ is less than or equal to the multiplicity of λ in the characteristic
polynomial of A.

34. The Complex Numbers

1. The number i is the number such that i2 � −1.

2. A complex number is any number of the form a + bi, where a , b in R.

3. The set of all complex numbers is denoted C.

4. Let z � a + bi. The real part of z is a, and the imaginary part of z is b.

5. Themodulus of z, denoted ‖z‖, is defined by ‖z‖ �
√

a2 + b2.

6. The complex conjugate of z, denoted z̄, is defined by z̄ � a − bi.

35. The Complex Numbers: Basic Operations
Let z � a + bi and w � c + di be complex numbers, and let t be a real number.

1. z + w � (a + c) + (b + d)i.

2. z − w � (a − c) + (b − d)i.

3. zw � (ab − bd) + (ad + bc)i.

4. z
w �

a+bi
c+di �

(a+bi)(c−di)
(c+di)(c−di) �

(ab+bd)+(bc−ad)i
c2+d2 .

5. tz � ta + tbi.
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36. The Complex Numbers: Roots of Polynomials
Let p(x) be a polynomial with real or complex coefficients. Suppose that p(x) has degree n.

1. (Fundamental Theorem of Algebra) The polynomial p(x) can be factored into linear factors
over the complex numbers, which means that p(x) can be factored as

p(x) � c(x − r1)(x − r2) · · · (x − rn),

for some complex numbers c , r1 , r2 , . . . , rn (these numbers might or might not be real
numbers, and there might be repeats, corresponding to multiplicity higher than 1).

2. If p(x) has real coefficients, and if r is a root of p(x), the r̄ is also a root of p(x).

37. The Complex Numbers: Polar Form
Let z � a + bi be a complex number. Suppose that (r, θ) are the polar coordinates of the point
(a , b) in R2.

1. a � r cos θ and b � r sin θ.

2. r � ‖z‖ �
√

a2 + b2 and tan θ �
b
a .

3. The argument of z is the angle θ.

4. The polar form of z is z � r(cos θ + i sin θ).

38. The Complex Numbers: Multiplication and Division in Polar Form
Let z � r(cos θ + i sin θ) and w � s(cosφ + i sinφ) be complex numbers, and let n be a positive
integer.

1.
zw � rs(cos(θ + φ) + i sin(θ + φ)).

2.
z
w

�
r
s
(cos(θ − φ) + i sin(θ − φ)).

3.
zn

� rn(cos nθ + i sin nθ).

4. The number z has n distinct nth roots, which are given by

wk � r
1
n (cos

(
θ + 2kπ

n

)
+ i

(
θ + 2kπ

n

)
for each positive integer k such that 0 ≤ k ≤ n − 1.
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39. Euler’s Formula
Let a + bi be a complex number.

ea+bi
� ea(cos b + i sin b).

40. Eigenvalues: Real and Complex
Let n be a positive integer. Let A be an n × n matrix with real entries.

1. The characteristic polynomial of A can be factored into linear factors over the complex
numbers.

2. The matrix A has n complex eigenvalues counting multiplicities.

3. If λ is a complex eigenvalue of A, then λ̄ is also an eigenvalue of A.

4. If λ is a complex eigenvalue of A, and if v is an eigenvector corresponding to λ, then v̄ is an
eigenvector corresponding to the eigenvalue λ̄.

41. Systems of First Order Linear Differential Equations: Homogeneous Equations with Con-
stant Coefficients
A system of first order homogeneous linear ordinary differential equations with constant coeffi-
cients can be written in the form

x′1(t) � a11x1(t) + a12x2(t) + · · · + a1n xn(t)
x′2(t) � a21x1(t) + a22x2(t) + · · · + a2n xn(t)

...

x′n(t) � an1x1(t) + an2x2(t) + · · · + ann xn(t),

for some real numbers a11 , a12 , . . . , ann .

1. Define the matrices

A �


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


and x(t) �


x1(t)
x2(t)
...

xn(t)


.

Then the system of system of first order linear differential equations is equivalent to the
matrix equation

x′(t) � Ax(t).

Observe that the matrix A has entries that are numbers, not functions.

2. For convenience it is possible towrite thismatrix equation as x′ � Ax, with the understanding
that x is a function of t.
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42. Systems of First Order Linear Differential Equations: Homogeneous Equations with Con-
stant Coefficients via Eigenvalues
Let x′ � Ax be a system of homogeneous first order linear ordinary differential equations with
constant coefficients.

1. If r is an eigenvalue of A with corresponding eigenvector v, then x(t) � ve rt is a solution of
the system of ordinary differential equations x′ � Ax.

2. If the matrix A is n × n, and if A has n distinct real eigenvalues, then there are n linearly
independent solutions, which together yield the general solution of the system of ordinary
differential equations.

43. Dot Product

Let n be a positive integer. Let x �

[ x1
x2
...

xn

]
and y �


y1
y2
...

yn

 be in Rn . The dot product of x and y is

defined by
x · y � x1 y1 + x2 y2 + · · · + xn yn .

44. Properties of the Dot Product
Let n be a positive integer. Let x, y and z be in Rn , and let c be in R.

1. x · y � y · x (Symmetry Law).

2. x · (y + z) � x · y + x · z (Distributive Law).

3. (cx) · y � c(x · y) (Homogeneity Law).

4. x · x ≥ 0, and x · x � 0 if and only if x � 0 (Positive Definite Law).

5. ‖x‖ �
√

x · x.

6. 0 · x � 0 � x · 0.

7. |x · y | ≤ ‖x‖ · ‖y‖ (Cauchy-Schwarz Inequality).

8. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (Triangle Inequality).

45. Polarization Identity in Rn

Let n be a positive integer. Let x and y be in Rn . Then

x · y �
1
2 (‖x‖

2
+ ‖y‖2 − ‖x − y‖2) (Polarization Identity).
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46. Geometry of the Dot Product
Let n be a positive integer. Let x and y be in Rn .

1. Let θ be the angle between x and y. Then x · y � ‖x‖‖y‖ cos θ.

2. The vectors x and y are orthogonal if x · y � 0.

47. Pythagorean Theorem in Rn

Let n be a positive integer. Let x and y be in Rn . Then

‖x‖2 + ‖y‖2 � ‖x − y‖2 if and only if x · y � 0.

48. Orthogonal Sets in Rn

Let n be a positive integer. Let v1 , . . . , vk be in Rn .

1. The vectors v1 , . . . , vk are orthogonal if vi · v j � 0 for all values of i and j such that i , j.

2. The vectors v1 , . . . , vk are orthonormal if they are orthogonal and if ‖vi ‖ � 1 for all i.

49. Orthogonality and Linear Independence
Let n be a positive integer.

1. Let v1 , . . . , vk be in Rn . If v1 , . . . , vk are orthogonal, then they are linearly independent.

2. Let v1 , . . . , vn be in Rn . If v1 , . . . , vn are orthogonal, then they are a basis for Rn .

50. Orthogonal Basis in Subspaces of Rn

Let n be a positive integer. Let W be a subspace of Rn . Let v1 , . . . , vk be in W .

1. The vectors v1 , . . . , vk are an orthogonal basis of W if they are orthogonal and they are a
basis for W .

2. The vectors v1 , . . . , vk are an orthogonal basis of W if they are orthonormal and they are a
basis for W .

51. Orthogonal Basis in Rn

Let n be a positive integer. Let v1 , . . . , vn be in Rn .

1. The vectors v1 , . . . , vn are an orthogonal basis of Rn if they are orthogonal and they are a
basis for Rn .

2. The vectors v1 , . . . , vn are an orthogonal basis of Rn if they are orthonormal and they are a
basis for Rn .
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52. Using Orthogonal Bases in Subspaces of Rn

Let n be a positive integer. Let W be a subspace of Rn . Let v1 , . . . , vk be a basis for W . Let y be in
W .

1. Suppose that v1 , . . . , vk is an orthogonal basis for W . Then

y �
y · v1

‖v1‖2
v1 +

y · v2

‖v2‖2
v2 + · · · +

y · vk

‖vk ‖2
vk .

2. Suppose that v1 , . . . , vk is an orthonormal basis for W . Then

y � (y · v1)v1 + (y · v2)v2 + · · · + (y · vk)vk .

53. Using Orthogonal Bases in Rn

Let n be a positive integer. Let v1 , . . . , vn be a basis for Rn . Let y be in Rn .

1. Suppose that v1 , . . . , vk are orthogonal. Then

y �
y · v1

‖v1‖2
v1 +

y · v2

‖v2‖2
v2 + · · · +

y · vn

‖vn ‖2
vn .

2. Suppose that v1 , . . . , vk are orthonormal. Then

y � (y · v1)v1 + (y · v2)v2 + · · · + (y · vn)vn .

54. Orthogonal Projection onto a Line
Let n be a positive integer. Let u and v be vectors in Rn . Suppose that v , 0.

1. The projection of the vector u onto the line spanned by v, denoted projv u, is given by

projv u �
u · v
‖v‖2

v.

2. The vector u − projv u is orthogonal to v.

3. The vector projv u is the vector in the line spanned by v that is closest to u.
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55. Orthogonal Projection onto a Subspace
Let n be a positive integer. Let W be a subspace of Rn . Let v1 , . . . , vk be an orthogonal basis for W .
Let u be in Rn .

1. The projection of the vector u onto the subspace W , denoted projW u, is given by

projW u �
u · v1

‖v1‖2
v1 +

u · v2

‖v2‖2
v2 + · · · +

u · vk

‖vk ‖2
vk .

2. The vector u − projW u is orthogonal to every vector in W .

3. The vector projW u is the vector in W that is closest to u.

56. Gram-Schmidt in Rn

Let n be a positive integer. Let w1 , . . . ,wk be in Rn . Suppose that w1 , . . . ,wk are linearly indepen-
dent.
Let v1 , . . . , vk in Rn be defined by

v1 � w1

v2 � w2 −
w2 · v1

‖v1‖2
v1

v3 � w3 −
w3 · v1

‖v1‖2
v1 −

w3 · v2

‖v2‖2
v2

...

vk � wk −
wk · v1

‖v1‖2
v1 −

wk · v2

‖v2‖2
v2 − · · · −

wk · vk−1

‖vk−1‖2
vk−1.

1. The vectors v1 , . . . , vk are orthogonal.

2. None of the vectors v1 , . . . , vk is 0.

3. span{v1 , . . . , vk} � span{w1 , . . . ,wk}.
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57. Vector Spaces
A vector space is a set V together with an operation called addition, and an operation called
multiplication by scalars (which are real numbers), which satisfy the following eight properties.
Let u, v and w be in V , and let s and t be in R.

1. u + v � v + u (Commutative Law).

2. u + (v + w) � (u + v) + w (Associative Law).

3. u + 0 � u and 0 + u � u (Identity Law).

4. u + (−u) � 0 and (−u) + u � 0 (Inverses Law).

5. s(u + v) � su + sv (Distributive Law).

6. (s + t)u � su + tu (Distributive Law).

7. s(tu) � (st)u.

8. 1u � u.

58. Vector Spaces: Subspaces
Let V be a vector space. Let W be a subset of V .

1. The subset W is closed under addition if u , v in W implies u + v in W .

2. The subset W is closed under scalar multiplication if v in W and s in R imply sv in W .

3. The subset W is a subspace of V if

(a) 0 is in W ;
(b) W is closed under addition;
(c) W is closed under scalar multiplication.

59. Vector Spaces: Linear Combinations
Let V be a vector space. Let v1 , . . . , vk be in V . A linear combination of vectors of v1 , . . . , vk is
any vector of the form

a1v1 + a2v2 + · · · + ak vk

for some a1 , a2 , . . . , ak in R.
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60. Vector Spaces: Span
Let V be a vector space. Let v1 , . . . , vk be in V .

1. The span of v1 , . . . , vk , denoted span{v1 , . . . , vk}, is the set of all linear combinations of the
vectors v1 , . . . , vk .

2. {v1 , . . . , vk} ⊆ span{v1 , . . . , vk}.

3. The subset span{v1 , . . . , vk} is a subspace of V .

61. Vector Spaces: Linear Dependence and Linear Independence
Let V be a vector space. Let v1 , . . . , vk be in V .

1. The vectors v1 , . . . , vk are linearly dependent if there are a1 , a2 , . . . ak in R that are not all 0,
such that a1v1 + . . . + ak vk � 0.

2. The vectors v1 , . . . , vk are linearly independent if they are not linearly dependent.

62. Vector Spaces: Bases
Let V be a vector space. Let S be a set of vectors in V .

1. The set of vectors S is a basis for V if they are linearly independent and they span V .

2. If S is a basis forV , then every vector v inV can be expressed uniquely as a linear combination
of a finite collection of vectors in S.

3. If every vector v in V can be expressed uniquely as a linear combination of vectors in S, then
S is a basis for V .

4. If V has a finite basis, then all bases of V are finite, and all bases of V have the same number
of vectors.

63. Vector Spaces: Dimension
Let V be a vector space.

1. If V has a finite basis, then V is The finite-dimensional. If V does not have a finite basis, then
V is infinite-dimensional.

2. If V is finite-dimensional, the dimension of V , denoted dim V , is the number of vectors in
any basis for V .
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64. Vector Spaces: Dimension of Subspaces
Let V be a vector space. Let W be a subspace of V . Suppose V is finite-dimensional

1. W is finite-dimensional.

2. dim W ≤ dim V .

3. If dim W � dim V , then W � V .

65. Vector Spaces: Finding Bases when the Dimension is Known
Let V be a vector space. Suppose that V is finite-dimensional. Let n � dim V . Let S be a set of
vectors in V .

1. If S has fewer than n vectors, then S does not span V , and hence is not a basis for V .

2. If S has more than n vectors, then S is not linearly independent, and hence is not a basis for
V .

3. If S has n vectors than it spans V if and only if it is linearly independent, and hence to prove
that S is a basis requires proving only one of spanning and linear independence. Warning:
that only works when it is known already that dim V � n.

66. Linear Maps
Let V and W be vector spaces. Let f : V → W be a function. The function f is a linear map if it
satisfies the following two properties. Let v and w be in V and let c be a real number.

1. f (v + w) � f (v) + f (w).

2. f (cv) � c f (v).

67. Vector Spaces: Image (also called Range) of a Linear Map
Let V and W be vector spaces. Let f : V → W be a linear map. The image of f (also called the
range of f ), denoted im f , is the set of all vectors w in W such that w � f (v) for some v in V .

68. Vector Spaces: Properties of Image of Linear Maps
Let V and W be vector spaces. Let f : V →W be a linear map.

1. If B is a basis for V , then im f � span f (B)

2. im f is a subspace of W .

69. Vector Spaces: Kernel of a Linear Map
Let V and W be vector spaces. Let f : V → W be a linear map. The kernel of f , denoted ker f , is
the set of all vectors v in V such that f (v) � 0.
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70. Vector Spaces: Properties of Kernel of Linear Maps
Let V and W be vector spaces. Let f : V →W be a linear map. Then ker f is a subspace of V .

71. Vector Spaces Rank Nullity
Let V and W be vector spaces. Let f : V →W be a linear map. Then

dim im f + dim ker f � dim V.

72. Inner Products

1. Let V be a vector space. An inner product on V is a operation, denoted 〈v , w〉, that assigns
a real number to every pair of vectors v and w in V , and which satisfy the following four
properties. Let x, y and z be in V , and let c be a real number.

(1) 〈x , y〉 � 〈y , x〉 (Symmetry Law).
(2) 〈x , (y + z)〉 � 〈x , y〉 + 〈x , z〉 (Distributive Law).
(3) 〈cx , y〉 � c〈x , y〉 (Homogeneity Law).
(4) 〈x , x〉 ≥ 0, and 〈x , x〉 � 0 if and only if x � 0 (Positive Definite Law).

2. An inner product space is vector space together with an inner product on it.

73. Inner Products: Norm
Let V be an inner product space. Let x be in V . The norm of x, denoted ‖x‖, is defined by

‖x‖ �
√
〈x , x〉.

74. Inner Products: Orthogonality
Let V be an inner product space. Let x and y be in V . The vectors x and y are orthogonal if
〈x , y〉 � 0.

75. Properties of Inner Products
Let V be an inner product space. Let x and y be in V , and let c be in R.

1. 〈0, x〉 � 0 � 〈x , 0〉.

2. |〈x , y〉| ≤ ‖x‖ · ‖y‖ (Cauchy-Schwarz Inequality).

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (Triangle Inequality).
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76. Inner Products: Orthogonal Sets
Let V be an inner product space. Let v1 , . . . , vk be in V .

1. The vectors v1 , . . . , vk are orthogonal if vi · v j � 0 for all values of i and j such that i , j.

2. The vectors v1 , . . . , vk are orthonormal if they are orthogonal and if ‖vi ‖ � 1 for all i.

77. Inner Products: Orthogonal Basis
Let V be an inner product space. Let v1 , . . . , vk be in V .

1. The vectors v1 , . . . , vk are an orthogonal basis if they are orthogonal and they are a basis for
V .

2. The vectors v1 , . . . , vk are an orthogonal basis if they are orthonormal and they are a basis
for V .

78. Inner Products: Orthogonal Projection onto a Line
Let V be an inner product space. Let u and v be vectors in V . Suppose that v , 0.

1. The projection of the vector u onto the line spanned by the vector v, denoted projv u, is given
by

projv u �
〈u , v〉
‖v‖2

v.

2. The vector u − projv u is orthogonal to v.

3. The vector projv u is the vector in the subspace spanned by v that is closest to u.

79. Inner Products: Orthogonal Projection onto a Subspace
Let V be an inner product space. Let u and v1 , . . . , vk be vectors in V . Suppose that v1 , . . . , vk are
orthogonal, and that none of the vectors v1 , . . . , vk is 0. Let S � span{v1 , . . . , vk}

1. The projection of the vector u onto the subspace S, denoted projSu, is given by

projSu �
〈u , v1〉
‖v1‖2

v1 +
〈u , v2〉
‖v2‖2

v2 + · · · +
〈u , vk〉
‖vk ‖2

vk .

2. The vector u − projSu is orthogonal to every vector in S.

3. The vector projSu is the vector in S that is closest to u.
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80. Inner Products: Using Orthogonal sets in Rn

Let V be an inner product space. Let v1 , . . . , vk be in V . Let y be in span{v1 , . . . , vk}.

1. Suppose that v1 , . . . , vk are orthogonal, and that none of v1 , . . . , vk is 0. Then

y �
〈y , v1〉
‖v1‖2

v1 +
〈y , v2〉
‖v2‖2

v2 + · · · +
〈y , vk〉
‖vk ‖2

vk .

2. Suppose that v1 , . . . , vk are orthonormal. Then

y � 〈y , v1〉v1 + 〈y , v2〉v2 + · · · + 〈y , vk〉vk .

81. Inner Products: Orthogonal Basis
Let V be an inner product space. Let v1 , . . . , vk be in V .

1. The vectors v1 , . . . , vk are an orthogonal basis if they are orthogonal and they are a basis for
V .

2. The vectors v1 , . . . , vk are an orthogonal basis if they are orthonormal and they are a basis
for V .

82. Inner Products: Using Orthogonal Bases
Let V be an inner product space. Let v1 , . . . , vn be a basis for V . Let y be in V .

1. Suppose that v1 , . . . , vk are orthogonal, and that none of v1 , . . . , vk is 0. Then

y �
〈y , v1〉
‖v1‖2

v1 +
〈y , v2〉
‖v2‖2

v2 + · · · +
〈y , vn〉
‖vn ‖2

vn .

2. Suppose that v1 , . . . , vk are orthonormal. Then

y � 〈y , v1〉v1 + 〈y , v2〉v2 + · · · + 〈y , vn〉vn .
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83. Inner Products: Gram-Schmidt
Let V be an inner product space. Let w1 , . . . ,wk be in V . Suppose that w1 , . . . ,wk are linearly
independent.
Let v1 , . . . , vk in V be defined by

v1 � w1

v2 � w2 −
〈w2 , v1〉
|v1 |2

v1

v3 � w3 −
〈w3 , v1〉
|v1 |2

v1 −
〈w3 , v2〉
|v2 |2

v2

...

vk � wk −
〈wk , v1〉
|v1 |2

v1 −
〈wk , v2〉
|v2 |2

v2 − · · · −
〈wk , vk−1〉
|vk−1 |2

vk−1.

1. The vectors v1 , . . . , vk are orthogonal.

2. None of the vectors v1 , . . . , vk is 0.

3. span{v1 , . . . , vk} � span{w1 , . . . ,wk}.

84. Fourier Approximations
Let f be a function that is integrable on the interval [−π, π]. Let n be a positive integer. The nth

Fourier approximation of f , denoted fn , is the function

fn(x) � a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + · · · + an cos nx + bn sin nx ,

where

a0 �
1

2π

∫ π

−π
f (x) dx

a1 �
1
π

∫ π

−π
f (x) cos x dx and b1 �

1
π

∫ π

−π
f (x) sin x dx

a2 �
1
π

∫ π

−π
f (x) cos 2x dx and b2 �

1
π

∫ π

−π
f (x) sin 2x dx

...

an �
1
π

∫ π

−π
f (x) cos nx dx and bn �

1
π

∫ π

−π
f (x) sin nx dx.
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