
MATH 245 Intermediate Calculus Fall 2018
Study Sheet for Exam #3

The Exam is in class, Thursday, 20 December 2018

GUIDELINES THATWILL BE ON THE EXAM

EXAMGUIDELINES

In order for this exam to be an honest and accurate reflection of your understanding of the
material, you are asked to adhere to the following guidelines:

• The exam is closed book.

• The study sheet is not allowed during the exam.

• Books, notes and online resources are not allowed during the exam.

• Electronic devices (calculators, cell phones, tablets, laptops, etc.) are
not allowed during the exam.

• For the duration of the exam, you may not discuss the exam, or related
material, with anyone other than the course instructor.

• Giving help to others taking this exam is as much a violation of these
guidelines as receiving help.

• Late exams will be allowed only if you discuss it with the course
instructor before hand, or if an emergency occurs.

• Violation of these guidelines will result, at minimum, in a score of
zero on this exam.

• There will be no opportunity to retake this exam.

Further comments:

• Write your solutions carefully and clearly.

• Show all your work. You will receive partial credit for work you show,
but you will not receive credit for what you do not write down. In
particular, correct answers with no work will not receive credit.
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TOPICS

1. Sequences

2. Series (convergence of series, telescoping series, geometric series, p-series)

3. Convergence tests for series (Divergence Test, Comparison Test, Limit Comparison Test, Integral Test,
Alternating Series Test, Ratio Test)

4. Absolute and conditional convergence

5. Power series (interval of convergence and radius of convergence)

6. Differentiation and integration of power series

7. Representing a function as a power series, Taylor series and Maclaurin Series

8. Power series solutions of ordinary differential equations
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TIPS FOR STUDYING FOR THE EXAM

× Bad Forgetting about the homework and the previous quizzes.

X Good Making sure you know how to do all the problems on the homework and previous quizzes;
seeking help seeking help from the instructor and the tutors about the problems you do not
know how to do.

× Bad Doing all the practice problems from some of the sections, and not having enough time to do
practice problems from the rest of the sections.

X Good Doing a few practice problems of each type from every sections.

× Bad Studying only by reading the book.

X Good Doing a lot of practice problems, and reading the book as needed.

× Bad Studying only by yourself.

X Good Trying some practice problems by yourself (or with friends), and then seeking help from the
instructor and the tutors about the problems you do not know how to do.

× Bad Doing practice problems while looking everything up in the book.

X Good Doing some of the practice problems the way you would do them on the quiz or exam, which
is with closed book and no calculator.

× Bad Staying up late (or all night) the night before the exam.

X Good Studying hard up through the day before the exam, but getting a good night’s sleep the night
before the exam.

Ethan’s Office Hours

• Monday: 4:30-6:00

• Tuesday: 5:00-6:00

• Wednesday: 2:00-3:30

• Or by appointment

Tutor

• Weronica Nguyen

• Office hours: Wednesday: 6:00-7:00, Mathematics Common Room (third floor of Albee)

• Email to Make an Appointment: tn3599 "at" bard "dot" edu.
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PRACTICE PROBLEMS FROM
STEWART, CALCULUS CONCEPTS AND CONTEXTS, 4TH ED.

Section 8.1: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 41, 43

Section 8.2: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 49, 51, 53, 65

Section 8.3: 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31

Section 8.4: 3, 5, 7, 9, 13, 15, 21, 23, 25, 27, 29, 31, 33, 37

Section 8.5: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25

Section 8.6: 3, 5, 7, 9, 27,

Section 8.7: 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 39, 41, 43, 45, 47, 49

Using Series to Solve Differential Equations Handout: 1, 3, 5, 7, 9, 11
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SOME IMPORTANT CONCEPTS AND FORMULAS

1. Sequences

1. A sequence of real numbers is a collection of real numbers of which there is a first, a second, a
third and so on, with one real number for each element of the natural numbers. A sequence
is written a1 , a2 , a3 , . . ., and also {an}∞n�1.

2. The index n of a sequence could start at any number, not just 1.

3. In mathematical usage, the terms “sequence” and “series” mean different things, and should
be used according to their precise meanings.

4. As sequence can be defined explicitly, which means that the sequence is given by a formula
for an in terms of n, or recursively, which means that the sequence is given by specifying
a1 together with a formula for an+1 in terms of an .

2. Sequences: Limits

1. Let {an}∞n�1 be a sequence, and let L be a real number. The number L is the limit of {an}∞n�1,
written

lim
n→∞

an � L,

if the value of an gets closer and closer to a number L as the value of n gets larger and
larger. If lim

n→∞
an � L, the sequence {an}∞n�1 converges to L. If {an}∞n�1 converges to some

real number, the sequence {an}∞n�1 is convergent; otherwise {an}∞n�1 is divergent.

2. The above definition, and in particular the use of the phrase “gets closer and closer,” is
informal. A rigorous definition of limits will be seen in a Real Analysis course.

3. If a sequence has a limit, the limit is unique.

4. Let {an}∞n�1 be a sequence. Let f : [1,∞) → R be a function such that f (n) � an for all natural
numbers n. If lim

x→∞
f (x) � L, then lim

n→∞
an � L.

3. Sequences: Basic Limits

1. lim
n→∞

1
n � 0.

2.

lim
n→∞

rn
�


0, if |r | < 1
1, if r � 1
does not exist, otherwise.
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4. Sequences: Properties of Limits
Let {an}∞n�1, {bn}∞n�1 and {cn}∞n�1 be sequences, and let k be a real number. Suppose that {an}∞n�1
and {bn}∞n�1 are convergent.

1. {an + bn}∞n�1 is convergent and lim
n→∞
(an + bn) � lim

n→∞
an + lim

n→∞
bn .

2. {an − bn}∞n�1 is convergent and lim
n→∞
(an − bn) � lim

n→∞
an − lim

n→∞
bn .

3. {kan}∞n�1 is convergent and lim
n→∞

kan � k lim
n→∞

an .

4. {an bn}∞n�1 is convergent and lim
n→∞

an bn � [ lim
n→∞

an] · [ lim
n→∞

bn].

5. If lim
n→∞

bn , 0, then
{ an

bn

}∞
n�1 is convergent and lim

n→∞
an
bn

�

lim
n→∞

an

lim
n→∞

bn
.

6. If f (x) is a continuous function, then lim
n→∞

f (an) � f ( lim
n→∞

an).

7. If an ≤ bn for all natural numbers n, then lim
n→∞

an ≤ lim
n→∞

bn .

8. (Squeeze Theorem) If an ≤ cn ≤ bn for all natural numbers n, and if lim
n→∞

an � lim
n→∞

bn , then
{cn}∞n�1 is convergent and lim

n→∞
cn � lim

n→∞
an � lim

n→∞
bn .

5. Series

1. A series of real numbers is a formal sum of a sequence of real numbers, written

∞∑
n�1

an � a1 + a2 + a3 + · · · .

2. The index n of a series could start at any number, not just 1.
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6. Series: Convergence
Let

∑∞
n�1 an be a series.

1. For each natural number k, the kth partial sum of
∑∞

n�1 an , denoted sk , is defined by

sk �

k∑
i�1

ai � a1 + a2 + · · · + ak .

2. The sequence of partial sums of
∑∞

n�1 an is the sequence {sn}∞n�1.

3. Let L be a real number. The number L is the sum of
∑∞

n�1 an , written

∞∑
n�1

an � L,

if lim
n→∞

sn � L. If
∑∞

n�1 an � L, the series
∑∞

n�1 an converges to L. If
∑∞

n�1 an converges to
some real number, the series

∑∞
n�1 an is convergent; otherwise

∑∞
n�1 an is divergent.

4. If a series has a sum, the sum is unique.

5. Changing or deleting a finite numbers of terms in a series will not affect whether the series
is convergent or divergent (though it might change the sum of the series if the series is
convergent).

7. Harmonic Series

1. The harmonic series is the series
∞∑

n�1

1
n
�

1
1 +

1
2 +

1
3 + · · · .

2. The harmonic series is divergent.

8. Geometric Series

1. A geometric series is any series of the form

∞∑
n�1

arn−1
� a + ar + ar2

+ · · · ,

where a and r are real numbers.

2. A geometric series converges to a
1 − r

if |r | < 1, and is divergent if |r | ≥ 1.
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9. Series: Properties
Let

∑∞
n�1 an and

∑∞
n�1 bn be series, and let k be a real number. Suppose that

∑∞
n�1 an and

∑∞
n�1 bn

are convergent.

1.
∑∞

n�1 (an + bn) is convergent and
∑∞

n�1 (an + bn) �
∑∞

n�1 an +
∑∞

n�1 bn .

2.
∑∞

n�1 (an − bn) is convergent and
∑∞

n�1 (an − bn) �
∑∞

n�1 an −
∑∞

n�1 bn .

3.
∑∞

n�1 kan is convergent and
∑∞

n�1 kan � k
∑∞

n�1 an .

10. Divergence Test
Let

∑∞
n�1 an be a series.

1. If lim
n→∞

an , 0, then the series
∞∑

n�1
an is divergent.

2. Caution: If lim
n→∞

an � 0, you CANNOT conclude that the series
∞∑

n�1
an is convergent.

11. Integral Test
Let

∑∞
n�1 an be a series, and let f : [1,∞) → R be function that satisfies the following four proper-

ties:

(1) f (n) � an for all natural numbers n.

(2) f (x) is continuous on [1,∞).

(3) f (x) > 0 on [1,∞).

(4) f (x) is decreasing on [1,∞).

Then
∑∞

n�1 an is convergent if and only if
∫ ∞

1
f (x) dx is convergent.

12. p-Series

1. A p-series is any series of the form

∞∑
n�1

1
np �

1
1p +

1
2p +

1
3p + · · · ,

where p is a real number.

2. A p-series is convergent if p > 1, and is divergent if p ≤ 1.
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13. Comparison Test
Let

∑∞
n�1 an and

∑∞
n�1 bn be series. Suppose that an ≥ 0 and bn ≥ 0 for all natural numbers n.

Suppose that an ≤ bn for all natural numbers n.

1. If
∞∑

n�1
bn is convergent, then

∞∑
n�1

an is convergent.

2. If
∞∑

n�1
an is divergent, then

∞∑
n�1

bn is divergent.

3. Caution: If
∞∑

n�1
an is convergent or if

∞∑
n�1

bn is divergent, you CANNOT conclude anything

about the other series by the Comparison Test.

14. Limit Comparison Test
Let

∑∞
n�1 an and

∑∞
n�1 bn be series. Suppose that an ≥ 0 and bn ≥ 0 for all natural numbers n.

Suppose that

lim
n→∞

bn

an
� L,

for some L ∈ R or L � ∞.

1. Suppose that 0 < L < ∞. Then either both
∑∞

n�1 an and
∑∞

n�1 bn are convergent, or both∑∞
n�1 an and

∑∞
n�1 bn are divergent.

2. Suppose that L � 0. If
∞∑

n�1
an is convergent, then

∞∑
n�1

bn is convergent.

3. Suppose that L � ∞. If
∞∑

n�1
an is divergent, then

∞∑
n�1

bn is divergent.

15. Alternating Series
An alternating series is any series of the form

∞∑
n�1
(−1)n−1an or

∞∑
n�1
(−1)n an ,

where an > 0 for all natural numbers n.
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16. Alternating Series Test
Let

∑∞
n�1 (−1)n−1an be an alternating series, where an > 0 for all natural numbers n.

1. Suppose that the alternating series satisfies the following two properties:

(a) the sequence {an}∞n�1 is decreasing.
(b) lim

n→∞
an � 0.

Then the alternating series is convergent.

2. The same result holds for alternating series of the form
∑∞

n�1 (−1)n an .

17. Remainder Estimate for the Alternating Series Test
Let

∑∞
n�1 (−1)n−1an be an alternating series, where an > 0 for all natural numbers n. Let m be a

natural number.

1. The mth remainder of the alternating series, denoted Rm , is defined by

Rm �

∞∑
n�1
(−1)n−1an − sm �

∞∑
n�m+1

(−1)n an .

2. Suppose that the alternating series satisfies the hypotheses of the Alternating Series Test, and
hence is convergent. Then |Rm | ≤ am+1.

3. The same result holds for alternating series of the form
∑∞

n�1 (−1)n an .

18. Absolute Convergence and Conditional Convergence
Let

∑∞
n�1 an be a series.

1. The series
∑∞

n�1 an is absolutely convergent if
∑∞

n�1 |an | is convergent.

2. The series
∑∞

n�1 an is conditionally convergent if
∑∞

n�1 an is convergent but not absolutely
convergent.

3. If
∑∞

n�1 an is absolutely convergent, then
∑∞

n�1 an is convergent.

4. Any series is either absolutely convergent, conditionally convergent or divergent.
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19. Ratio Test
Let

∑∞
n�1 an be a series. Suppose that an , 0 for all natural numbers n. Suppose that

lim
n→∞

���� an+1
an

���� � L,

for some real number L or L � ∞.

1. If L < 1, then
∑∞

n�1 an is absolutely convergent.

2. If L > 1, then
∑∞

n�1 an is divergent.

3. Caution: If L � 1, you CANNOT conclude conclude that
∑∞

n�1 an is either convergent or
divergent by the Ratio Test.

20. Power Series

1. A power series is any series of the form

∞∑
n�0

cn(x − a)n � c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · · ,

where a , c0 , c1 , c2 , · · · are real numbers.

2. If a � 0, a power series has the form

∞∑
n�0

cn xn
� c0 + c1x + c2x2

+ c3x3
+ · · · .

3. The numbers c0 , c1 , c2 , · · · are the coefficients of the power series.
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21. Interval of Convergence and Radius of Convergence of Power Series

1. Let
∑∞

n�0 cn(x − a)n be a power series. Then precisely one of the following happens:

(1) The series is absolutely convergent for all real numbers x, in which case R � ∞.
(2) The series is convergent only for x � a, in which case R � 0.
(3) There is some positive number R such that the series is absolutely convergent for all

|x − a | < R, and the series is divergent for all |x − a | > R.

2. The radius of convergence of the power series is R, which is either a real number or∞.

3. The interval of convergence of the power series is set of all numbers x at which the power
series is convergent.

4. (1) If R � ∞, the interval of convergence is (−∞,∞).
(2) If R � 0, the interval of convergence is [a , a].
(3) If 0 < R < ∞, the the interval of convergence is one of (a − R, a + R), or (a − R, a + R],

or [a − R, a + R) or [a − R, a + R].

5. To find the interval of convergence and radius of convergence, a method that often works is
to use the Ratio Test, which leads to finding the radius convergence, and then, if 0 < R < ∞,
to use other convergence tests to find out convergence or divergence at the endpoints of the
interval of convergence.

22. Basic Operations on Power Series
Let f (x) � ∑∞

n�0 cn(x − a)n and g(x) � ∑∞
n�0 dn(x − a)n be power series.

1. f (x)+ g(x) �
∞∑

n�0
(cn+dn)(x−a)n , with interval of convergence the intersection of the intervals

of convergence of f (x) and g(x). Similarly for f (x) − g(x).

2. (x − a)r f (x) �
∞∑

n�0
cn(x − a)n+r , with the same interval of convergence as f (x).

3. f (x)g(x) �
∞∑

n�0
en(x − a)n , where en �

n∑
k�0

ck dn−k , with radius of convergence the smaller of

the radii of convergence of f (x) and g(x).
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23. Differentiation and Integration of Power Series
Let f (x) � ∑∞

n�0 cn(x − a)n be a power series. Let R be the radius of convergence of f (x).

1. The power series
∞∑

n�1
ncn(x− a)n−1 has radius of convergence R, and f ′(x) �

∞∑
n�1

ncn(x− a)n−1

for all x ∈ (a − R, a + R).

2. The power series �

∞∑
n�0

cn
(x − a)n+1

n + 1 has radius of convergence R, and
∫

f (x) dx � C +

∞∑
n�0

cn
(x − a)n+1

n + 1 for all x ∈ (a − R, a + R).

3. Caution: For any particular function f (x), it might be that the above power series are conver-
gent on the endpoints of the interval (a − R, a + R), and it might be that f ′(x) or

∫
f (x) dx

equals the power series at the endpoints, but that needs to be verified in each case.

24. Representing a Function as a Power Series

1. Let E be a subset of the real numbers, let f : E → R be a function, and let
∑∞

n�0 cn(x − a)n
be a power series. The function f is represented by

∑∞
n�0 cn(x − a)n if the following three

properties hold:

(1) The radius of convergence of
∑∞

n�0 cn(x − a)n is positive.
(2) The interval of convergence of

∑∞
n�0 cn(x − a)n is a subset of E.

(3) f (x) � ∑∞
n�0 cn(x − a)n for all x in the interval of convergence.

2. Caution: If f is represented by
∑∞

n�0 cn(x − a)n , it is not necessarily the case that the interval
of convergence of

∑∞
n�0 cn(x − a)n is all of E.

3. Not every function is represented by a power series.

4. If a function is represented by a power series, the power series is unique.
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25. Taylor Series and Maclaurin Series
Let I be an open interval, let f : I → R be a function, and let a be in I. Suppose that f is infinitely
differentiable.

1. The Taylor series of f centered at a is

∞∑
n�0

f (n)(a)
n! (x − a)n � f (a) + f ′(a)(x − a) +

f ′′(a)
2! (x − a)2 +

f ′′′(a)
3! (x − a)3 + · · · .

2. Suppose that 0 is in I. TheMaclaurin series of f is

∞∑
n�0

f (n)(0)
n! xn

� f (0) + f ′(0)x +
f ′′(0)

2! x2
+

f ′′′(0)
3! x3

+ · · · .

3. Caution: TheTaylor series andMaclaurin series of a functiondonot always equal the function.

26. Taylor Series of Some Standard Functions
The following equalities hold for all real numbers x.

1.

ex
� 1 + x +

x2

2! +
x3

3! + · · · + xn

n! + · · · �
∞∑

n�0

xn

n! .

2.

sin x � x − x3

3! +
x5

5! −
x7

7! + · · · �
∞∑

n�0
(−1)n x2n+1

(2n + 1)! .

3.

cos x � 1 − x2

2! +
x4

4! −
x6

6! + · · · �
∞∑

n�0
(−1)n x2n

(2n)! .
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27. Binomial Series
Let r be a real number.

1. Let k be an integer. The binomial coefficient
(r
k

)
is defined by(

r
k

)
�

r(r − 1)(r − 2) · · · (r − k + 1)
k! .

Also, let
(
r
0

)
� 1.

2. Caution: The number r can be any real number, not necessarily an integer; the number k is
always a non-negative integer.

3. (Binomial series)

(1 + x)r �
∞∑

k�0

(
r
k

)
xk

� 1 + rx +
r(r − 1)

2! x2
+

r(r − 1)(r − 2)
3! x3

+ · · · ,

for all real numbers x such that |x | < 1.

28. Taylor Polynomials and Maclaurin Polynomials
Let I be an open interval, let f : I → R be a function, and let a be in I. Suppose that f is infinitely
differentiable. Let n be a natural number.

1. The nth degree Taylor polynomial for f (x) centered at a, denoted Tn(x), is

Tn(x) �
n∑

k�0

f (k)(a)
k! (x − a)k

� f (a) + f ′(a)(x − a) +
f ′′(a)

2! (x − a)2 +
f ′′′(a)

3! (x − a)3+

· · · +
f (n)(a)

n! (x − a)n .

2. Suppose that 0 is in I. The nth degree Maclaurin polynomial for f (x) is

Tn(x) �
n∑

k�0

f (k)(0)
k! xk

� f (0) + f ′(0)x +
f ′′(0)

2! x2
+

f ′′′(0)
3! x3

+ · · · +
f (n)(0)

n! xn .
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29. Taylor’s Theorem
Let I be an open interval, let f : I → R be a function, and let a be in I. Suppose that f is infinitely
differentiable. Let n be a natural number.

1. The nth remainder of the Taylor series for f (x) centered at a, denoted Rn(x), is defined by

Rn(x) � f (x) − Tn(x) � f (x) −
n∑

k�0

f (k)(a)
k! (x − a)k .

2. (Taylor’s Theorem) Suppose that there is some real number M such that | f (n+1)(x)| ≤ M for
all real numbers x such that |x − a | ≤ d. Then

|Rn(x)| ≤
M

(n + 1)! |x − a |n+1

for all real numbers x such that |x − a | ≤ d.

30. Power Series Solutions of Ordinary Differential Equations

1. A homogeneous linear differential equation of order n is an ODE of the form

a0(x)y(n) + a1(x)y(n−1)
+ a2(x)y(n−2)

+ · · · + an−1(x)y′ + an(x)y � 0.

for some functions a0(x), a1(x), . . . , an(x). (These functions are not assumed to be constants.)

2. To use series to solve a homogeneous linear differential equation, let y �

∞∑
n�0

cn xn , find

the derivatives of y, substitute into the ODE, and derive relations among the coefficients
c0 , c1 , c2 , · · · . It is common to find a recurrence relation among these coefficients, in which
cn is related to some of c0 , c1 , c2 , · · · , cn−1.
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