
MATH 242 Elementary Linear Algebra Spring 2018
Study Sheet for Midterm Exam

• This exam will be closed book.

• This study sheet will not be allowed during the test.

• Books, notes and online resources will not be allowed during the test.

• Electronic devices (calculators, cell phones, tablets, laptops, etc.) will not be allowed during the test.

Topics

1. Solving systems of linear equations

2. Echelon form and reduced echelon form

3. Vectors in ℝn

4. Matrix operations

5. Matrix inverses

6. Markov chains

7. Linear maps via matrix multiplication

8. Subspaces of ℝn

9. Linear combinations and span in ℝn

10. Image and kernel
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Tips for Studying for a Quiz or Exam

× Bad Forgetting about the homework and the previous quizzes.

✓ Good Making sure you know how to do all the problems on the homework and previous quizzes;
seeking help seeking help from the instructor and the tutors about the problems you do not
know how to do.

× Bad Doing all the practice problems from some of the sections, and not having enough time to do
practice problems from the rest of the sections.

✓ Good Doing a few practice problems of each type from every sections.

× Bad Studying only by reading the book.

✓ Good Doing a lot of practice problems, and reading the book as needed.

× Bad Studying only by yourself.

✓ Good Trying some practice problems by yourself (or with friends), and then seeking help from the
instructor and the tutors about the problems you do not know how to do.

× Bad Doing practice problems while looking everything up in the book.

✓ Good Doing some of the practice problems the way you would do them on the quiz or exam, which
is with closed book and no calculator.

× Bad Staying up late (or all night) the night before the exam.

✓ Good Studying hard up through the day before the exam, but getting a good night’s sleep the night
before the exam.

Ethan’s Office Hours

• Monday: 4:00-5:30

• Wednesday: 2:00-3:30

• Thursday: 10:30-12:00

• Or by appointment

Tutor

• Eric Zhang:

– Office Hour: Monday, 6:00-7:00, Mathematics Common Room (third floor of Albee)
– Email: jz2226@bard.edu
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Practice Problems from Holt, 2nd ed.

Section 1.1: 23, 25, 27, 29, 31, 33, 35, 37, 43, 45, 49, 57, 65

Section 1.2: 19, 21, 23, 25, 27, 29, 31

Section 1.3: 1, 3, 13, 15, 17, 19

Section 2.1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 47, 49, 51, 53

Section 2.2: 1, 3, 5, 7, 9, 11, 35, 37, 39, 41, 43, 45

Section 3.1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 33, 35, 37

Section 3.2: 1, 3, 5, 7, 9, 11, 13, 43, 45, 47, 49

Section 3.3: 1, 3, 5, 7, 9, 11, 13, 15, 35, 37, 39

Section 3.5: 1, 3, 5, 7, 13, 15, 17, 19, 21, 23 47, 49

Section 4.1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 33, 35, 37, 41, 43
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Some Important Concepts and Formulas

1. Solving Systems of Equations in General

1. A solution to an equation or system of equations is a set of numerical values for the unknowns
that, when plugged into the equation or equations yields true statements.

2. A system of equations is consistent if it has at least one solution, and is inconsistent if it has
none.

3. If a system of equations has one or more solutions, the solution set is the collection of all
solutions. If a system of equations has no solution, then the solution set is thought of as the
empty set.

4. To solve a system of equations means to find the solution set.

2. Systems of Linear Equations

1. Let m and n be positive integers. A system of m linear equations in n unknowns is a system
of equations with unknowns x1, x2,… , xn that can be written in the form

a11x1 + a12x2 +⋯ + a1nxn = b1
a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x2 +⋯ + amnxn = bm,

for some a11, a12,… , amn in ℝ and b1, b2,… , bm in ℝ.

2. A system of m linear equations in n unknowns is homogeneous if it has the form

a11x1 + a12x2 +⋯ + a1nxn = 0
a21x1 + a22x2 +⋯ + a2nxn = 0

⋮

am1x1 + am2x2 +⋯ + amnxn = 0.

3. Leading Unknown
Let m and n be positive integers. In a system of m linear equations in n unknowns, a leading
unknown is an unknown that has the first non-zero coefficient (from the left) in at least one of the
linear equations.

4



4. Triangular System
Let n be a positive integer. A system of n linear equations in n unknowns is a triangular system
(and is in triangular form) if it has the form

a11x1 + a12x2 + a13x3 +⋯ + a1nxn = b1
a22x2 + a23x3 +⋯ + a2nxn = b2

a33x3 +⋯ + a2nxn = b3
⋮

annxn = bn,

for some a11, a12,… , ann in ℝ and b1, b2,… , bn in ℝ.

1. In a triangular system of linear equations, there are the same number of equations as un-
knowns.

2. In a triangular system of linear equations, every unknown is a leading unknown in exactly
one row.

3. A triangular system of linear equations has a unique solution.

5. Echelon System
Let m and n be positive integers. A system of m linear equations in n unknowns is an echelon
system (and is in echelon form) if the following two properties hold:

1. Each equation that has all zero coefficients for the unknowns is below every equation with at
least one non-zero coefficient for an unknown.

2. The leading unknown of each equation with at least one non-zero coefficient lies to the right
of the leading unknown of the preceding equation (if there is a preceding equation).

6. Free Unknown
Let m and n be positive integers. In an echelon system of m linear equations in n unknowns, a free
unknown is an unknown that is not a leading unknown in any equation.
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7. Systematic Solution of a System of Linear Equations: Preliminary

1. Let m and n be positive integers. An m × n matrix with entries in ℝ is a rectangular array of
real numbers with m rows and n columns.

2. Given a system of m linear equations in n unknowns of the form

a11x1 + a12x2 +⋯ + a1nxn = b1
a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x2 +⋯ + amnxn = bm,

the coefficient matrix of the system of linear equations is

A =

⎡

⎢

⎢

⎢

⎣

a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
⋮ ⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn

⎤

⎥

⎥

⎥

⎦

.

Let b =

[

b1
b2
⋮
bm

]

. The augmented coefficient matrix of the system of linear equations is

[

A b
]

=

⎡

⎢

⎢

⎢

⎣

a11 a12 a13 ⋯ a1n b1
a21 a22 a23 ⋯ a2n b2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn bm

⎤

⎥

⎥

⎥

⎦

.

3. The augmented coefficient contains all the information needed to solve the system of linear
equations.
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8. Systematic Solution of a System of Linear Equations: Part 1 – Gaussian Elimination
To solve a system of linear equations, start with the following steps.

1. Form the augmented coefficient matrix
[

A b
]

.

2. The first part of the process, called Gaussian elimination (or Gauss-Jordan elimination if
the steps in parentheses are used), occurs in the the augmented coefficient matrix.

1. Find the first column of the augmented coefficient matrix (reading from the left) that
has a non-zero entry.

2. If the top entry in this column is zero, place a non-zero element there by interchanging
appropriate rows.

3. Make this non-zero entry into 1 by multiplying the row containing the entry by an
appropriate number.

4. Make all the entries below this non-zero entry into zero by adding appropriate multiples
of the row containing this non-zero entry to these other rows.

5. (For Gauss-Jordan elimination, make all the entries above this non-zero entry into zero
by adding appropriate multiples of the top row to these other rows.)

6. The top row is now complete, and will not be modified further. Continue the above
process to the rows below the top row, one row at a time, starting from the top.

7. Keep going until partially reduced echelon form (or reduced echelon form for Gauss-
Jordan elimination) is achieved.

3. If there is a row in the matrix in partially reduced echelon form (or reduced echelon form) that
has all zeros except for the last entry, which is not zero, then there is no solution. Otherwise
there is a solution (one or infinitely many, to be determined).

4. If there is a solution, convert the matrix in partially reduced echelon form (or reduced echelon
form) back into equations.

5. The unknowns in the new equations that correspond to leading entries are leading unknowns.
The other unknowns are free unknowns.

6. If there are no free unknowns, then there is one solution. If there are free unknowns, there are
infinitely many solutions, with as many parameters as there are free unknowns.
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9. Systematic Solution of a System of Linear Equations: Part 2 – Back Substitution
To solve a system of linear equations, finish with the following steps.

1. The next part of the process, called back substitution, occurs with these new equations.

1. Set each free unknown equal to a parameter (each free unknown is a different parame-
ter).

2. Solve the final non-zero equation for its lead unknown (in terms of the parameters, if
there are any in that equation).

3. Substitute that solution into the equation above it, and solve for its lead unknown.
4. Keep going upwards until all free unknowns have been found.

2. The type of solution is evaluated as follows.

1. If there is a row with all zeros except the last entry is not zero, then there is no solution.
2. If there is a solution, and there are some free unknowns, then there are infinitely many

solutions.
3. If there is a solution, and every unknown is a leading unknown, then there is a unique

solution.

10. Vectors in ℝn

Let n be a positive integer.

1. The set ℝn is the set of all column vectors of length n with entries in ℝ.

2. Let v in ℝn. Then v =
[ v1

v2
⋮
vn

]

.

3. The zero vector in ℝn is the vector 0 =
[

0
0
⋮
0

]

.

4. The length (also known as norm) of a vector v =
[ v1

v2
⋮
vn

]

in ℝn, denoted ‖v‖, is defined by

‖v‖ =
√

(v1)2 + (v2)2 +⋯ + (vn)2.

11. Vectors in ℝn: Properties of Length
Let n be a positive integer. Let v be in ℝn, and let c be a real number.

1. ‖v‖ ≥ 0.

2. ‖v‖ = 0 if and only if v = 0.

3. ‖cv‖ = |c| ⋅ ‖v‖.
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12. Vectors in ℝn: Addition and Scalar Multiplication

Let n be a positive integer. Let x =
[ x1

x2
⋮
xn

]

and y =
[ y1

y2
⋮
yn

]

be in ℝn, and let c be a real number.

1. x + y =
[ x1+y1

x2+y2
⋮

xn+yn

]

.

2. x − y =
[ x1−y1

x2−y2
⋮

xn−yn

]

.

3. −x =
[ −x1−x2

⋮
−xn

]

.

4. cx =
[ cx1

cx2
⋮
cxn

]

.

13. Vectors in ℝn: Properties of Addition and Scalar Multiplication
Let n be a positive integer. Let u, v and w be in ℝn, and let s and t be a real number.

1. u + v = v + u (Commutative Law).

2. u + (v +w) = (u + v) +w (Associative Law).

3. u + 0 = u and 0 + u = u (Identity Law).

4. u + (−u) = 0 and (−u) + u = 0 (Inverses Law).

5. s(u + v) = su + sv (Distributive Law).

6. (s + t)u = su + tu (Distributive Law).

7. s(tu) = (st)u.

8. 1u = u.

14. Vectors in ℝn: Unit Vectors
Let n be a positive integer. If v is a vector in ℝn, and if v ≠ 0, the unit vector in the direction of v
is u = 1

‖v‖
v.
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15. Matrices
Let m and n be positive integers. Let A be an m × n matrix.

1. The matrix A can be written A =
[ a11 a12 ⋯ a1n

a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn

]

.

2. The transpose of A is the n × m matrix AT =
[ a11 a21 ⋯ am1

a12 a22 ⋯ am2
⋮ ⋮ ⋮ ⋮
a1n a2n ⋯ amn

]

.

3. The matrix A is symmetric if AT = A.

4. The m × n zero matrix, denoted O, is the matrix with all zero entries.

5. The n × n identity matrix, denoted In, is the matrix In =

[

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1

]

.

16. Matrices: Addition and Scalar Multiplication

Let A =
[ a11 a12 ⋯ a1n

a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn

]

and B =

[

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n
⋮ ⋮ ⋮ ⋮
bm1 bm2 ⋯ bmn

]

, and let c be a real number.

1. A + B =

[

a11+b11 a12+b12 ⋯ a1n+b1n
a21+b21 a22+b22 ⋯ a2n+b2n

⋮ ⋮ ⋮ ⋮
am1+bm1 am2+bm2 ⋯ amn+bmn

]

.

2. A − B =

[

a11−b11 a12−b12 ⋯ a1n−b1n
a21−b21 a22−b22 ⋯ a2n−b2n

⋮ ⋮ ⋮ ⋮
am1−bm1 am2−bm2 ⋯ amn−bmn

]

.

3. −A =
[ −a11 −a12 ⋯ −a1n

−a21 −a22 ⋯ −a2n
⋮ ⋮ ⋮ ⋮

−am1 −am2 ⋯ −amn

]

.

4. cA =
[ ca11 ca12 ⋯ ca1n

ca21 ca22 ⋯ ca2n
⋮ ⋮ ⋮ ⋮

cam1 cam2 ⋯ camn

]

.

17. Matrices: Multiplication

Row times Column

[

a1 a2 ⋯ an
]

⋅

⎡

⎢

⎢

⎢

⎣

b1
b2
⋮
bn

⎤

⎥

⎥

⎥

⎦

= a1b1 + a2b2 +⋯ anbn.

General If A is an m × p matrix and B is a p × n matrix, then AB is an m × n matrix obtained
by multiplying each row in A by each column in B.
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18. Matrices and Systems of Linear Equations
Let m and n be positive integers. A system of m linear equations in n unknowns can be written in
the form

a11x1 + a12x2 +⋯ + a1nxn = b1
a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x2 +⋯ + amnxn = bm.

Define an m × n matrix A, an m × 1 matrix B and and n × 1 matrix X by

A =

⎡

⎢

⎢

⎢

⎣

a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
⋮ ⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn

⎤

⎥

⎥

⎥

⎦

and X =

⎡

⎢

⎢

⎢

⎣

x1
x2
⋮
xn

⎤

⎥

⎥

⎥

⎦

and B =

⎡

⎢

⎢

⎢

⎣

b1
b2
⋮
bm

⎤

⎥

⎥

⎥

⎦

.

Then the system of linear equations is equivalent to the matrix equation AX = B. Solving for the
vector X is equivalent to solving for the unknowns x1,… , xn.

19. Matrices: Properties of Addition and Scalar Multiplication
Letm and n be positive integers. LetA, B and C bem×nmatrices, and let s and t be real numbers.
Let O be the m × n zero matrix.

1. A + B = B + A (Commutative Law).

2. A + (B + C) = (A + B) + C (Associative Law).

3. A + O = A and A + O = A (Identity Law).

4. A + (−A) = O and (−A) + A = O (Inverses Law).

5. s(A + B) = sA + sB (Distributive Law).

6. (s + t)A = sA + tA (Distributive Law).

7. s(tA) = (st)A.

8. 1A = A.

20. Matrices: Properties of Multiplication
Let m, n, p and q be positive integers. LetA and P be m×nmatrices, let B andQ be n×pmatrices
and let C be a p × q matrix.

1. A(BC) = (AB)C .

2. AIn = A and ImA = A.

3. A(B +Q) = AB + AQ and (A + P )B = AB + PB.
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21. Matrices: Properties of Powers
Let n be a positive integer. Let A be an n × n matrix, and let r and s be non-negative integers.

1. ArAs = Ar+s.

2. (Ar)s = Ars.

22. Matrices: Properties of the Transpose
Let m and n be positive integers. Let A and B be m × n matrices, and let s be a real number.

1. (A + B)T = AT + BT .

2. (sA)T = sAT .

3. (AT )T = A.

4. (In)T = In.

5. (AB)T = BTAT .

23. Matrices: Inverses
Let n be a positive integer. Let A be an n × n matrix. The matrix A is invertible (also called
nonsingular) if there is some n × n matrix C such that CA = In and AC = In. Such a matrix C ,
if it exists, is unique, and is called the inverse of A, and is denoted A−1.

24. Matrices: Inverses of 2 × 2 Matrices
Let A =

[

a b
c d

]

.

1. The matrix A is invertible if and only if ad − bc ≠ 0.

2. If A is invertible, then

A−1 = 1
ad − bc

[

d −b
−c a

]

.

25. Matrices: Properties of Inverses
Let n be a positive integer. Let A and B be n × n matrices.

1. If A is invertible, then A−1 is invertible and (A−1)−1 = A.

2. If A and B are invertible, then AB is invertible and (AB)−1 = B−1A−1.

3. IfA is invertible, and if p is a non-negative integer, thenAp is invertible, and (Ap)−1 = (A−1)p.

4. A is invertible if and only if AT is invertible; if A is invertible, then (AT )−1 = (A−1)T .
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26. Finding Matrix Inverses
Let n be a positive integer, and let A be an n × n matrix.

1. The matrix A is invertible if and only if A is row equivalent to In.

2. Suppose that A is invertible. The augmented matrix [A|In] is row equivalent to [In|A−1]. To
find A−1, start with [A|In], and perform elementary row operations on it until the left side
is In.

27. Elementary Matrices
An elementary matrix is the result of doing a single elementary row operation to the identity
matrix.

28. Elementary Matrix Multiplication
Let m and n be positive integers. Let E by the m × m elementary matrix obtained by a some
elementary row operation. LetA be anm×nmatrix. ThenEA is the same as doing that elementary
row operation to A.

29. Application of Invertible Matrices
Let n be a positive integer, and let A be an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) A is row equivalent to In.

(c) Ax = 0 has only the trivial (all zero) solution.

(d) For every vector b in ℝn, the system Ax = b has a unique solution.

(e) For every vector b in ℝn, the system Ax = b is consistent.

30. Probability Vector and Stochastic Matrix

1. A vector is a probability vector (also called a stochastic vector) if none of the values in the
vector is negative, and the sum of the values in the vector is 1.

2. A matrix is a stochastic matrix if none of the values in the matrix is negative, and the sum
of the values of each column in the matrix is 1.

13



31. Stochastic Matrices: Properties
Let n be a positive integer. Let A and B be n × n stochastic matrices.

1. If v is a probability vector, then Av is a probability vector.

2. AB is a stochastic matrix.

3. If p is a non-negative integer, then Ap is stochastic matrix.

32. Markov Chain
Let n be a positive integer. Let A be an n × n stochastic matrix. Let x0 be a probability vector in
ℝn.

1. TheMarkov chain generated by A and x0 is the sequence of vectors

x0, x1, x2, x3,… ,

where

x1 = Ax0
x2 = Ax1 = A2x0
x3 = Ax2 = A3x0
⋮ .

2. The vector x0 is called the initial state vector of the Markov chain, and the vectors
x1, x2, x3,… are called state vectors of the Markov chain.

3. If the vectors x0, x1, x2, x3,… converge to a vector x in ℝn, meaning that the vectors in the
sequence get closer and closer to x, then the vector x is called the steady-state vector of the
Markov chain.

4. Not all Markov chains have steady-state vectors.

33. Regular Stochastic Matrices
Let n be a positive integer. Let A be an n× n stochastic matrix. The stochastic matrix A is regular
if there is some positive integer k such that Ak has all positive entries.
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34. Regular Stochastic Matrices: Properties
Let n be a positive integer. Let A be an n × n regular stochastic matrix.

1. For any initial state vector x0, theMarkov chain x1, x2, x3,… converges to a steady-state vector.

2. For all initial state vectors, the Markov chains converge to the same steady-state vector.

3. Let x be the steady-state vector resulting from all initial state vectors. Then Ax = x.

4. The sequence of matrices A,A2, A3,… converges to the matrix [x x ⋯ x].

35. Regular Stochastic Matrices: Finding the Steady-State Vector
Let n be a positive integer. Let A be an n×n regular stochastic matrix. Find the steady-state vector
x as follows.

1. Find the general solution of the system of linear equations (A − In)v = 0, which will have a
parameter s.

2. Add up the entries in the general solution and set the sum equal to 1, and then solve for s

3. Use that value of s to find specific values for the entries in the general solution. These specific
values form a probability vector.

36. Linear Maps ℝn → ℝm

Let n and m be positive integers. Let f ∶ ℝn → ℝm be a function. The function f is a linear map
if it satisfies the following two properties. Let v and w be in ℝn and let c be a real number.

1. f (v +w) = f (v) + f (w).

2. f (cv) = cf (v).

37. Linear Maps ℝn → ℝm: Properties
Let n and m be positive integers. Let f ∶ ℝn → ℝm be a linear map. Let v be in ℝn.

1. f (0) = 0.

2. f (−v) = −f (v).

38. Functions ℝn → ℝm Given by Matrix Multiplication
Let n and m be positive integers. Let A be an m × n matrix. The function induced by A is the
function LA∶ ℝn → ℝm defined by LA(v) = Av for all v in ℝn.

39. Functions ℝn → ℝm Given by Matrix Multiplication are Linear
Let n and m be positive integers. Let A be an m × n matrix. The function LA is a linear map.
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40. Linear Maps ℝn → ℝm are Given by Matrix Multiplication
Let n and m be positive integers. Let f ∶ ℝn → ℝm be a linear map. Let e1,… , en be the standard
basis for ℝn. Then f = LA, where A is the m × n matrix given by A = [f (e1) f (e2) … f (en)].

41. Subspaces of ℝn

Let n be a positive integer. Let W be a non-empty subset of ℝn.

1. The subsetW is closed under addition if u, v in W implies u + v in W .

2. The subset W is closed under scalar multiplication if v in W and s in ℝ imply sv in W .

3. The subset W is a subspace of ℝn if

(a) 0 is inW ;
(b) W is closed under addition;
(c) W is closed under scalar multiplication.

42. Linear Combinations
Let n be a positive integer. Let v1,… , vk be in ℝn. A linear combination of vectors of v1,… , vk
is any vector of the form

a1v1 + a2v2 +⋯ + akvk
for some a1, a2,… , ak in ℝ.

43. Span
Let n be a positive integer. Let v1,… , vk be in ℝn.

1. The span of v1,… , vk, denoted span{v1,… , vk}, is the set of all linear combinations of the
vectors v1,… , vk.

2. {v1,… , vk} ⊆ span{v1,… , vk}.

3. The subset span{v1,… , vk} is a subspace of ℝn.

44. Span and Systems of Linear Equations
Let n be a positive integer. Let v1,… , vk and w be in ℝn. Let A = [v1 v2 ⋯ vk]. The following
are equivalent.

(a) The vector w is in span{v1,… , vk}.

(b) The system of linear equations x1v1 +⋯ xkvk = w has a solution.

(c) The matrix equation Ax = w has a solution.
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45. Spanning ℝn

Let n be a positive integer. Let v1,… , vk be in ℝn.

1. The vectors v1,… , vk span ℝn if span{v1,… , vk} = ℝn.

2. If k < n, then v1,… , vk do not span ℝn.

3. If k ≥ n, then v1,… , vk might or might not span ℝn.

4. Suppose k ≥ n. Let A = [v1 v2 ⋯ vk]. Suppose that A is row equivalent to B, where B is in
echelon form. Then v1,… , vk span ℝn if and only if B has a pivot position in every row.

46. Image (also called Range) of a Linear Map
Let m and n be positive integers. Let f ∶ ℝn → ℝm be a linear map. The image of f (also called
the range of f ), denoted im f , is the set of all vectors w in ℝm such that w = f (v) for some v in
ℝn.

47. Image of a Linear Map Given by Matrix Multiplication
Let m and n be positive integers. Let A be an m × n matrix.

1. imLA is the set of vectors w in ℝm for which Ax = w has a solution.

2. If A = [v1 v2 ⋯ vk], then imLA = span{v1,… , vk}

3. imLA is a subspace of ℝm.

48. Kernel of a Linear Map
Let m and n be positive integers. Let f ∶ ℝn → ℝm be a linear map. The kernel of f , denoted
ker f , is the set of all vectors v in ℝn such that f (v) = 0.

49. Kernel of a Linear Map Given by Matrix Multiplication
Let m and n be positive integers. Let A be an m × n matrix.

1. ker LA is the set of all solutions of Ax = 0.

2. ker LA is a subspace of ℝn.
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