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2.1| Binary Operations

Definition 2.1.1. Let A be a set. A binary operation on A is a function A XA — A. A
unary operation on A is a function A — A. A

Definition 2.1.2. Let A be a set, let * be a binary operation on A and let H C A. The subset
H is closed under xif axb € H foralla,b € H. A

Definition 2.1.3. Let A be a set, and let * be a binary operation on A. The binary operation
+ satisfies the Commutative Law (an alternative expression is that * is commutative) if
a*b=>bx+aforalla,b e A. A

Definition 2.1.4. Let A be a set, and let * be a binary operation on A. The binary
operation * satisfies the Associative Law (an alternative expression is that = is associative)
if(axb)xc=ax=(bxc)foralla,b,c € A. A

Definition 2.1.5. Let A be a set, and let * be a binary operation on A.

1. Let e € A. The element e is an identity element for *if axe =a =exa foralla € A.

2. If * has an identity element, the binary operation * satisfies the Identity Law. A

Lemma 2.1.6. Let A be a set, and let = be a binary operation on A. If * has an identity element, the
identity element is unique.

Proof. Lete,é € A. Suppose that e and € are both identity elements for *. Thene = exé = ¢,
where in the first equality we are thinking of ¢ as an identity element, and in the second
equality we are thinking of e as an identity element. Therefore the identity element is
unique. O

Definition 2.1.7. Let A be a set, and let » be a binary operation of A. Let e € A. Suppose
that e is an identity element for *.

1. Leta € A. An inverse for g is an element a’ € A suchthata+*a’ =eand a’ xa = e.

2. If every element in A has an inverse, the binary operation » satisfies the Inverses
Law. A

Definition 2.1.8. Let A be a set, and let + and - be binary operations on A.

1. The binary operations + and - satisfy the Left Distributive Law (an alternative
expression is that - is left distributive over +) if a - (b +c) = (a-b) + (a - ¢) for all
a,b,c eA.

2. The binary operations + and - satisfy the Right Distributive Law (an alternative
expression is that - is right distributive over +) if (b + c¢)-a = (b-a)+ (c - a) for all
a,b,c eA.
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3. The binary operations + and - satisfy the Distributive Law (an alternative expression
is that - is distributive over +) if they satisfy both the Left Distributive Law and the
Right Distributive Law. A

Exercises

Exercise 2.1.1. Which of the following formulas defines a binary operation on the given
set?

(1) Let *be defined by x + y = xy forall x, y € {-1,-2,-3,...}.

(2) Let o be defined by x o y = 4/xy forall x, y € [2, o0).

(3) Let ® be definedby x @y =x -y forallx,y € Q.

(4) Let o be defined by (x, y) o(z, w) = (x + z, y + w) for all (x, y), (z, w) € R? — {(0,0)}.
(5) Let © be defined by x © y = |x + y| forall x, y € N.

(6) Let ® be defined by x ® y = In(|xy| —e) forall x, y € N.

Exercise 2.1.2. For each of the following binary operations, state whether the binary
operation is associative, whether it is commutative, whether there is an identity element
and, if there is an identity element, which elements have inverses.

(1) The binary operation @ on Z defined by x @ y = —xy forall x, y € Z.

(2) The binary operation x on R defined by x x y = x + 2y for all x, y € R.

(3) The binary operation ® on R definedby x ® y = x + y —7forall x, y € R.
(4) The binary operation * on Q defined by x * y = 3(x + y) forall x, y € Q.
(5) The binary operation o on R defined by x oy = x forall x, y € R.

(6) The binary operation ¢ on Q definedby x ¢y =x + y +xy forall x, y € Q.

(7) The binary operation ® on R? defined by (x,y) © (z,w) = (4xz,y + w) for all
(x/ ]/)/ (Z/ w) € RZ'

Exercise 2.1.3. For each of the following binary operations given by operation tables, state
whether the binary operation is commutative, whether there is an identity element and, if
there is an identity element, which elements have inverses. (Do not check for associativity.)

(1)
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Exercise 2.1.4. Find an example of a set and a binary operation on the set such that the
binary operation satisfies the Identity Law and Inverses Law, but not the Associative Law,
and for which at least one element of the set has more than one inverse. The simplest way
to solve this problem is by constructing an appropriate operation table.

Exercise 2.1.5. Let n € N. Recall the definition of the set Z, and the binary operation - on
Zy. Observe that [1] is the identity element for Z,, with respect to multiplication. Let a € Z.
Prove that the following are equivalent.

a. The element [a] € Z, has an inverse with respect to multiplication.
b. The equation ax =1 (mod n) has a solution.
c. There exist p,q € Z such thatap + ng = 1.

(It turns out that the three conditions listed above are equivalent to the fact that 2 and n
are relatively prime.)

Exercise 2.1.6. Let A be a set. A ternary operation on A is a function A XA XA — A. A
ternary operation x: A X A X A — A is left-induced by a binary operation¢: A XA — A
if x((a,b,c))=(aob)ocforalla,b,c e A.

Is every ternary operation on a set left-induced by a binary operation? Give a proof or a
counterexample.

Exercise 2.1.7. Let A be a set, and let * be a binary operation on A. Suppose that * satisfies
the Associative Law and the Commutative Law. Prove that (a « b) = (c *d) = b = [(d * a) * ]
foralla,b,c,d € A.
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Exercise 2.1.8. Let B be a set, and let ¢ be a binary operation on B. Suppose that ¢ satisfies
the Associative Law. Let

P={beB|bow=wobforallw € B}.
Prove that P is closed under <.

Exercise 2.1.9. Let C be a set, and let x be a binary operation on C. Suppose that * satisfies
the Associative Law and the Commutative Law. Let

Q={ceC|ckxc=c}.
Prove that Q is closed under *.

Exercise 2.1.10. Let A be a set, and let * be a binary operation on A. An element c € A isa
left identity element for »if c xa = a for alla € A. An element d € A is a right identity
element for xifaxd = a forall a € A.

(1) If A has a left identity element, is it unique? Give a proof or a counterexample.
(2) If A has a right identity element, is it unique? Give a proof or a counterexample.

(3) If A has a left identity element and a right identity element, do these elements have
to be equal? Give a proof or a counterexample.
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3.1 | Fields

Friedberg-Insel-Spence, 4th ed. — Section Appendix C

Definition 3.1.1. A field is a non-empty set F with two elements denoted 0 and 1, and with
two binary operations +: F X F — F and -: F X F — F that satisfy the following properties.
Leta,b,c € F.

1. (a+b)+c=a+(b+c) (Associative Law for +).

2.a+b=b+a (Commutative Law for +).

W

.a+0=a (Identity Law for +).

4. There is an element —a € F such thata + (-a) =0 (Inverses Law for +).

)]

.(@-b)-c=a-(b-c) (Associative Law for ).

6. a-b=>b-a (Commutative Law for -).

7.a-1=a (Identity Law for -).

8. Ifa # 0, there is an element a~! € Fsuchthata-a ' =1 (Inverses Law for -).

9.a-(b+c)=a-b+a-c (Distributive Law).

10. 0 #1 (Non-Triviality). A
Lemma 3.1.2. Let F be a field, and let a, b, c € F.

1. 0is unique.

2. 11is unique.

3. —a is unique.

4. Ifa # 0, then a™! is unique.

5. a+b=a+cimpliesb = c.

6. Ifa #0,thena-b=a-cimpliesb = c.

7.a-0=0.

8. —(—a)=a.

9. Ifa #0, then (a )™ = a.
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10. (—a)-b=a-(-b)=—(a-Db).

11. (-a)-(-b)=a-b.

12. (-1)-a = —a.

13. 0 has no multiplicative inverse.

14. ab =0ifand onlyifa =0o0r b = 0.

Proof. We prove Parts (1), (2), (3), (7) and (10); the remaining parts of this lemma are left
to the reader in Exercise

For the proof of each part, we can use any of the previous parts, but not any of the
subsequent ones.

@. and @). These two parts follow immediately from Lemma

(). Let ¢ € F. Suppose that a + ¢ = 0. We also know that a + (—a) = 0. Hence
a+ g =a+(—a). Then (-a)+ (a + g) = (—a) + (a + (—a)). By the Associate Law for +
we obtain ((—a) + a) + ¢ = ((—a) + a) + (-a). By the Inverses Law for + we deduce that
0+ g = 0+ (—a). By the Identity Law for + it follows that ¢ = —a, which means that —a is
unique.

(7). By the Identity Law for + we know that 0 + 0 = 0. Then a - (0 + 0) = a - 0. By the
Distributive Law we see thata -0+ a -0 = a - 0. By the Identity Law for + again we deduce
a-0+a-0=a-0+0. It then follows from Part (5) of this lemma thata -0 = 0.

(@0). We will show thata - (—b) = —(a - b). The other equality is similar, and the details
are omitted. Using the Distributive Law, the Inverses Law for + and Part (7)) of this lemma,
in that order, we see thata - b +a - (-b) =a - (b + (-=b)) = a -0 = 0. It now follows from
Part (3) of this lemma thata - (=b) = —(a - b). O

Exercises

Exercise 3.1.1. Prove Lemma[3.1.2/#), (5), (6), (8), (), (11), and (14).
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3.2 | Vector Spaces

Friedberg-Insel-Spence, 4th ed. — Section 1.2

Definition 3.2.1. Let F be a field. A vector space (also called a linear space) over F is a set
V with a binary operation +: V X V' — V and scalar multiplication F X V' — V that satisfy
the following properties. Let x, y,z € V and leta,b € F.

1. (x+y)+z=x+(y+2z) (Associative Law).

2. x+y=y+x (Commutative Law).

3. Thereis an element 0 € V such that x + 0 = x  (Identity Law).

4. There is an element —x € V such that x + (-x) =0 (Inverses Law).

5. 1x = x.

6. (ab)x = a(bx).

7. a(x +y) =ax +ay (Distributive Law).

8. (a + b)x = ax + bx (Distributive Law). A

Definition 3.2.2. Let F be a field, and let m,n € N. The set of all m X n matrices with

entries in F is denoted M,,;x,(F). An element A € M, (F) is abbreviated by the notation
A= [111‘]'] . A

Definition 3.2.3. Let F be a field, and let m, n € N.

1. The m X n zero matrix is the matrix O, defined by O,,,, = [cij], where ¢;; = 0 for
allie{l,...,m}andje{1,...,n}.

2. The n X n identity matrix is the matrix I, defined by I,, = [6l~j] , where
1, ifi=j
0ij = . ]
0, ifi#j
foralli,je{l,...,n}. A

Definition 3.2.4. Let F be a field, and let m,n € N. Let A,B € M;;,x,(F), and let ¢ € F.
Suppose that A = [aij] and B = [bij].

1. The matrix A + B € My,x,(F) is defined by A + B = [ci]-], where c;; = a;j + b;; for all
ie{l,...,m}andje{1,...,n}
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2. The matrix —A € M;;x,(F) is defined by —A = [dij], where djj = —a;j for all
ie{l,...,m}andje{1,...,n}

3. The matrix cA € M;,x,(F) is defined by cA = [si]-], where s;; = ca;j for all i €
{1,...,m}and je{l,...,n}. A

Lemma 3.2.5. Let F be a field, and let m,n € N. Let A, B, C € Myxn(F), and let s, t € F.
1. A+(B+C)=(A+B)+C.
2. A+B=B+A.
3. A+ Oy =Aand A + Oy, = A.
4. A+ (=A) = Opp and (=A) + A = Oy
5. 1A = A.
6. (st)A =s(tA).
7. s(A+B)=sA+sB.
8. (s+1t)A =sA +tA.

Proof. The proofs of these facts about matrices are straightforward, and are material
belonging to Elementary Linear Algebra; we omit the details. |

Corollary 3.2.6. Let F be a field, and let m,n € N. Then My,x,,(F) is a vector space over F.
Lemma 3.2.7. Let V be a vector space over a field F. let x,y,z € V and leta € F.

1. x+y=x+zimpliesy = z.

2. Ifx+y=x,theny =0.

3. Ifx+y=0,then y = —x.

4. —(x+y)=(-x)+(-y).

5. 0x = 0.

6. a0 =0.

7. (—a)x = a(—x) = —(ax).

8. (-1)x = —x.

9. ax =0ifand onlyifa = 0or x = 0.
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Proof. We prove Parts (1), () and (9); the remaining parts of this lemma are left to the
reader in Exercise

For the proof of each part, we can use any of the previous parts, but not any of the
subsequent ones.

@. Suppose that x + y = x + z. Then (—x) + (x + y) = (—x) + (x + z). By the Associate
Law we obtain ((—x) + x) + ¥ = ((—x) + x) + z. By the Commutative Law we obtain
(x + (=x)) + y = (x + (=x)) + z. By the Inverses Law we deduce that 0 + y = 0 + z. By the
Identity Law it follows that y = z

(). Using the Associate Law and the Commutative Law repeatedly, and then the Inverses
Law and the Identity Law, we compute (x + ) + ((—x) + (-y)) = (x + y) + (—=x)) + (-y) =
(y+x)+ (=) +(y) =W+ +(=x)+(-y) =y +0)+(-y) =y +(-y) = 0. It now
follows from Part (3)) of this lemma that (-x) + (-y) = —(x + y).

(9. First, suppose that 2 = 0 or x = 0. Then it follows from Parts (5) and (6) of this
lemma that ax = 0.

Second, suppose that ax = 0. Suppose further that a # 0. Then there is an element
a~! € Fsuchthataa™ = 1. Thena=!(ax) = a~'0. By Property @ of Deﬁnition together
with Part @ of this lemma, we see that (a"1a)x = 0. By Property @ of Definition [3.1.1] it
follows that (aa™!)x = 0. Therefore 1x = 0. By Property (5) of Definition [3.2.1/we deduce
that x = 0. m|

Remark 3.2.8. Let V be a vector space over a field F. The additive identity element 0 of V'

is unique, which can be seen either from Lemma or from Lemma Moreover,
for each x € V, its additive inverse —x is unique, as can be seen from Lemma . ¢

Exercises

Exercise 3.2.1. Prove Lemma[3.2.7/(2), 3), (5, (6), (7) and (8).

Exercise 3.2.2. Let V, W be vector spaces over a field F. Define addition and scalar
multiplication on V x W as follows. For each (v, w),(x,y) € VX Wand c € F, let

(v, w)+(x,y)=@+x,w+y) and c(v, w) = (cv, cw).

Prove that V X W is a vector space over F with these operations. This vector space is called
the product vector space of V and W.

Exercise 3.2.3. Let F be a field, and let S be a non-empty set. Let ¥ (S, F) be the set of all
functions S — F. Define addition and scalar multiplication on ¥ (S, F) as follows. For each
f,g€F(S,F)andc e F,let f+g,cf € F(S,F)bedefined by (f + g)(x) = f(x)+ g(x) and
(cf)(x)=cf(x)forall x €S.

Prove that F (S, F) is a vector space over F with these operations.
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3.3 | Subspaces

Friedberg-Insel-Spence, 4th ed. — Section 1.3

Definition 3.3.1. Let V be a vector space over a field F, and let W C V. The subset W is
closed under scalar multiplication by F if av € W forallv € W and a € F. A

Definition 3.3.2. Let V be a vector space over a field F, and let W C V. The subset W is a
subspace of V if the following three conditions hold.

1. W is closed under +.

2. W is closed under scalar multiplication by F.

3. W is a vector space over F. A
Lemma 3.3.3. Let V be a vector space over a field F, and let W C V be a subspace.

1. The additive identity element of V is in W, and it is the additive identity element of W.

2. The additive inverse operation in W is the same as the additive inverse operation in V.
Proof.

(1). Let 0 € V be the identity element of V, and let ' € W be the identity element of
W. Letx e W. Thenx + 0" = x. Also,notex € V,sox +0=x. Hencex + 0’ = x + 0, and
therefore by Lemma (1), we see that 0" = 0.

(2). Let x € W. Let —x denote the additive inverse of x in V, and let —x denote the
additive inverse of x in W. Then x + (-x) = 0 = x + (—x), and therefore by Lemma (),
we see that —x = —x. O

Lemma 3.3.4. Let V be a vector space over a field F, and let W C V. Then W is a subspace of V' if
and only if the following three conditions hold.

1. 0 e W.
2. W is closed under +.
3. W is closed under scalar multiplication by F.

Proof. First, suppose that W is a subspace of V. Then 0 € W, and hence Property (1) holds.
Properties (2) and (3) hold by definition.

Second, suppose that Properties (I), (2) and (3) hold. To show that W is a subspace
of V, we need to show that W is a vector space over F. We know that + is associative
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and commutative with respect to all the elements of V, so it certainly is associative and
commutative with respect to the elements of V.
Let x € W. Then —x = (-1)x by Lemma (9. It follows from Property (3) that

—x € W. Hence Parts (1)), (2), (3) and @) of Definition hold for W. Parts (5), (6), (7)
and (8) of that definition immediately hold for W because they hold for V. O

Lemma 3.3.5. Let V be a vector space over a field F, and let W C V. Then W is a subspace of V' if
and only if the following three conditions hold.

1. W=0.
2. W is closed under +.
3. W is closed under scalar multiplication by F.

Proof. First, suppose that W is a subspace. Then Properties (1), (2) and (3) hold by
Lemma[3.3.4

Second, suppose that Properties (I), (2) and (3) hold. Because W # 0, there is some
v € W. By Property (3) we know that (-1)v € W. By Lemma we deduce that
—v € W. By Property (2) we deduce that v + (-v) € W, and hence 0 € W. We now use
Lemma to deduce that W is a subspace. O

Lemma 3.3.6. Let V be a vector space over a field F, and and let U C W C 'V be subsets. If U isa
subspace of W, and W is a subspace of V, then U is a subspace of V.

Proof. This proof is straightforward, and we omit the details. m|

Lemma 3.3.7. Let V be a vector space over a field F, and let {W;},; be a family of subspaces of V
indexed by I. Then (\;e; Wi is a subspace of V.

Proof. Note that 0 € W; for all i € I by Lemma[3.3.3] Hence 0 € (;¢; W;.

Let x,y € (jggWiand leta € F. Letk € I. Then x,y € Wi, so x + y € Wj and
ax € Wg. Therefore x + y € (;¢; Wi and ax € ();c; W;. Therefore ();¢; is a subspace of U
by Lemma[3.3.4] O

Definition 3.3.8. Let V be a vector space over a field F, and let S, T € V. The sum of S and
T, denoted S + T, is the subset of V defined by

S+T={s+t|seSandteT}. A

Definition 3.3.9. Let V be a vector space over a field F, and let X, Y C V be subspaces.
The vector space V is the direct sum of X and Y, denoted V = X @Y, if the following two
conditions hold.

1. X+Y=V.

2. XNnY ={0}. A
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Exercises

Exercise 3.3.1. Let
x 3
W:{[JZ/] eR’|[x+y+z=0}

Prove that W is a subspace of R5.

Exercise 3.3.2. Let F be a field, and let S be a non-empty set. Let ¥ (S, F) be as defined in
Exercise Let C(S, F) be defined by

C(S,F)={f € ¥(5,F) | f(s) =0 for all but a finite number of elements s € S}.

Prove that C(S, F) is a subspace of ¥ (S, F).

Exercise 3.3.3. Let V be a vector space over a field F, and let W C V. Prove that W is a
subspace of V if and only if the following conditions hold.

1. W=#0.
2. Ifx,ye Wanda € F, thenax+y € W.

Exercise 3.3.4. Let V be a vector space over a field F, and let W C V be a subspace. Let
wi,...,w, € Wanday,...,a, € F. Prove thataywq +---+a,w, € W.

Exercise 3.3.5. Let X, Y C V be subspaces.
(1) Provethat X C X +YandY C X +Y.
(2) Prove that X + Y is a subspace of V.

(3) Prove that if W is a subspace of V suchthat X C Wand Y C W, then X + Y C W.
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3.4 | Linear Combinations and Span

Friedberg-Insel-Spence, 4th ed. — Section 1.4

Definition 3.4.1. Let V be a vector space over a field F, and let S € V be a non-empty
subset. Let v € V. The vector v is a linear combination of vectors of S if

0 =4a101 +ax0y+---+4a,0y,
for some n € N and some v1,v>,...,0, € Sand ay,4a3,...,a, € F A
Definition 3.4.2. Let V be a vector space over a field F.

1. Let S C V. Suppose that S # 0. The span of S, denoted span(S), is the set of all linear
combinations of the vectors in S.

2. Let span(0) = {0}. A
Lemma 3.4.3. Let V be a vector space over a field F, and let S C 'V be a non-empty subset.

1. S C span(S).

2. span(S) is a subspace of V.

3. If W C Visasubspaceand S C W, then span(S) C W.

4. span(S) = ({U € V | U is a subspace of V and S C U}.

Proof. We prove Parts (1) and (4)); the remaining parts of this lemma are left to the reader
in Exercise

@. Letx € S. Then x = 1x is a linear combination of vectors in S, so x € span(S).

@. Let H=N{U € V | Uisasubspace of V and S C U}. By Parts (2) and (1) of this
lemma, we know span(S) is a subspace of V and that S C span(S). We therefore see that
span(S) is one of the subspaces of which H is the intersection. It follows that H C span(S).

Let W C V be a subspace such that S € W. Then by Part (3)) of this lemma we know
that span(S) € W. We therefore see that span(S) is a subset of all the subspaces of which
H is the intersection. It follows that span(S) € H. We conclude that span(S) = H. O

Definition 3.4.4. Let V be a vector space over a field F, and let S C V be a non-empty
subset. The set S spans (also generates) V if span(S) = V. A

Remark 3.4.5. There is a standard strategy for showing that a set S spans V, as follows.
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Proof. Letv e V.
(argumentation)

Letvy,...,v, € Sanday,...,a, € F be defined by ...

(argumentation)

Thenv =ajv1 +---+a,v,. Hence S spans V. |

In the above strategy, if S is finite, then we can take vy, ..., v, to be all of S. O
Exercises

Exercise 3.4.1. Using only the definition of spanning, prove that { [%], [g ] } spans R2.
Exercise 3.4.2. Prove Lemma and (3).

Exercise 3.4.3. Let V be a vector space over a field F, and let W C V. Prove that W is a
subspace of V if and only if span(W) = W.

Exercise 3.4.4. Let V be a vector space over a field F, and let S € V. Prove that
span(span(S)) = span(S).
Exercise 3.4.5. Let V be a vector space over a field F, and let S,T C V. Suppose that
ScT.

(1) Prove that span(S) C span(T).

(2) Prove that if span(S) = V, then span(T) = V.
Exercise 3.4.6. Let V be a vector space over a field F, and let S, T C V.

(1) Prove that span(S N T) C span(S) N span(T).

(2) Give an example of subsets S, T C R? such that S and T are non-empty, not equal to
each other, and span(S N T) = span(S) Nspan(T). A proof is not needed; it suffices to
state whateach of S, T, SN T, span(S), span(T), span(S N T) and span(S) N span(T)
are.

(3) Give an example of subsets S, T C R? such that S and T are non-empty, not equal to
each other, and span(SNT) & span(S) Nspan(T). A proof is not needed; it suffices to
state whateach of S, T, SN T, span(S), span(T), span(S N T) and span(S) N span(T)
are.
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3.5| Linear Independence

Friedberg-Insel-Spence, 4th ed. — Section 1.5

Definition 3.5.1. Let V be a vector space over a field F, and let S C V. The set S is linearly
dependent if there are n € N, distinct vectors v1,vs,...v, € S, and a3,4a,...4a, € F that
are not all 0, such that aqv1 + -+ + 4,0, = 0. A

Lemma 3.5.2. Let V be a vector space over a field F, and let S C V. If 0 € S, then S is linearly
dependent.

Proof. Observe that1-0 = 0. O

Lemma 3.5.3. Let V be a vector space over a field F, and let S C V. Suppose that S # 0 and
S # {0}. The following are equivalent.

a. S is linearly dependent.
b. There is some v € S such that v € span(S — {v}).
c. Thereis some v € S such that span(S — {v}) = span(S).

Proof. (a) = (b) Suppose S is linearly dependent. Then there are n € N, distinct vectors
v1,...,0, € S,and ay,...,a, € Fnot all 0, such that ayv1 + - -+ + a,v,, = 0. Then there is
some k € {1,...,n} such that ay # 0. Therefore

. m k-1 Ak+1 n
Uk = ——0] =+ — —— Vg1 — —— V41 =" — —Up.
ak ak ak ag
Hence vy € span(S — {vk}).

(b) = (c) Suppose that is some v € S such that v € span(S — {v}). Then there are p € N,
and wq, wy,...wy € S —{v}and cy,cz,...cp € Fsuchthatv = cywy + -+ + cpwy

By Exercise we know that span(S — {v}) C span(S).

Let x € span(S). Then there are m € N, and uq, uy,...u, € S and by,by,...by, € F
such that x = bjuy + - -+ + by, u,,. First, suppose that v is not any of uy, uy, ... u,. Then
clearly x € span(S — {v}). Second, suppose that v is one of u1, uy, ... u,. Without loss of
generality, suppose that v = u1. Then

x = bi(ciwy + -+ + cpwp) + bauz + -+ + byt
= b1c1w1 + -+ blcpwp + b2u2 + -+ bmum.

Hence x € span(S — {v}). Putting the two cases together, we conclude that span(S) C
span(S — {v}). Therefore span(S — {v}) = span(S)

= (b) Suppose that there is some w € S such that span(S — {w}) = span(S). Because
w € S, then w € span(S), and hence w € span(S — {w}).
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(b) = (a) Suppose that there is some u € S such that u € span(S — {u}). Hence there are
rem,and x1,...,x, € S—{u}anddy,...,d, € F suchthat u = dyx1 + - -- + d,x,. Without
loss of generality, we can assume that x1, ..., x, are distinct. Therefore

1-u+(=d)x1+ -+ (=dm)xy, =0.

Because 1 # 0, and because u, x1, . . ., x, are distinct, we deduce that S is linearly dependent.
O

Definition 3.5.4. Let V be a vector space over a field F, and let S C V. The set S is linearly
independent if it is not linearly dependent. A

Remark 3.5.5. There is a standard strategy for showing that a set S in a vector space is
linearly independent, as follows.

Proof. Letvy,...,v, € Sand ay,...,a, € F. Suppose that vy, ..., v, are distinct, and that
a1+ - +a,v, =0.

(argumentation)
Thena; =0, ...,a, =0. Hence S is linearly independent. O
In the above strategy, if S is finite, then we simply take vy, ..., v, tobeall of S. ¢

Lemma 3.5.6. Let V' be a vector space over a field F.

1. 0 is linearly independent.

2. IfveVandv # 0, then {v} is linearly independent.
Proof.

(1). To prove that a set of vectors S is linearly independent, we need to show that “if
v1,...,0, € S are distinct vectors and if a0 + -+ - + a,v, = 0 forsome a4, ...,a, € F, then
a1 =0,...,a, =0.” However, when S = (), then the statement “v1,...,v, € S are distinct
vectors” is always false, which means that the logical implication “if vy,...,v, € S are
distinct vectors and if 4101 + - - - + a,v, = 0 forsome ay,...,a, € F,thena; =0,...,a, =0”
is always true, using the precise definition of if-then statements. We deduce that 0 is
linearly independent.

(2). Leta € F. Suppose that av = 0. Because v # 0, we use Lemma [3.2.7/(9) to deduce
that 2 = 0. It follows that {v} is linearly independent. O

Lemma 3.5.7. Let V be a vector space over a field F, and let S1 C Sy C V.

1. If S is linearly dependent, then S, is linearly dependent.
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2. If S, is linearly independent, then Sy is linearly independent.

Proof. We prove Part (I); observe that Part (2) is just the contrapositive of Part (I, so
Part (2) will automatically hold.

(1). Suppose that S; is linearly dependent. Then there are n € N, distinct vectors
v1,02,...0, € S1,and aq,4a»,...a, € F that are not all 0, such that a1v1 + -+ +a,,v, = 0.
But it is also true that v, v2, ... v, € Sy, which means that S; is linearly dependent. O

Lemma 3.5.8. Let V be a vector space over a field F, let S C V and let v € V — S. Suppose that S
is linearly independent. Then S U {v} is linearly dependent if and only if v € span(S).

Proof. Suppose that SU{v}islinearly dependent. Then therearen € N,and vy, v, ..., v, €
SU{v}anday,ay,...,a, € F notall equal to zero such that a1v1 + - - - + a,v, = 0. Because
S is linearly independent, it must be the case that v is one of the vectors vy, v, ..., v,.
Without loss of generality, assume v = v;. It must be the case that a; # 0, again because S
is linearly independent. Then

an Ay

0=——0p— " "——01
al al

Because vy, ...,v, € S, then v € span(S).

Suppose that v € span(S). Then v is a linear combination of the vectors of S. Thus
S U {v} is linearly independent by Lemma 3.5.3| O

Exercises

Exercise 3.5.1. Using only the definition of linear independence, prove that {x? + 1, x2 +
2x,x + 3} is a linearly independent subset of Ry[x].

Exercise 3.5.2. Let V be a vector space over a field F, and let u, v € V. Suppose that u # v.
Prove that {u, v} is linearly dependent if and only if at least one of u or v is a multiple of
the other.

Exercise 3.5.3. Let V be a vector space over a field F, and let uy, ..., u, € V. Prove that the
set {u1,...,uy} islinearly dependent if and only if #; = 0 or thereissome k € {1,...,n—1}
such that uy.q1 € span({u1, ..., ur}).
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3.6 | Bases and Dimension

Friedberg-Insel-Spence, 4th ed. — Section 1.6

Definition 3.6.1. Let V be a vector space over a field F, and let B C V. The set B is a basis
for V if B is linearly independent and B spans V. A

Theorem 3.6.2. Let V be a vector space over a field F, and let B C V.

1. The set B is a basis for V if and only if every vector in V can be written as a linear combination
of vectors in B, where the set of vectors in B with non-zero coefficients in any such linear
combination, together with their non-zero coefficients, are unique.

2. Suppose that B = {u1,...,u,} for some n € Nand uy,...,u, € V. Then B is a basis
for V if and only if for each vector v € V, there are unique ay,...,a, € F such that
0 :Ll11/l1+"'+ﬂnl/ln.

Proof.

(1). Suppose that B is a basis for V. Then B spans V, and hence every vector in V can be
written as a linear combination of vectors in B. Let v € V. Suppose that there are n, m € N,
and v1,...,0,,U1,...,Uy € Band ay,...,a,,b1,...,b, € F such that

v=a101+a02 +--+a,v, and © =Dbiuy+bousr+---+ b, uy.

Without loss of generality, suppose that n > m. If might be the case that the sets
{v1,..., 04} and {uy, ..., uy} overlap. By renaming and reordering the vectors in these
two sets appropriately, we may assume that {vy,...,v,} and {uy, ..., u,} are both subsets
of aset{z1,...,z,} for somep € Nand z1, ..., z, € B. It will then suffice to show that if

v=c1z1+t 22+ +cpzp and v =di1z1 +dazo+ -+ dpzyp (1)

for some cy,...,cp,d1,...,dy € F, thenc; =d;foralli € {1,...,p}.
Suppose that Equation (1) holds. Then

(c1—d)zy+-++(cp —dp)zp = 0.

Because B is linearly independent, it follows that ¢; —d; =0 foralli € {1,..., p}. Because
ci=d;foralli e {1,...,p}, we see in particular that ¢; = 0 if and only if d; = 0. Hence
every vector in V can be written as a linear combination of vectors in B, where the set of
vectors in B with non-zero coefficients in any such linear combination, together with their
non-zero coefficients, are unique.

Next, suppose that every vector in V can be written as a linear combination of vectors in
B, where the set of vectors in B with non-zero coefficients in any such linear combination,
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together with their non-zero coefficients, are unique. Clearly B spans V. Suppose that
therearen e N,and v1,...,v, € Band aq, ..., a, € F such thata,vy +ayvy +---+a,v, = 0.
It is also the case that0-v; +0- vy +---+0- v, = 0. By uniqueness, we deduce that a; = 0
foralli € {1,...,n}. Hence B is linearly independent.

(2). This part of the theorem follows from the previous part. O

Lemma 3.6.3. Let V be a vector space over a field F, and let S C V. The following are equivalent.
a. S is a basis for V.

b. S is linearly independent, and is contained in no linearly independent subset of V other than
itself.

Proof. Suppose that S is a basis for V. Then S is linearly independent. Suppose that S & T
for some linearly independent subset T C V. Let v € T — S. Because S is a basis, then
span(S) = V, and hence v € span(S). It follows from Lemma 3.5.8|that S U {v} is linearly
dependent. It follows from Lemma that T is linearly dependent, a contradiction.
Hence S is contained in no linearly independent subset of V' other than itself.

Suppose that S is linearly independent, and is contained in no linearly independent
subset of V other than itself. Let w € V. First, suppose that w € S. Then w € span(S) by
Lemma[3.4.3|(I). Second, suppose thatw € V —S. By the hypothesis on S we see that SU{w}
is linearly dependent. Using Lemma we deduce that w € span(S). Combining the
two cases, it follows that V' C span(S). By definition span(S) € V. Therefore span(S) =V,
and hence S is a basis. ]

Theorem 3.6.4. Let V be a vector space over a field F, and let S C V. Suppose that S is finite. If S
spans V., then some subset of S is a basis for V.

Proof. Suppose that S spans V. If S is linearly independent then S is a basis for V. Now
suppose that S is linearly dependent.

Case One: Suppose S = {0}. Then V = span(S) = {0}. This case is trivial because 0 is a
basis.

Case Two: Suppose S contains at least one non-zero vector. Let v; € S be such that
v1 # 0. Then {v1} is linearly independent by Lemma By adding one vector from S
at a time, we obtain a linearly independent subset {v1, ..., v,} € S such that adding any
more vectors from set S would render the subset linearly dependent.

LetB = {v1,...,v,}. Because Sisfiniteand B C S, wecanwriteS = {v1,..., 0y, V41, .- -
for some p € Zsuch thatp > n + 1.

Leti € {n+1,...,p}. Then by the construction of B we know that B U {v;} is linearly
dependent. It follows from Lemma [3.5.8 implies that v; € span(B).

Let w € V — B. Because S spans V, there are a1,...,a, € F such that w = a101 +
axvy + -+ + a,v,. Because each of v,41,...,v, is a linear combination of the elements

va}
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of B, it follows that w can be written as a linear combination of elements of B. We then
use Lemma (b) to deduce that B U {w} is linearly dependent. It now follows from
Lemma[3.6.3|that B is a basis. O

Theorem 3.6.5 (Replacement Theorem). Let V be a vector space over a field F, and let S,L C V.
Suppose that S and L are finite sets. Suppose that S spans V, and that L is linearly independent.

1. |L| < S|
2. Thereis a subset H C S such that |H| = |S| — |L|, and such that L U H spans V.

Proof. Letm = |L| and n = |S|. We will show that this theorem holds by induction on m.

Base Case: Suppose m = 0. ThenL = ) and m < n. Let H = S. Then H and S have
n—m=n-0=nelements,and LUH =0US =S5,andso L UH spans V.

Inductive Step: Suppose the result is true for m, and suppose L has m + 1 vectors.
Suppose L = {v1,...,0pus1}. Let L’ = {v1,...,v,}. By Lemma [3.5.7jwe know that L’ is
linearly independent. Hence, by the inductive hypothesis, we know that m < n and that
there is a subset H’ C S such that H” has n — m elements and L’ U H’ spans V. Suppose
H ={u1,...,up-m}. Because L’ U H’ spans V, there are ay,...,ay,b1,...,bm-m € F such
that v41 = ;o1 + -+ + 4,0, + Diug + -+ + by—my—. Because vy,...,Vy41 is linearly
independent, then v, is not a linear combination of {vy,...,v,}. Hence n —m > 0 and
notall by, ..., b,_, are zero.

Because n — m > 0, then n > m, and therefore n > m + 1.

Without loss of generality, assume b1 # 0. Then

1 ai am by by—m

—0 +1__'Ul_...__'0 __uz_..._
by " b1 by "

up =

Let H = {uy,..., uy—p}. Clearly H has n — (m + 1) elements. Then
LUH: {vl,...,vm.l,_l,uz,...,un_m}.

We claim that L U H spans V. Clearly, v1,...,0m, U2, ..., Up—m € span(L U H). Also
u1 € span(L U H). Hence L’ U H’ C span(L U H). We know that span(L’ U H’) = V, and
hence by Exercise we see that span(span(L U H)) = V. It follows from Exercise[3.4.4]
that span(LUH) = V. O

Corollary 3.6.6. Let V be a vector space over a field F. Suppose that V has a finite basis. Then all
bases of V are finite, and all bases have the same number of vectors.

Proof. Let B be a finite basis for V. Let n = |B|. Let K be some other basis for V. Suppose
that K has more elements than B. Then K has at least n + 1 elements (it could be that K is
infinite). In particular, let C be a subset of K that has precisely n + 1 elements. Then C is
linearly independent by Lemma Because B spans V, then by Theorem we
deduce that n + 1 < n, which is a contradiction.
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Next, suppose that K has fewer elements than B. Then K is finite. Let m = |K|. Then
m < n. Because K spans V and B is linearly independent, then by Theorem [3.6.5] (I) we
deduce that n < m, which is a contradiction.

We conclude that K has the same number of vectors as B. m|

Definition 3.6.7. Let V be a vector space over a field F.
1. The vector space V is finite-dimensional if V has a finite basis.
2. The vector space V is infinite-dimensional if V does not have a finite basis.

3. If V is finite-dimensional, the dimension of V, denoted dim(V), is the number of
elements in any basis. A

Lemma 3.6.8. Let V be a vector space over a field F. Then dim(V') = 0 if and only if V = {0}.

Proof. By Lemma we know that 0 is linearly independent. Using Definition 3.4.2]
we see that dim(V') = 0 if and only if @ is a basis for V if and only if V' = span() if and
only if V = {0}. O

Corollary 3.6.9. Let V' be a vector space over a field F, and let S C V. Suppose that V is
finite-dimensional. Suppose that S is finite.

1. If S spans V, then |S| > dim(V).

2. If Sspans V and |S| = dim(V), then S is a basis for V.

3. If S is linearly independent, then |S| < dim(V).

4. If S is linearly independent and |S| = dim(V'), then S is a basis for V.
5. If S is linearly independent, then it can be extended to a basis for V.

Proof. We prove Parts (I) and (5), leaving the rest to the reader in Exercise[3.6.2]
Let n = dim(V).

(1). Suppose that S spans V. By Theorem we know that there is some H C S such
that H is a basis for V. Corollary implies that |H| = n. It follows that |S| > n.

(5). Suppose that S is linearly independent. Let B be a basis for V. Then |B| = n.
Because B is a basis for V, then B spans V. By the Replacement Theorem (Theorem 3.6.5)
there is a subset K C B such that |K| = |B| — |S|, and such that S U K spans V. Note that
|S U K| = |B| = n. It follows from Part (2) of this corollary that S U K is a basis. Therefore S
can be extended to a basis. O

Theorem 3.6.10. Let V be vector space over a field F, and let W C V be a subspace. Suppose that
V is finite-dimensional.
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1. W is finite-dimensional.

2. dim(W) < dim(V).

3. Ifdim(W) = dim(V), then W = V.

4. Any basis for W can be extended to a basis for V.

Proof. Let n = dim(V). We prove all four parts of the theorem together.

Case One: Suppose W = {0}. Then all four parts of the theorem hold.

Case Two: Suppose W # {0}. Then there is some x; € W such that x; # 0. Note that
{x1} is linearly independent. It might be the case that there is some x, € W such that
{x1, x2} is linearly independent. Keep going, adding one vector at a time while maintaining
linear independence. Because W C V, then there are at most 1 linearly independent vectors
in W by Corollary3.6.9/(3). Hence we can keep adding vectors until we get {x1,..., xx} € W
for some k € N such that k < n, where adding any other vector in V would render the set
linearly dependent. Hence, adding any vector in W would render it linearly dependent. By
Lemma 3.6.3|we see that {x1, ..., x} is a basis for W. Therefore W is finite-dimensional
and dim(W) < dim(V).

Now suppose dim(W) = dim(V). Thenk = n and {x1, ..., x, } is a linearly independent
set in V with n elements. By Corollary [3.6.9) (), we know that {x1, ..., x,} is a basis for V.
Then W = span({x1,...,x,}) = V.

From Corollary 3.6.9)(5) we deduce that any basis for W, which is a linearly independent
set in V, can be extended to a basis for V. O

Exercises

Exercise 3.6.1. Let
x 3
W:{M €R} | x+y+z=0)

It was proved in Exercise that W is a subspace of R3. What is dim(W)? Prove your
answetr.

Exercise 3.6.2. Prove Corollary , and (]Z_l[)

Exercise 3.6.3. Let V be a vector space over a field F, and let S,T C V. Suppose that SUT
is a basis for V, and that SN T = 0. Prove that span(S) @ span(T) = V. (See Definition3.3.9]
for the definition of span(S) ® span(T).)

Exercise 3.6.4. Let V be a vector space over a field F, and let X,Y C V be subspaces.
Suppose that X and Y are finite-dimensional. Find necessary and sufficient conditions on
X and Y so that dim(X N'Y) = dim(X).

Exercise 3.6.5. Let V, W be vector spaces over a field F. Suppose that V and W are
finite-dimensional. Let V' x W be the product vector space, as defined in Exercise [3.2.2]
Express dim(V x W) in terms of dim(V') and dim(W). Prove your answer.
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Exercise 3.6.6. Let V be a vector space over a field F, and let L € S C V. Suppose that S
spans V. Prove that the following are equivalent.

a. Lisabasis for V.

b. L is linearly independent, and is contained in no linearly independent subset of S
other than itself.
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3.7 | Bases for Arbitrary Vector Spaces

Friedberg-Insel-Spence, 4th ed. — Section 1.7

Definition 3.7.1. Let £ be a non-empty family of sets, and let M € . The set M is a
maximal element of P if there isno Q € # such that M & Q. A

Lemma 3.7.2. Let V be a vector space over a field F. Let B be the family of all linearly independent
subsets of V. Let S € B. Then S is a basis for V if and only if S is a maximal element of B.

Proof. This lemma follows immediately from Lemma 3.6.3] O

Definition 3.7.3. Let # be a non-empty family of sets, and let C C P. The family C is a
chainif A, B € C implies A C Bor A 2 B. A

Theorem 3.7.4 (Zorn's Lemma). Let P be a non-empty family of sets. Suppose that for each
chain C in P, the set | Jcec C is in P. Then P has a maximal element.

Theorem 3.7.5. Let V be a vector space over a field F. Then V has a basis.

Proof. Let 8 be the family of all linearly independent subsets of V. We will show that 8
has a maximal element by using Zorn’s Lemma (Theorem B.7.4). The maximal element of
8 will be a basis for V by Lemma[3.7.2

Because 0 is a linearly independent subset of V, as stated in Lemma (0), we see
that 0 € 8, and hence 8 is non-empty.

Let Cbeachainin B. Let U = ([ Jcec C. Weneed to show that U € B. That is, we need to
show that U is linearly independent. Let vy, ..., v, € U and suppose a1v1 + -+ - + 4,0, =0
for some ay, ..., a, € F. By the definition of union, we know that for each i € {1,...,n},
there is some C; € C such that v; € C;. Because C is a chain, we know that for any two
of Cq,...,C,, one contains the other. Hence we can find k € {1, ..., n} such that C; C Ci
foralli € {1,...,n}. Hence vy,...,v, € Ct. Because Cy € C C B, then Cy is linearly
independent, and so a1v1 + - -+ + a,v, = 0 impliesa; =0 foralli € {1,...,n}. Hence U is
linearly independent, and therefore U € B.

We have now seen that 8B satisfies the hypotheses of Zorn’s Lemma, and by that lemma
we deduce that B has a maximal element. O

Exercises

Exercise 3.7.1. Let V be a vector space over a field F, and let S C V. Prove that if S spans
V, then some subset of S is a basis for V.
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4.1 | Linear Maps

Friedberg-Insel-Spence, 4th ed. — Section 2.1

Definition 4.1.1. Let V, W be vector spaces over a field F. Let f: V — W be a func-
tion. The function f is a linear map (also called linear transformation or vector space
homomorphism) if the following two conditions hold. Let x, y € V and c € F.

1 fx+y) = fx) + f(y)
2. f(ex)=cf(x) A
Lemma 4.1.2. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
1. f(0)=0.
2. Ifx € V, then f(—x) = —f(x).
Proof. We will prove Part (2), leaving the other part to the reader in Exercise

@). Let x € V. Then f(x) + f(-x) = f(x + (-x)) = f(0) = 0, where the last equality uses
Part (1)) of this lemma, and the other two equalities use the fact that f is a linear map and
that V is a vector space. By Lemma (@), it follows that f(—x) = —f(x). O

Lemma 4.1.3. Let V, W be vector spaces over a field F, and let f: V — W be a function. The
following are equivalent.

a. f is alinear map.

b. fcx+y)=cf(x)+ f(y)forallx,y € Vandc e F.

c. flarx1+---+apxy)=a1f(x1)+---+a,f(x,)foralxy,...x, € Vanday,...a, €F.
Proof. Left to the reader in Exercise[4.1.2] m|

Lemma 4.1.4. Let V, W, Z be vector spaces over a field F,and let f: V — Wand g: W — Z be
linear maps.

1. The identity map 1y : V — V is a linear map.
2. The function g o f is a linear map.
Proof.

(1). This part is straightforward.
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(2). Letx,y € Vand c € F. Then

(gof)x+y)=g(flx+y)) = g(f(x) + f(y) = g(f(x)) + g(f(y))

= (80 f)x) + (g2 f)y)
and
(g0 f)lex) = g(f(cx)) = g(c(f(x))) = c(g(f (%)) = c(g © f)(x).
Hence (g o f) is a linear map. O

Lemma 4.1.5. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
1. If A is a subspace of V, then f(A) is a subspace of W.
2. If B is a subspace of W, then f~Y(B) is a subspace of V.

Proof. We will prove Part (1)), leaving the other part to the reader in Exercise

@@. Let A be a subspace of V. By Lemma we know that 0 € W, and by
Lemma we know that 0 = f(0) € f(A).

Let x,y € f(A). Then there are a,b € A such that x = f(a) and y = f(b). Hence
x+y=f(a)+ f(b) = f(a+Db) because f is a linear map. Because A is a subspace of V we
know thata + b € A, and hence x + y € f(A). It follows that f(A) is closed under +.

Let s € F. Because f is a linear map, we see that sx = sf(a) = f(sa). Because A is a
subspace of V we know that sa € A, and hence sx € f(A). It follows that f(A) is closed
under scalar multiplication by F.

We now use Lemma to deduce that f(A) is a subspace of V. O

Theorem 4.1.6. Let V, W be vector spaces over a field F.

1. Let B be a basis for V. Let g: B — W be a function. Then there is a unique linear map
f:V — Wsuch that f|p = g.

2. Let {v1,...,v,} bea basis for V, and let w1, ..., w, € W. Then there is a unique linear
map f:V — W such that f(v;) = w; foralli € {1,...,n}.

Proof. We prove Part (I)); Part (2) follows immediately from Part (T).

Let v € V. Then by Theorem we know that v can be written as v = a1x1 +
-++ 4+ ayx, for some x1,...,x, € B and a1,...a, € F, where the set of vectors with
non-zero coefficients, together with their non-zero coefficients, are unique. Then define
f(v) =a19(x1)+---+a,g(x,). If v is written in two different ways as linear combinations of
elements of B, then the uniqueness of the vectors in B with non-zero coefficients, together
with their non-zero coefficients, implies that f(v) is well-defined.
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Observe that if v € B, then v = 1 v is the unique way of expressing v as a linear
combination of vectors in B, and therefore f(v) =1- g(v) = g(v). Hence f|p = g.

Letv,w,€ V and let ¢ € F. Then we can write v = a1x1 + -+ + a,x, and w = by1x1 +
-+ +byx, wherexi,...,x, € Banday,...,a,,b1,...,b, € F. Thenv+w = Y1 (a; + bi)x;,
and hence

n

flo+w)= D (ai+b)g(x) = Y aigxi) + ) big(xi) = f(0) + f(w).
i=1 i=1

i=1

A similar proof shows that f(cv) = cf(v). Hence f is linear map.
Leth: V — W be alinear map such that h|p = g. Letv € V. Thenv = a1x1 +--- + a,x,
for some x1,...,x, € Band aq,...a, € F. Hence

n n n
ho) =h() aix) = Y aih(x) = Y aig(xi) = f(v)
i=1 i=1 i=1
Therefore h = f. It follows that f is unique. O

Corollary 4.1.7. Let V, W be vector spaces over a field F, and let f,g: V — W be linear maps.
Let B be a basis for V. Suppose that f(v) = g(v) forall v € B. Then f = g.

Proof. This corollary is an immediate consequence of Theorem and we omit the
details. |

Exercises

Exercise 4.1.1. Prove Lemma ().
Exercise 4.1.2. Prove Lemma

Exercise 4.1.3. Prove Lemma @).

NO—

|

Exercise 4.1.4. Prove that there exists a linear map f: R — R3 such that f([1]) = [
and f([2]) = H] Whatis f([ §])?

WO

Exercise 4.1.5. Does there exist a linear map g: R®> — R? such that g([ ]) = H] and

g([:é]) = [%]7 Explain why or why not.



4.2. KERNEL AND IMAGE 37

4.2 | Kernel and Image

Friedberg-Insel-Spence, 4th ed. — Section 2.1

Definition 4.2.1. Let V, W be vector spaces over a field F, and let f: V — W be a linear
map.

1. The kernel (also called the null space) of f, denoted ker f, is the set ker f = f~1({0}).
2. The image of f, denoted im f, is the setim f = f(V). A
Remark 4.2.2. Observe that
ker f ={oe V| f(0) = 0)

and
imf={weW|w= f(v) forsomev € V}. o

Lemma 4.2.3. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
1. ker f is a subspace of V.

2. im f is a subspace of W.
Proof. This lemma follows immediately from Lemma O

Lemma 4.2.4. Let V, W be vector spaces over a field F, and let f: V. — W be a linear map. Then
f is injective if and only if ker f = {0}.

Proof. Suppose that f is injective. Because f(0) = 0 by Theorem (1), it follows from
the injectivity of f thatker f = f~1({0}) = {0}.

Now suppose that ker f = {0}. Let v,w € W, and suppose that f(v) = f(w). By
Theorem 4.1.2(2) and the definition of homomorphisms we see that

fo+(-w)) = f(v) + f(-w) = f(v) + (- f(w)) = 0.

It follows that v+(-w) € f~1({0}) = ker f. Becauseker f = {0}, we deduce that v+(-w) = 0.
Hence v = w. Hence f is injective. m|

Lemma 4.2.5. Let V, W be vector spaces over a field F, and let f: V — W be a linear map. Let
weW. Ifa € f1{w}), then f1({w}) = a + ker f.

Proof. Suppose thata € f~}({w}). Then f(a) = w.

Lety € f~1({w}). Then f(y) = w. Then f(y +(=a)) = f(y) + f(=a) = f(y) + (~f(a)) =
w + (—w) = 0. Hence y + (—a) € ker f. Then there is some g € ker f such that y + (-a) = 4.
Therefore y =a + g € a + ker f.

Let x € a + ker f. Then there is some p € ker f such that x = a + p. Then f(p) = 0, and
hence f(x) = f(a +p) = f(a) + f(p) = w + 0 = w. Therefore x € f~1({w}), O
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Lemma 4.2.6. Let V, W be vector spaces over a field F, let f: V. — W be a linear map and let B
be a basis for V. Then im f = span(f(B)).

Proof. Clearly f(B) C im f. By Lemma and Lemma (3), we deduce that
span(f(B)) Cim f.

Let y € im f. Then y = f(v) for some v € V. Then v = ajv1 + --- + a,v, for some
v1,...,0, € Band ay,...,a, € F. Then

y=f() = flao1 + - +ayv) = a1f(v1) + -+ + an f(vu) € span(f(B)).
Therefore im f C span(B), and hence im f = span(f(B)). O

Lemma 4.2.7. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V is finite-dimensional. Then ker f and im f are finite-dimensional.

Proof. By Lemma we know that ker f is a subspace of V, and hence ker f is
finite-dimensional by Theorem (@.

Let B be a basis for V. By Corollary [3.6.6|we know that B is finite. Hence f(B) is finite.
By Lemma[4.2.6|we see that im f = span(f(B)). It follows from Theorem [3.6.4 that a subset
of f(B) is a basis for im f, which implies that im f is finite-dimensional. O

Exercises

xX—

Exercise 4.2.1. Let ii: R3> — R? be defined by h([ ;yc ]) = [2x+51§z] for all [;yc] € R3. Find
ker h.

Exercise 4.2.2. Let G: Rp[x] — Ry[x] be defined by D(ax? + bx +¢) = ax?+ (a +2b + c)x +
(3a —2b — ¢) for all ax? + bx + ¢ € Ry[x]. Find ker G.

Exercise 4.2.3. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Let wy, ..., wy € im f be linearly independent vectors. Let vy, ..., vx € V be vectors such
that f(v;) = w; foralli € {1,...,k}. Prove that vy, ..., vy are linearly independent.

Exercise 4.2.4. Let V, W be vector spaces over a field F, and let f: V — W be a linear
map.
(1) Prove that f is injective if and only if for every linearly independent subset S C V,
the set f(S) is linearly independent.

(2) Supppose that f is injective. Let T C V. Prove that T is linearly independent if and
only if f(T) is linearly independent.

(3) Supppose that f is bijective. Let B C V. Prove that B is a basis for V if and only if
f(B) is a basis for W.

Exercise 4.2.5. Find an example of two linear maps f, ¢: R — R? such that ker f = ker g
and im f = im g, and none of these kernels and images is the trivial vector space, and

f#g



4.3. RANK-NULLITY THEOREM 39

4.3 | Rank-Nullity Theorem
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Definition 4.3.1. Let V, W be vector spaces over a field F, and let f: V — W be a linear
map.

1. If ker f is finite-dimensional, the nullity of f, denoted nullity(f), is defined by
nullity(f) = dim(ker f).

2. Ifim f is finite-dimensional, the rank of f, denoted rank(f), is defined by rank(f) =
dim(im f). A

Theorem 4.3.2 (Rank-Nullity Theorem). Let V, W be vector spaces over a field F, and let
f:V — W bea linear map. Suppose that V is finite-dimensional. Then

nullity(f) + rank(f) = dim(V).

Proof. Letn = dim(V). By Lemma4.2.3|(T) we know thatker f is a subspace of V, and hence
ker f is finite-dimensional by Theorem 3.6.10(I), and nullity(f) = dim(ker f) < dim(V) by
Theorem[3.6.10] (). Let k = nullity(f). Then k < n. Let {1, ..., vi} be a basis for ker f. By
Theorem[3.6.10/(4) {v1, ..., vk} can be extended to a basis {v1, ..., v, } for V. We will show
that {f(vk+1),..., f(vn)} is a basis for im f. It will then follow that the rank(f) = n -k,
which will prove the theorem.

By Lemma [4.2.6 we know thatim f = span({f(v1),..., f(v,)}). Note that vy, ..., v €
ker f,and therefore f(v1) = --- = f(vx) = 0. Itfollows thatim f = span({ f(vk+1), ..., f(vn)}).

Suppose bii1 f(vk+1) + -+ + by f(vy) = 0 for some by1, ..., b, € F. Hence f(bxi10k+1 +
-+ +byv,) = 0. Therefore byy10k41 + -+ + byv, € ker f. Because {v1,...,v,} is a basis
for ker f, then bx410k41 + -+ + bpyvy, = b1v1 + -+ - + brvg for some by,...,br € F. Then
bro1 + -+ + brog + (=bgy1)0k41 + - - - + (=by)v, = 0. Because {v1,...,v,} is a basis for V,
then by = --- = b, = 0. Therefore f(vk+1), ..., f(vy) are linearly independent. O

Corollary 4.3.3. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V is finite-dimensional. Then rank(f) < dim(V).

Proof. This corollary is an immediate consequence of Rank-Nullity Theorem (Theo-
rem 4.3.2), and we omit the details. O

Corollary 4.3.4. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional, and that dim(V') = dim(W). The following are
equivalent.

a. f is injective.
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b. f is surjective

c. f is bijective.

d. rank(f) = dim(V).
Proof. Clearly (c) = (a), and (c) = (b). We will show below that (a) & (d), and (b) & (d).
It will then follow that (a) & (b), and from that we will deduce that (a) = (c), and (b) = (c).

(a) & (d) By Lemma we know that f is injective if and only if ker f = {0}. By
Lemma we deduce that f is injective if and only if dim(ker f) = 0, and by definition
that is true if and only if nullity(f) = 0. By The Rank-Nullity Theorem (Theorem 4.3.2),
we know that nullity(f) = dim(V) — rank(f). It follows that f is injective if and only if
dim(V) — rank(f) = 0, which is the same as rank(f) = dim(V).

(b) & (d) By definition f is surjective if and only if im f = W. By Lemma
we know that im f is a subspace of W. If im f = W then clearly dim(im f) = dim(W);
by Theorem {3.6.10| (3) we know that if dim(im f) = dim(W) then im f = W. Hence f is
surjective if and only if dim(im f) = dim(W), and by definition that is true if and only if
rank(f) = dim(W). By hypothesis dim(W) = dim(V), and therefore f is surjective if and
only if rank(f) = dim(V). O

Corollary 4.3.5. Let V, W, Z be vector spaces over a field F,and let f: V — Wand g: W — Z
be linear maps. Suppose that V and W are finite-dimensional.

1. rank(g o f) < rank(g).

2. rank(g o f) < rank(f).
Proof.

(1). Observe thatim(go f) = (go f)(V) = g(f(V)) € g(W) =im g. By Lemma[4.2.3/ ()
we know that im(g o f) and im g are subspaces of W. It is straightforward to see that
im(g o f) is a subspace of im g. It follows from Theorem that rank(go f) =
dim(im(g o f)) < dim(im g) = rank(g).

(2). By Corollary we see that rank(g o f) = dim(im(g o f)) = dim((go f)(V)) =

dim(g(f(V))) = dim(g|s)(f(V))) = rank(glsv)) < dim(f(V)) = dim(im f) = rank(f).
O

Exercises

Exercise 4.3.1. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional.

(1) Prove that if dim(V) < dim(W), then f cannot be surjective.

(2) Prove that if dim(V) > dim(W), then f cannot be injective.
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4.4 | Isomorphisms
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Definition 4.4.1. Let V and W be a vector space over a field F and let f: V — W be a
function. The function f is an isomorphism if f is bijective and is a linear map. A

Definition 4.4.2. Let V, W be a vector space over a field F. The vector spaces V and W are
isomorphic if there is an isomorphism V. — W. A

Lemma 4.4.3. Let V, W and Z be vector spaces over a field F, and let f: V — W be and
g: W — Z be isomorphisms.

1. The identity map 1y : V — V is an isomorphism.
2. The function f~1 is an isomorphism.
3. The function g o f is an isomorphism.

Proof. We prove Part (2); the remaining parts of this lemma follow immediately from
Lemma together with basic facts about bijective functions, and we omit the details.

@). Using basic facts about bijective functions, we know that f~! is bijective.
Letx,y € Vandc € F. Leta = f'(x)and b = f~}(y). Then f(a) = x and f(b) = y.
Then

flx+y) = (f@) + f(b)) = f'(f(a + D))
=(flof)a+b)=a+b=f1x)+ fy)

and
fHex) = fNef(@) = FH(f(ca)) = (f o f)lea) = ca=cf(x).

Hence f~! is a linear map. O

Corollary 4.4.4. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional, and that dim(V') = dim(W). The following are
equivalent.

a. f is injective.
b. f is surjective

c. f isan isomorphism.
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d. rank(f) = dim(V).

Corollary 4.4.5. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional, and that dim(V') = dim(W).

1. Ifa function ¢: W — V is a right inverse of f, then f is bijective and g = f~1.
2. Ifa function g: W — V is a left inverse of f, then f is bijective and g = f~1.

Proof. This result follows immediately from Corollary together with the fact, seen in
Proofs and Fundamentals, that if a function has both a left inverse and a right inverse, then
these two one-sided inverses are equal, and it is a full inverse. m|

Lemma 4.4.6. Let V, W be vector spaces over a field F, and let f: V — W be a linear map. Let B
be a basis for V. Then f is an isomorphism if and only if f(B) is a basis for W.

Proof. Suppose that f is an isomorphism. Let v1,vs,...v, € f(B)and ay,az,...a, € F,
and suppose that vy,...,v, are distinct, and that a1v1 + --- + 4,0, = 0. There are
w1, ..., W, € Bsuchthat f(w;) =v; foralli € {1,...,n}. Clearly wy, ..., w, are distinct.
Then a; f(w1) + -+ - + a,, f(w,) = 0. It follows that f(ajw1 + - -+ + a,w,) = 0, which means
that aywq + -+ - + a,w, € ker f. Because f is injective, then by Lemma we know that
ker f = {0}. Therefore ajwq + ---+ a,w, = 0. Because {w1, ..., w,} C B, and because
B is linearly independent, it follows from Lemma that {wy, ..., wy} is linearly
independent. Hence a1 = ay = --- = a, = 0. We deduce that f(B) is linearly independent.
Because f is surjective, we know that im f = W. It follows from Lemma that
span(f(B)) = W. We conclude that f(B) is a basis for W.

Suppose that f(B) is a basis for W. Then span(f(B)) = W, and by Lemma we
deduce that im f = W, which means that f is surjective. Let v € ker f. Because B
is a basis for V, there are m € N, vectors uy,...,u,; € Band ¢1,...,c,; € F such that
U =ciuy+---+Cmipm. Then f(cius +- -+ cmity) = 0,and hence ¢ f(u1) + -+ + cp () = 0.

Because f(B) is linearly independent, it follows that ¢; = --- = ¢;, = 0. We deduce that
v = 0. Therefore ker f = {0}. By Lemma we conclude that f is injective. O

Theorem 4.4.7. Let V, W be vector spaces over a field F. Then V and W are isomorphic if and
only if there is a basis B of V and a basis C of W such that B and C have the same cardinality.

Proof. Suppose V and W are isomorphic. Let f: V — W be an isomorphism, and let D
be a basis for V. Then by Lemma[4.4.6|we know that f(D) is a basis for W, and clearly D
and f(D) have the same cardinality.

Suppose that there is a basis B of V and a basis C of W such that B and C have the
same cardinality. Let g: B — C be a bijective map. Extend ¢ to a linear map h: V — W by
Theorem (). Then i(B) = C, so h(B) is a basis for W, and it follows by Lemma
that /1 is an isomorphism. O

Corollary 4.4.8. Let V, W be vector spaces over a field F. Suppose that V and W are isomorphic.
Then V is finite-dimensional if and only if W is finite-dimensional. If V and W are both
finite-dimensional, then dim(V') = dim(W).
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Proof. This result follows immediately from Theorem because a vector space is finite
dimensional if and only if it has a finite basis, and the dimension of a finite-dimensional
vector space is the cardinality of any basis for the vector space. |

Corollary 4.4.9. Let V, W be vector spaces over a field F. Suppose that V and W are finite-
dimensional. Then V and W are isomorphic if and only if dim(V) = dim(W).

Proof. This result follows immediately from Theorem because the dimension of a
finite-dimensional vector space is the cardinality of any basis for the vector space. m|

Corollary 4.4.10. Let V be a vector space over a field F. Suppose that V is finite-dimensional. Let
n = dim(V'). Then V is isomorphic to F".

Proof. Observe thatdim(F") = n. The result then follows immediately from Corollary
O

Lemma4.4.11. Let V, W be vector spaces over a field F, let X C V bea subspaceandlet f: V — W
be an isomorphism. Suppose that V and W are finite-dimensional. Then dim X = dim f(X).

Proof. Observe that f|x is an isomorphism X — f(X), and then apply Corollary to
X and f(X). O

Lemma 4.4.12. Let V, W, Z be vector spaces over a field F,and let f: V —- Wand g: W — Z
be linear maps. Suppose that V and W are finite-dimensional.

1. If f is an isomorphism, then rank(g o f) = rank(g).
2. If g is an isomorphism, then rank(g o f) = rank(f).
Proof.

(1). Suppose that f is an isomorphism. Then f ! is an isomorphism by Lemma4.4.3| Ob-
serve thatker(go f) = (g Of)_l({O}) = f Y (¢g1({0})) = f(ker g). Hence,byLemma
applied to f~!, we see that nullity(g) = dim(ker ¢) = dim(f~!(ker g)) = dim(ker(g o f)) =
nullity(g o f). Next, we observe that rank(g) + nullity(g) = dim(W) and rank(g o f) +
nullity(g o f) = dim(V). Because f is an isomorphism, we know by Lemma that
dim(V) = dim(W). Then rank(g) = dim(W) — nullity(g) = dim(V) — nullity(go f) =
rank(g o f).

(2). Suppose that g is an isomorphism. Observe thatim(go f) = (go f)(V) = g(f(V)) =
¢(im f). Hence, by Lemma applied to g, we see that rank(f) = dim(im f) =
dim(g(im f)) = dim(im(g o f)) = rank(g o f). O

Exercises
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Exercise 4.4.1. Let V be a vector space over a field F. Suppose that V non-trivial. Let B be
a basis for V. Let C(B, F) be as defined in Exercise It was seen in Exercise that
C(B, F) is a vector space over F. Let W: C(B,F) — V be defined by

V()= ), f)w,
vEB

f(0)#0

for all f € C(B, F). Prove that W is an isomorphism. Hence every non-trivial vector space
can be viewed as a space of functions.



4.5. SPACES OF LINEAR MAPS 45

4.5| Spaces of Linear Maps
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Definition 4.5.1. Let V, W be vector spaces over a field F. The set of all linear maps V — W
is denoted L(V, W). The set of all linear maps V — V is denoted L(V). A

Definition 4.5.2. Let A be a set, let W be a vector space over a field F, let f, g: A — W be
functions and let ¢ € F.

1. Let f + g: A — W be defined by (f + g)(x) = f(x) + g(x) forall x € A.

2. Let—f: A — W be defined by (—f)(x) = —f(x) for all x € A.

3. Letcf: A — W be defined by (cf)(x) = cf(x) for all x € A.

4. Let0: A — W be defined by 0(x) = 0 for all x € A. A

Lemma 4.5.3. Let V, W be vector spaces over a field F, let f, g: V — W be linear maps and let
c €F.

1. f + g is a linear map.
2. —f is a linear map.
3. cf is a linear map.
4. 0is a linear map.
Proof. We prove Part (1)); the other parts are similar, and are left to the reader.

(1). Letx,y € Vandletd € F. Then

(f+9)x+y)=fx+y)+gx+y)=[f(x)+ f(]+[g(x)+ gyl
=[f()+ g+ [f(y) + W] =(f +)x)+(f + ) (¥)

and

(f +9)dx) = f(dx) + g(dx) =df(x) +dg(x) =d[f(x) + g(x)] = d(f + g)(x).

Lemma 4.5.4. Let V, W be vector spaces over a field F. Then L(V, W) is a vector space over F.
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Proof. We will show Property (7) in the definition of vector spaces; the other properties
are similar. Let f, g € L(V,W)and leta € F. Let x € V. Then

[a(f + )1(x) = al(f + g)(¥)] = alf(x) + g(x)]
=af(x)+ag(x) = (af)(x)+@g)(x) = [af +ag](x).
Hencea(f +g)=af +ag. O

Lemma 4.5.5. Let V, W, X, Z be vector spaces over a field F. Let f,g: V — Wandk: X -V
and h: W — Z be linear maps, and let ¢ € F.

1. (f+g)ok=(fok)+(gok).

2. ho(f+g)=(hof)+(hog).

3. c(ho f) = (ch)o f =ho(cf).
Proof. We prove Part (1)); the other parts are similar, and are left to the reader.

(1). Let x € X. Then

[(f + &) okl(x) = (f + )(k(x)) = f(k(x)) + g(k(x))
= (fok)(x) + (g o k)(x) = [(f o k) + (g 0 k)] (x).

Hence (f + g)ok = (fok)+(gok). O

Theorem 4.5.6. Let V, W be vector spaces over a field F. Suppose that V and W are finite-
dimensional. Then L(V, W) is finite-dimensional, and dim(L(V, W)) = dim(V) - dim(W).

Proof. Let n = dim(V) and m = dim(W). Let {v1,...,v,} be a basis for V, and let
{w1, ..., w,} be abasis for W.
Foreachie {1,...,n}and je {1,...,m}, let el V — W be defined as follows. First,

let
e'l(vy) = wy, k=i .
0, ifke{l,...,n}andk #1i.

Next, because {v1,...,v,} is a basis for V, we can use Theorem to extend e’/ to a
unique linear map V. — W.

We claim that theset T = {e/ | i € {1,...,n}and j € {1,...,m}} is a basis for L(V, W).
Once we prove that claim, the result will follow, because T has nm elements.

Suppose that there is some a;; € F foreachi € {1,...,n}and j € {1,..., m} such that

noom
Zzaijeij =0.

i=1 j=1
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Letk € {1,...,n}. Then

n

Z aije’l (vr) = 0(vy),

i=1 j=1

m
Z lejw]‘ =0.

j=1

which implies that

Because {ws, ..., wy} is linearly independent, it follows that ay; = 0 for all j € {1,...,m}.
We deduce that a;; =0 foralli € {1,...,n}and j € {1,...,m}. Hence T is linearly
independent.
Let f € L(V,W). Letr € {1,...,n}. Then f(v,) € W. Because {w1, ..., wy} is spans
W, there is some c,, € F for each p € {1,...,m} such that f(v,) = Z;ﬂ:l Crjtj.

Observe that
n m - m
Z Z Cijel](vr) = Z erwj = f(vr)-

i=1 j=1 j=1

Hence f and )7, }”:1 cijeij agree on {v1, ..., v, }, and it follows from Corollary |4.1.7]
that f = Zi]- cijeij . Hence T spans L(V,W), and we conclude that T is a basis for
L(V,W). O

Exercises

Exercise 4.5.1. Let V, W be vector spaces over a field F, and let f, g: V — W be non-zero
linear maps. Suppose that im f Nim g = {0}. Prove that {f, ¢} is a linearly independent
subset of L(V, W).

Exercise 4.5.2. Let V, W be vector spaces over a field F,and let S € V. Let S° € L(V, W)
be defined by
S°={feL(V,W)]| f(x)=0forall x € S}.

(1) Prove that S° is a subspace of L(V, W).
(2) LetT C V. Prove thatif S C T, then T° C S°.

(3) Let X, Y C V be subspaces. Prove that (X + Y)° = X° N Y°. (See Definition for
the definition of X + Y".)
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5.1 | Review of Matrices—Multiplication

Friedberg-Insel-Spence, 4th ed. — Section 2.3

Definition 5.1.1. Let F be a field, and let m, n,p € N. Let A € My;x,,(F) and B € M,x,(F).
Suppose that A = [aij] and B = [bij]. The matrix AB € My;x(F) is defined by AB = [cij],
where ¢;j = ZZ=1 ajkbyjforalli e {1,...,m}and j € {1,...,p}. A
Lemma 5.1.2. Let F be a field, and let m,n,p,q € N. Let A € Myx,i(F), let B € My (F) and let
C € Myyq(F).

1. A(BC)=(AB)C.

2. Al, =Aand I,,A = A.
Proof.

(1). Suppose that A = [aij] and B = [bij] and C = [cij], and AB = [sij] and BC = [tij]
and A(BC) = [uij] and (AB)C = [w”] Then Sij = ZZ:l aikbk]' for all i € {1,.. .,m}
and j € {1,...,p}; and t;; = ZZ:l bizc;jforalli € {1,...,n}and j € {1,...,q}. Then
Uij = Doy Aixtxj = Dheg ”ix(zzzl byzczj) forallie{1,...,m}andje{1,...,q};and w;; =

Z’;Zl SiyCyj = 25:1(22:1 ajkbry)cyjforallie {1,...,m}and j € {1,...,q}. Rearranging
shows that u;; = w;; foralli € {1,...,m}and j € {1,...,g}.

(2). Straightforward. O

Lemma 5.1.3. Let F be a field, and let m,n,p € N. Let A, B € Myx,(F) and let C, D € Myxp(F).
Then A(C+D)=AC+ AD and (A + B)C = AC + BC.

Proof. The proof of this fact about matrices is straightforward, and is material belonging
to Elementary Linear Algebra; we omit the details. m|

Definition 5.1.4. Let F be a field, and let n € N. Let A € M;x,(F). The matrix A is
invertible if there is some B € M,,«,(F) such that BA = I,, and AB = I,,. Such a matrix B is
an inverse of A. A

Lemma 5.1.5. Let F be a field, and let n € N. Let A € Myx,(F). If A has an inverse, then the
inverse is unique.

Proof. Suppose that A has two inverse matrices, say B and C. Then AB =1, = BA and
AC =1, = CA. Using standard properties of matrix multiplication, we then compute

B = BI, = B(AC) = (BA)C = I,C = C.

Because B = C, we deduce that A has a unique inverse. m|
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Definition 5.1.6. Let F be a field, and let n € N. Let A € M,,x,,(F). If A has an inverse, then
the inverse is denoted A~L. A

Lemma 5.1.7. Let F be a field, and let n € N. Let A, B € Myx,(F). Suppose that A and B are
invertible

1. A is invertible, and (A~1)~! = A.
2. AB is invertible, and (AB)™! = BT1A7L,
Proof. We prove Part (2), leaving the rest to the reader.

@). By Lemma we know that if AB has an inverse, then it is unique. If we can
show that (AB)(B'A™1) = I,, and (B~'A71)(AB) = I,,, then it will follow that B~'A~! is the
unique inverse for AB, which means that (AB)™' = B-'A~!. Using standard properties of
matrix multiplication, we then compute

(AB)(B™'A™") =[(AB)B A = [A(BB™)]A™!
=[ALJAT' = AA7 = 1,,.

A similar computation shows that (B"*A™1)(AB) = I,,. m

Definition 5.1.8. Let F be a field, and let n € N. The set of all n X n invertible matrices with
entries in F is denoted GL,(F). A

Definition 5.1.9. Let F be a field, and let m,n € N. Let A € M;;xx(F). Suppose that
A= [aij]. The transpose of A is the matrix A! € My x,,(F) defined by A’ = [cij], where
cij=ajiforallie{l,...,n}and j€{1,...,m}. A

Remark 5.1.10. Let F be a field, and let A € M;;x,(F). Then A is symmetric if and only if
Al = A. 0

Lemma 5.1.11. Let F be a field, and let m,n € N. Let A, B € Myx,,(F), and let s € F.
1. (A+B)! = At + B!,
2. (sA)f = sA!,
3. At = A.

Proof. The proofs of these facts about matrices are straightforward, and are material
belonging to Elementary Linear Algebra; we omit the details. m|

Lemma 5.1.12. Let F be a field, and let n € N. Let A, B € M, (F).

1. (I,)! = I,..
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2. (AB)! = BIA!.
3. A is invertible if and only if A® is invertible; if A is invertible, then (A")™1 = (A71)!.

Proof. The proofs of the first two part are straightforward, and are material belonging to
Elementary Linear Algebra; the third part follows from the first two parts. We omit the
details. |

Exercises

Exercise 5.1.1. Let F be a field, and let n € N. Let A, B € M, x,,(F). The trace of A is defined
by

n

trA = Zaii.

i=1
Prove that tr(AB) = tr(BA).



5.2. LINEAR MAPS GIVEN BY MATRIX MULTIPLICATION 53

5.2 | Linear Maps Given by Matrix Multiplication

Friedberg-Insel-Spence, 4th ed. — Section 2.3

Definition 5.2.1. Let F be a field, and let m,n € N. Let A € My;x,(F). The linear map
induced by A is the function L4 : F" — F™ defined by La(v) = Av for all v € F". A

Lemma 5.2.2. Let F be a field, and let m,n,p € N. Let A, B € My;x,(F), let C € Myxp(F), and
lets € F.

1. L4 is a linear map.

2. La =Lpifand only if A = B.

3. Lasp =La +Lp.

4. Lsa = sLa.

5. Lac =Lgolc.

6. Suppose m = n. Then Ly, = 1p».

Proof. Suppose that A = [aij] and B = [bi]-]. Let {eq, ..., e, } be the standard basis for F".

(1). Let v,w € F". Then La(v + w) = A(v + w) = Av + Aw = La(v) + La(w), and
La(sv) = A(sv) = s(Av) = sLa(v).

(2). If A =B, then clearly L4 = Lp.

Suppose Ly = Lp. Let j € {1,...,n}. Then La(e;) = Lp(e;), and hence Ae; = Be;, which
means that the j-th column of A equals the j-th column of B. Hence A = B.

(3). Let v € F". Then La;p(v) = (A + B)(v) = Av + Bv = La(v) + Lg(v). Hence
Laig =Lg +Lg.

(4). The proof is similar to the proof of Part (3).

(5). Let j € {1,...,n}. Then Lac(ej) = (AC)(ej), and (LaoLc)(ej) = La(Lc(e))) =
A(C(ej)). Observe that (AC)(e;) is the j-th column of AC, and that C(e;) is the j-th column
of C. However, the j-th column of AC is defined by A times the j-th column of C. Hence
Lac(ej) = (La o Lc)(ej). Therefore Lac and Ly o Lc agree on a basis, and by Corollary
we deduce that Lgyc = LgolLc.

(6). Trivial. O

Corollary 5.2.3. Let F be a field, and let m,n,p,q € N. Let A € My, (F), let B € Myxp(F), and
let C € M,x,(F). Then (AB)C = A(BC).



54 CHAPTER 5. LINEAR MAPS AND MATRICES

Proof. Using Lemma together with the associativity of the composition of
functions, we see that Lygc) = LaoLpc = Lao(Lpolc) = (Laolp)olc =Lapolc = Lupc.
By Lemma we deduce that A(BC) = (AB)C. O
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5.3 | All Linear Maps F" — F™

Friedberg-Insel-Spence, 4th ed. — Section 2.2

Lemma 5.3.1. Let F be a field. Let n,m € N, and let f: F" — F™ be a linear map. Then f = Ly,
where A € My« (F) is the matrix that has columns f(e1), ..., f(en).

aii
Proof. Leti e {1,...,n}. Let [ : ] = f(ei).
x Ami
Letv € F". Thenv = [ : l for some x1,...,x, € F. Then
Xn
X1
f(v) = f(| : ]) = f(x1e1+ -+ xnen) = x1f(e1) + - + xn f(€n)
Xn
ai A1n X1411t+Xpd1p
= X1[ . + -+ xn = .
Am Amn X1 A1+ X A
ail - Ain X1
:[ ro H : ] _ Av = La(o).
Am1 + amn ) L X0

Hence f = La. O
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5.4 | Coordinate Vectors with respect to a Basis

Friedberg-Insel-Spence, 4th ed. — Section 2.2

Definition 5.4.1. Let V be a vector space over a field F, and let § C V be a basis for V. The
set  is an ordered basis if the elements of f are given a specific order. A

Definition 5.4.2. Let V be a vector space over a field F. Suppose that V is finite-dimensional.
Let n = dim(V). Let B = {v1,...,v,} be an ordered basis for V. Let x € V. Then there are
unique ay, ...,a, € F such that x = 4101 + - -- + 4,v,,. The coordinate vector of x relative

to fis [x]p = [‘131] € F". A

n
Lemma 5.4.3. Let F be a field, and let n € N. Let f be the standard ordered basis for F". If v € F",
then [v]g = v

ai

Proof. Let v € F". Suppose that v = l : l Let {ey,...,e,} be the standard basis for F".

an

ay

Then v = aje1 + -+ +aye,. It follows that [v]z = l : l = 0. |
an

Definition 5.4.4. Let V be a vector space over a field F. Suppose that V is finite-dimensional.

Let n = dim(V). Let B be an ordered basis for V. The standard representation of V with

respect to f is the function ¢g: V — F" defined by ¢g(x) = [x]g forall x € V. A

Theorem 5.4.5. Let V be a vector space over a field F. Suppose that V is finite-dimensional. Let
n = dim(V). Let  be an ordered basis for V. Then ¢g is an isomorphism.

Proof. Let {e1,...,e,} be the standard basis for F".

Let = {u1,...,un}. Leti € {1,...,n}. Then ¢4(u;) = e;. By Theorem [4.1.6/2) there is
a unique linear map g: V — F" such that g(u;) = e; foralli € {1,...,n}.

Let v € V. Then there are unique ay, ..., a, € F such that x = 4101 + -+ + 4,0,,. Hence

a1

Pp(v) = l : l =mer+---+agey, =a1g(ur) + -+ a,g(un)

an

= g(aur + - +ayu,) = g(v).

Hence ¢4 = g. It follows that ¢ is linear.

We know by Lemmal4.2.6that im ¢4 = span(¢4(f)) = span{ey, ..., e, } = F". Hence ¢y
is surjective. Because dim(V) = n = dim(F"), it follows from Corollary that ¢ is an

isomorphism. O
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5.5 | Matrix Representation of Linear Maps—Basics

Friedberg-Insel-Spence, 4th ed. — Section 2.2

Definition 5.5.1. Let V, W be vector spaces over a field F, and let f: V — W be a linear
map. Suppose that V and W are finite-dimensional. Let n = dim(V') and m = dim(W). Let
B ={v1,...,v,} be an ordered basis for V and y = {wy, ..., w,} be an ordered basis for
W. The matrix representation of f with respect to f and y is the m X n matrix [ f ]g with
j-th column equal to [f(v;)], forall j € {1,...,n}.

If V.= W and g = y, the matrix [f]g is written [ f]g. A

Remark 5.5.2. With the hypotheses of Definition|5.5.1, we see that [ f ]g = [aij|, where the

elements a;; € F are the elements such that
m
fvj) = Z a;jw;
i=1
forall j € {1,...n}. o

Lemma 5.5.3. Let V, W be vector spaces over a field F, let f,g: V — W be linear maps, and let
c € F. Suppose that V and W are finite-dimensional. Let n = dim(V'). Let p be an ordered basis
for 'V, and let y be an ordered basis for W.

1. [f];s/ = [g]g ifand only if f = g.
2. [f + g1, = [f1) + [31).
3. [efT) = e/
4. [1V]ﬁ = In.
Proof. We prove Part (1)); the other parts are straightforward.

(1). If f = g, then clearly [f]; = [g]g.
Suppose that [f]g = [g]g. Let = {v1,...,v4}. Letj € {1,...,n}. Then [f(v;)], is the
j-th column of [f]g, and [g(v})], is the j-th column of [g]g. It follows that f(v;) and g(v;)

have the same coordinate vector relative to y. Hence f(v;) = ¢(v;). Therefore f and ¢
agree on a basis, and by Corollary 4.1.7 we deduce that f = g. O

Exercises
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Exercise 5.5.1. Let f = {[}],

[(1)]} and let y = {[ 21], [})]}; these are bases for R%. Let
f:R? — R2be defined by f([§]) =

|31y | forall [§] € R2. Then find [f]g and [ f]g.

Exercise 5.5.2. Let H: R3[x] — R3[x] by defined by H(f) = xf’ — f forall f € Ra[x]. Let g
be the standard ordered basis for R3[x]. Find [H]g. We will use this example again.

Exercise 5.5.3. Let V, W be vector spaces over a field F. Suppose that V and W are
finite-dimensional. Let n = dim(V) and m = dim(W). Let  be an ordered basis for V,
and let y be an ordered basis for W. Let A € M, (F). Prove that there is a linear map

f:V — W such that [f]g =A.

Exercise 5.5.4. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional.

(1) Suppose that f is an isomorphism. Then there is an ordered basis a for V and an
ordered basis 6 for W such that [ ]9 is the identity matrix.

(2) Suppose that f is an arbitrary linear map. Then there is an ordered basis a for V
and an ordered basis 6 for W such that [ f]5 has the form

1216 o)

where O denotes the appropriate zero matrices, for some r € {0,1,...,n}.
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5.6 | Matrix Representation of Linear Maps—Com-
position

Friedberg-Insel-Spence, 4th ed. — Section 2.3

Theorem 5.6.1. Let V, W, Z be vector spaces over a field F,and let f: V — Wand g: W — Z
be linear maps. Suppose that V, W and Z are finite-dimensional. Let p be an ordered basis for V,
let v be an ordered basis for W, and let & be an ordered basis for Z. Then [g o f]g = [g]g[f]g.
Proof. Suppose that [f]; = [ai]-],that [g]?, = [bij],that [gof]g = [cij],andthat [g]g[f]g =
[dij].

Let n = dim(V), let m = dim(W) and let p = dim(Z). Let B = {v1,...,0,}, let
y={wi,...,wy}andlet 6 = {z1,...,zp}.

By the definition of matrix multiplication, we see that d;; = Ykt bixay; for all i €
{1,...,ptand j e {1,...,n}.

Letj € {1,...,n}. Then by Remark[5.5.2] we see that

P
(80 f)()) = ) crjzr

r=1

On the other hand, using Remark again, we have

(g0 f)v)) =g(f(vj) = S(Z ajjw;) = Z a;jg(w;)
i=1 '

Because {z1,...,z,} is a basis, it follows Theorem that 31", bya;; = ¢, for all
re{l,...,p}.
Hence d;; = cjj foralli € {1,...,p}and j € {1,...,n}, which means that [gOf]g =

[SBLST,. .

Zr.

Theorem 5.6.2. Let V, W be vector spaces over a field F, and let f: V. — W be a linear map.
Suppose that V and W are finite-dimensional. Let  be an ordered basis for V and let y be an

ordered basis for W. Let v € V. Then [f(v)], = [f]g[v]ﬁ.

Proof. Let h: F — V be defined by h(a) = av foralla € F. Let g: F — W be defined by
g(a) =af(v) for all a € F. It can be verified that 1 and g are linear maps; the details are
left to the reader.
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Let @ = {1} be the standard basis ordered basis for F as a vector space over itself.
Observe that f oh = g, because f(h(a)) = f(av) =af(v) = g(a) foralla € F. Then

@)y = [y = [8T = [f o Ty = [FI 11 = [FIL (V)] = [T} 0] 0

Lemma 5.6.3. Let F be a field, and let m,n € N. Let  be the standard ordered basis for F", and
let v be the standard ordered basis for F™.

1. Let A € Myn(F). Then [LA]; = A.

2. Let f: F" — F™ be a linear map. Then f = Lc, where C = [f]g.

Proof.

(1). Let{e1,..., e} be the standard basis for F". Let j € {1,...,n}. By Lemma we
see that Aej = La(ej) = [La(ej)],. Observe that Ae; is the j-th column of A, and [La(e;j)], is

the j-th column of [LA]Z. Hence A = [LA]Z.

(2). Let v € F". Using Lemma and Theorem we see that f(v) = [f(v)], =
[f]g[v]ﬁ = Cv = Lc(v). Hence f = Lc. O
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5.7 | Matrix Representation of Linear Maps—Isomor-
phisms

Friedberg-Insel-Spence, 4th ed. — Section 2.4

Theorem 5.7.1. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional, and that dim(V') = dim(W). Let B be an ordered
basis for V, and let y be an ordered basis for W.

1. f is an isomorphism if and only if [ f ]Jﬁ/ is invertible.

-1
2. If f is an isomorphism, then [f‘l])ﬁ, = ([f]y) .

Proof. Both parts of the theorem are proved together. Let n = dim(V) = dim(W).

Suppose that f is an isomorphism. By definition of inverse maps we know that
flof=1yand fof! =1y. By Lemma we know that that f~! is a linear map.
Hence, using Theorem and Lemma (@), we deduce that

LFBLAT = U e £l = vl = [yl = T

A similar argument shows that

AR = I

-1
It follows that [f]g is invertible and ([f]g) = [f‘l])ﬁ,.

Suppose that [ f ]E is invertible. Let A = [ f ];. Then there is some B € M;,x, (F) such that
AB =1, and BA = I,,. Suppose that B = [bij].
Suppose that g = {v1,...,v,} and that y = {wy, ..., w,}. By Theorem[4.1.6] @) there is

a unique linear map g: W — V such that g(w;) = X,7_; b;v; foralli € {1,...,n}. Thenby
definition we have | g]ﬁ = B.
Using Theorem and Lemma (@), we deduce that

(g0 fI = [8BLfI; = BA =1 = [1v]j.

A similar argument shows that
[fogl) =[1wl).

It follows from Lemma that go f = 1y and f o ¢ = 1. Hence f has an inverse,
and it is therefore bijective. We conclude that f is an isomorphism. O

Corollary 5.7.2. Let F be a field, and let n € N. Let A € My (F).

1. A is invertible if and only if L4 is an isomorphism.



62 CHAPTER 5. LINEAR MAPS AND MATRICES

2. If A is invertible, then (La) ™ =Ly

Proof. Left to the reader in Exercise O

Exercises

Exercise 5.7.1. In this exercise, we will use the notation f(f) = y in the sense of ordered
bases, so that f takes the first element of f to the first element of y, the second element of 3
to the second element of v, etc.

Let V, W be vector spaces over a field F, and let f: V — W be a linear map. Suppose
that V and W are finite-dimensional.

(1) Let g be an ordered basis for V and let y be an ordered basis for W. Then [ f ]; is the
identity matrix if and only if f(f) = y.

(2) The map f is an isomorphism if and only if there is an ordered basis a for V and an
ordered basis 6 for W such that [ ] is the identity matrix.

Exercise 5.7.2. Let V, W be vector spaces over a field F, and let f: V — W be a linear map.
Suppose that V and W are finite-dimensional. Let  be an ordered basis for V, and let y be
an ordered basis for W. Let A = [f ]Z.

(1) Prove that rank(f) = rank(Lx).
(2) Prove that nullity(f) = nullity(La).
Exercise 5.7.3. Prove Corollary
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5.8 | Matrix Representation of Linear Maps—The
Big Picture

Friedberg-Insel-Spence, 4th ed. — Section 2.4

Theorem 5.8.1. Let V, W be vector spaces over a field F. Suppose that V and W are finite-
dimensional. Let n = dim(V) and let m = dim(W). Let  be an ordered basis for V, and let
y be an ordered basis for W. Let ®: L(V, W) — Myxn(F) be defined by O(f) = [f]g for all

feL(V,W).
1. @ is an isomorphism.

2. Lopyopp = ¢pyof forall f € LIV, W).
Proof.

(1). The fact that @ is a linear map is just a restatement of Lemma and (3). We
know by Theorem [4.5.6|that dim(L(V, W)) = nm. We also know that dim(M,x,(F)) = nm.
Hence dim(L(V, W)) = dim(M,x,(F)). The fact that ® is injective is just a restatement of
Lemma (1. It now follows from Corollary that @ is an isomorphism.

(2). Let f € L(V,W). Let v € V. Using Theorem [5.6.2] we see that
(@y 0 /)©) = ¢y (f(0) = [f(0)]y = [fI5[0]g
= O(f)Pp(v) = Lof)(Pp(v)) = (La(s) © Pp)(0).

Hence Lo(f) o dp = ¢y 0 f. R

Remark 5.8.2. The equation Lo(s) o g = ¢y o f in Theorem is represented by the
following commutative diagram, where “commutative” here means that going around the
diagram either way yields the same result.

v L ow

ol b

F n ) F m
Laf)
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5.9 | Matrix Representation of Linear Maps—Change
of Basis

Friedberg-Insel-Spence, 4th ed. — Section 2.5

Lemma 5.9.1. Let V be a vector space over a field F. Suppose that V is finite-dimensional. Let p
and ' be ordered bases for V.

1. [1V]ﬁ , is invertible.

2. Ifo eV, then [v]g = [1V]§,[v]ﬁ,.
Proof.

(1). We know that 1y is an isomorphism, and therefore Theorem implies that
[1V]ﬁ is invertible.

ﬁ/
(2). Letv € V. Then 1y(v) = v, and hence [1y(v)]g = [v]g. It follows from Theorem5.6.2]
that [1V]§,[v]ﬁ, = [v];. O

Definition 5.9.2. Let V be a vector space over a field F. Suppose that V is finite-dimensional.
Let g and B’ be ordered bases for V. The change of coordinate matrix (also called the
change of basis matrix) that changes p’-coordinates into p-coordinates is the matrix

B
[1V]ﬁ" A

Remark 5.9.3. Let V be a vector space over a field F. Suppose that V is finite-dimensional.
Let g and B’ be ordered bases for V. The change of coordinate matrix that changes
p’-coordinates into f-coordinates is formed by writing the elements of ’ in terms of f8
and putting the coordinates of each element of g’ in terms of § into a column vector, and
assembling these column vectors into a matrix. O

Lemma 5.9.4. Let V be a vector space over a field F. Suppose that V is finite-dimensional. Let a,
B and y be ordered bases for V. Let Q be the change of coordinate matrix that changes a-coordinates
into B-coordinates, and let R be the change of coordinate matrix that changes B-coordinates into
y-coordinates

1. RQ is the change of coordinate matrix that changes a-coordinates into y-coordinates
2. Q71 is the change of coordinate matrix that changes B-coordinates into a-coordinates

Proof. Left to the reader in Exercise[5.9.1] O
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Theorem 5.9.5. Let V, W be vector spaces over a field F. Suppose that V and W are finite-
dimensional. Let p and B’ be ordered bases for V, and let v and y’ be ordered bases for W. Let Q
be the change of coordinate matrix that changes p’-coordinates into B-coordinates, and let P be the
change of coordinate matrix that changes y’-coordinates into y-coordinates. If f: V — Wisa

linear map, then [f]g,, =p-1 [f]ZQ.

Proof. Let f: V — W be a linear map. Observe that f = 1w ofolv Then [f];,’ =
[lwo fo 1V]g,, It follows from Theorem/5.6.1|that [f]ﬁ’ = [f 1V iz By Lemma(5.9.4
we deduce that [ f P71 f] f O

Corollary 5.9.6. Let V' be a vector space over a field F. Suppose that V is finite-dimensional. Let p
and B’ be ordered bases for V. Let Q be the change of coordinate matrix that changes p’-coordinates
into B-coordinates. If f: V. — V is a linear map, then [f]g = Q7 '[f]Q.

Corollary 5.9.7. Let F be a field, and let n € N. Let A € Myx,(F). Let y = {v1,...,0,}
be an ordered basis for F". Let Q € Myx,(F) be the matrix whose j-th column is vj. Then

[Laly = Q7'AQ.

Definition 5.9.8. Let F be a field, and let n € N. Let A, B € M,,x;,(F). The matrices A and B
are similar if there is an invertible matrix Q € M, (F) such that A = Q~'BQ. A

Lemma 5.9.9. Let F be a field, and let n € N. The relation of matrices being similar is an
equivalence relation on My, (F).

Proof. Left to the reader in Exercise O

Corollary 5.9.10. Let V be a vector space over a field F, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. Let § and B’ be ordered bases for V. Then [ f]p and [ f]p- are
similar.

Lemma 5.9.11. Let V be a vector space over a field F. Suppose that V is finite-dimensional. Let
B = {x1,...,x,} be an ordered basis for V. Let Q € Myx,(F) be an invertible matrix. Define
n

B =A{x}, ..., x,} by x;. = Z Qijxiforall j € {1,...,n}. Then B is a basis for V, and Q is the

change of coordinate matrix that changes B’-coordinates into -coordinates.

Proof. 1t suffices to show that p’ is linearly independent. Suppose };_; ajx ] = 0 for some
ai,...,a, € F. Then plug in the definition of the x] , rearrange, and deduce from the linear
independence of S that Z}“zl ajQij =0foreachi € {1,...,n}. Let A be the column vector
with entries ay, ..., a, going down. Then QA equals the zero column vector. Because
Q is invertible, it follows that A is the zero column vector, which is what needed to be
proved. m|
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Corollary 5.9.12. Let F be a field, and let n € N. Let A,B € Myux,(F), and suppose that
B = Q7'AQ for some invertible Q € My,x,,(F). Then there exists a finite-dimensional vector space
V over F, with dim(V') = n, bases  and B’ for V, and a linear map f: V — V such that A = [f g
and B = [f1p.

Proof. Left to the reader in Exercise[5.9.3] O

Exercises

Exercise 5.9.1. Prove Lemma[5.9.4
Exercise 5.9.2. Prove Lemma[5.9.9

Exercise 5.9.3. Prove Corollary[5.9.12
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6.1 | Elementary Moves

Definition 6.1.1. Let F be a field. Let A € M;;xn(F). The elementary row and column
operations on A are as follows.

1. interchanging any two columns
2. multiplying any column by a non-zero scalar
3. adding a scalar multiple of one column to another column A

Definition 6.1.2. Let V, W be vector spaces over a field F, let § = {v1,...,v,} be a finite
ordered subset of V, and let f: V — W be a linear map. We will use the notation f(p)
to denote the ordered set {f(v1),..., f(vn)}, where all n elements f(v1),..., f(v,) are
thought of as distinct, and in that order. A

Definition 6.1.3. Let V be a finite-dimensional vector space over a field F, let § and y be
ordered subsets of V. The basis y can be obtained from § by an elementary move of Type
1, Type 2 or Type 3 (respectively) if the following holds.

Type 1: y is the same as f3, except that two of the elements of § have switched places. If
the i-th and k-th elements of  are switched, where i # k, we denote this elementary
move by &1(7, k).

Type 2: y is the same as §, except that one elements of § has been multiplied by a non-zero
scalar. If the i-th element of  is multiplied by a € F, where a # 0, we denote this
elementary move by &,(i; a).

Type 3: y is the same as f3, except that a scalar multiple of one element of  has been added
to another element of . If a times the k-th element of § is added to the i-th element
of B, for some a € F, we denote this elementary move by &z(k, i; a).

A

Remark 6.1.4. We can write out the three types of elementary moves explicitly as follows.
Let V be a finite-dimensional vector space over a field F, and let § = {v1,...,v,} be an
ordered subset of V. Suppose that y can be obtained from g by an elementary move &. We
then have the following three cases.

Type 1: If & = E:1(i, k) forsomei, k € {1,...,n}suchthati # k,theny = {v1,...,vi-1, Uk, Vis1, - - ., Vk-1, Vi, U}

Type2: If & = &Ey(i;a) for some i € {1,...,n} and a € F such thata # 0, then y =
{v1,...,0i21,a0;,0i41, ..., 0}

Type 3: If & = E3(k, i;a) for some i, k € {1,...,n}and a € F, then y = {v1,...,vi_1,0; +
avk,Vi+1,...,0n} forsome i, k € {1,...,n} such thati # k, and some a € F.
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Y

Definition 6.1.5. Let F be a field, let a € F, and let i, k € N. Let & be an elementary move.

(1) The reverse elementary move of &, denoted EX, is the elementary move given by

&1, j), if & = &1(i, j)
ER =& (i;a™Y), ifE =Eisa)
Es(k,i;—a), if &= 8Es(k,i;a).

(2) The associate elementary move of &, denoted &%, is the elementary move given by

81(i,j), if & =81(i,j)
E =13&(ia), if & =8xi;a)
Es(i, k;a), if&E=8&Es(k,i;a).

(3) The obverse elementary move of &, denoted EY, is the elementary move given by

Sl(i/j)/ it& :81(i/j)
EC ={8&,(i;a™Y), if & =Ex(i;a) A
Esi, k;—a), if & = &Es(k,i;a).

Lemma 6.1.6. Let & be an elementary move.

1. Y =&
2. (&M =&
3. (8°)° = &.

L (EOR =84 = (R,

S

L (EMHR =80 = (R,

)

(89! = &R = (84)°.

[=))

Proof. This proof is straightforward, and simply involves looking at the three three types
of elementary moves for each part of the lemma. We omit the details. |

Lemma 6.1.7. Let V be a vector space over a field F, and let 5 and y be finite ordered subsets of V.
If y is obtained from B by an elementary move &, then B is obtained from y by EX.

Proof. This proof is straightforward, and the details are omitted. m|
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Lemma 6.1.8. Let V be a finite-dimensional vector space over a field F, and let § and y be finite
ordered subsets of V. Suppose that y can be obtained from 8 by an elementary move. Then y is a
basis for V if and only if B is a basis for V.

Proof. First, suppose that f is a basis for V. Let § = {v1,...,v,}. Suppose that y is
obtained from f by the elementary move &. Because y has the same number of elements
as B, we know by Corollary that in order to prove that y is a basis, it suffices to
prove that y is linearly independent. We have to examine each type of elementary move
separately.

Type 1: Suppose that & = E1(i, k) for some 7, k € {1,...,n} such that i # k. In this case y
is the same set as §, though in a different order, and so clearly y is a basis.

Type 2: Suppose & = &Ey(i;a) for some i € {1,...,n} and a € F such that a # 0. Then
y ={v1,...,0i-1,a0{,0is1,...,Un}. Suppose

bivr + -+ +bj_1vi1 + bjav; + bjy10i11 + -+ byo, =0

for some by,...,b, € F. Then b; = 0 for all j € {1,...,n} such that j # i, and
bia = 0. Because a # 0, we know by Lemma that b; = 0. Hence v is linearly
independent.

Type 3: Suppose & = &Es(k,i;a) for some i,k € {1,...,n} and a € F. Then y =
{v1,...,vi-1,vi + avk, Vis1, ..., Un}. Suppose

bio1+---+ bi_lvi_l + bi(vi + avk) + bi+1vi+1 + .-+ bnvn =0
for some by, ...,b, € F. Hence
byvy + -+ bi10i-1 + bivi + biv10ip1 + -+
+ br_10k_1 + (bk + bia)vk + bg4y10k41 + -+ byo, = 0.

Thenb;j =0forall j € {1,...,n} such that j # k, and by + b;a = 0. Because b; = 0, it
follows that by = 0. Hence y is linearly independent.

Now suppose that y is a basis for V. By Lemma we know that  can be obtained
from y by an elementary move. The same argument as above shows that g is a basis. O

Theorem 6.1.9. Let V be a finite-dimensional vector space over a field F, and let p and y be ordered
bases for V.. Then there is a finite collection of ordered bases f = ag, a1, ...,ap =y of V such that
a; is obtained from a;_1 by a single elementary move.

Proof. Let B = {v1,...,vy} and y = {wy,..., w,}. Because y is a basis, then for each

ie{l,...,n}wecan write
n
0; = Zai]'w]',
j=1
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where a;; € F for all appropriate j € {1,...,n}.

We start by letting ag = f.

Next, we claim that there is some k € {1, ..., n} such that the coefficient of w1 in vy
is not zero; that is, we claim that ax; # 0 for some k € {1,...,n}. To see why, assume to
the contrary thata;; =0 foralli € {1,...,n}. Then each element of § can be written as a
linear combination of {ws, ..., w,}. In other words, we see that § C span({ws, ..., w,}).
Because f is a basis for V, we know span(B) = V. It then follows from Exercise (c)
that span({wy, ..., w,}) = V. We now have a contradiction to Lemma (1), because
dim(V) = n. We therefore deduce that there is some k € {1,...,n} such that ay; # 0 (if
there is more than one such i, choose one).

We now define a7 to be the result of taking a¢ and switching v and vy, which is a
Type 1 elementary move. To avoid overly cumbersome notation, we will now redefine
{v1,...,v,} so that they now denote the elements of a1. At each stage of our process,
where we define the a, in terms of @, for each r € {1, ..., p}, we will at each stage
redefine {v1, ..., v,} so that they now denote the elements of .. (The alternative would
be to write a, = {v], ..., v}, and the like, and that would be hard to read.)

By construction, we know that in a7, the coefficient of w; in v is non-zero; that is, we
have a11 # 0. We then define a5 to be the result of taking a1 and multiplying v; by (a11)71,
which is a Type 2 elementary move.

By construction, we know that in ay, the coefficient of w; in v; is 1; that is, we have
a11 = 1. We now look at the coefficient of wq in v,. If the coefficent, which is a»1, is zero,
then we do nothing to v; at this point. If ay; # 0, then we define a3 to be the result of
taking a» and adding —a»1v1 to v, which is a Type 3 elementary move.

By construction, we know that in a3, the coefficient of w; in v; is zero. We continue in
this way, examining the coefficients of w; in all the v; in turn, and doing Type 3 elementary
moves as necessary until we obtain «,,, for some m € N, in which the coefficient of w1 in
11 is 1, and the coefficient of wq in all the other v; is zero. That is, in «,, we have

n
U1 =w1+ Zai]'w]',
j=2

and foralli € {2,...,n} we have

n
0; = Z aijw]-.
j=2

We next turn to the coefficients of the w,. We claim that there is some k € {2,...,n}
such that the coefficient of w, in vy is not zero; that is, we claim that a;, # 0 for some
k €{2,...,n}. To see why, suppose to the contrary that a;, = 0foralli € {2,...,n}. Then

n
0] = Z ai]'w]'
j=3
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and foralli € {2,...,n}.

We now claim that wy ¢ span(f). Once we prove that, we will have reached a
contradiction to the fact that § is a basis for V, and we will therefore have completed our
proof of the fact that that there is some i € {k, ..., n} such that a;; # 0.

To prove that w; ¢ span(f), suppose to the contrary that there are by, ..., b, € F such
that wy = byjvq1 + - - - + b, v,,. Then we have

n n
wyr = b1w1 + blalz?ﬂQ + Z bpap(k+1) Wkl + -+ Z bpapn Wy .
p=1 p=1

We thus have written w; as a linear combination of the members of y. On the other hand,
we also have wy = 0wy + 1wy + O0ws + - - - Owy,. Theorem [3.6.2] (2) states that each element of
V can be written uniquely as a linear combination of elements of y, and hence we deduce
that by = 0 and bya12 = 1. We have reached a contradiction, because Lemma says
that 0a12 = 0. We have therefore proved that w; ¢ span(f), as claimed above. We have
therefore completed the proof of the claim that there is some k € {2,...,n} such that
air # 0.

We now continue analogously to what we did previously. We define a,4+1 to be the
result of taking a;,, and switching v, and v, which is a Type 1 elementary move, so that in
am+1, the coefficient of w, in v, is non-zero. We then define a4 to be the result of taking
am+1 and multiplying v, by (a22)~!, which is a Type 2 elementary move. Next, we look at
the coefficient of w; in each of the v; other than v;, and perform Type 3 elementary moves
until we have the coefficient of w; in all the v; other than v, is zero. Call the resulting basis
a, for some r € N. In a, we then have

n
U1 =w1 + Zai]'w]',
j=3

and
n
Uy =Wy + Z aijwij,
=3

and foralli € {3,...,n} we have

n
0; = Z ai]'w]'.
j=3

We continue in this way, performing one elementary move at a time, until we obtain
a basis @, for some p € N such that v; = w; foralli € {1,...,n}. Hence a), = y, and the
proof is complete. ]

Lemma 6.1.10. Let V and W be finite-dimensional vector spaces over a field F, let B be an ordered
basis for V, let y be an ordered basis for W, and let f: V — W be a linear map.
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1. If B’ is a basis for V that is obtained from p by a single elementary move &, then [ f1, g can be
obtained from [ f ]; by & applied to the columns of [ {1’ g

’
y can

2. If y’ is a basis for W that is obtained from y by a single elementary move G, then [ f| g

be obtained from [ f ]Z by G© applied to the rows of [ f ]Z.
Proof.

(1). Let p={v1,...,v,}, and let p’ be an ordered basis for V that is obtained from g by
a single elementary move &. We have three cases, depending upon the type of elementary

move used. Let j € {1,...,n}. We know by Remark 5.5.2that the j-th column of [f]g is

just [f(v))],, and similarly for [f]g/.

Type 1: Suppose & = &1(i, k) for some i,k € {1,...,n} such that i # k. Then g’ =
{v1,...,0i-1, 0k, Vis1, -+, k-1, Vi, Vks1, - - - vn}. Letj € {1,...,n}. Itis clear that if
j #iand j # k, then the j-th column of [ f 1 /3’ is the same as the j-th column of [ f 1

ﬁ'
It is also evident that the i-th column of [ f 1 2 is the same as the k-th column of [ f 1 ﬁ’
and that the k-th column of [ f]% g is the same as the i-th column of [ f ] Hence [f]%

obtained from [ f ] by & applied to the columns of [f])

pis

B

Type 2: Suppose & = E,(i;a) for somei € {1,...,n} and a € F such thata # 0. Thenp’ =
{v1,...,vi-1,a0i,0i31,...,0,}. Letj € {1,...,n}. Itis clear that if j # i, then the j-th
Column of [f]} g is the same as the j-th column of [f ]y By using Theorem [5.4.5| it is

also seen that the i-th column of [ f]/, g is [f(av))], = af(v )y = alf(v;)],, which is a
times the i-th column of [ f 1 g Hence [ f 1%
columns of [ f ]g.

g s obtained from [ f]% g by & applied to the

Type 3: Suppose & = &s(k,i;a) for some i,k € {1,...,n} and a € F. Then y =
{v1,...,0i-1,0; + avy,Vis1,...,0,} for some i,k € {1,...,n} such that i # k, and
somea € F. Letj € {1,...,n}. Itis clear that if j # i, then the j-th column of [f]g, is

the same as the j-th column of [ f ]V By using Theorem 5.4.5] it is also seen that the

i-th column of [ 1}, is [ f(v; + 200l = F(01) + af00)], = [0l +alf (o ), which
is a times the k-th column of [f 1 g added to the i-th column of [ f 7. Hence [ f

obtained from [ f ]; by & applied to the columns of [ f ];.

B

(2). Lety ={w1, ..., wn}, andlet y’ be an ordered basis for W that is obtained from y by
a single elementary move G. We have three cases, depending upon the type of elementary
move used. Letr € {1,...,n}. We know by Remark|5.5.2|that the r-th column of [ f ] isjust

[f(vr)],, and similarly for [f] Let [f]V (aij), and hence f(v,) = ay, w1 + -+ + Ay W

Type 1: Suppose G = &1(i, k) for some i,k € {1,...,n} such that i # k. Then )’ =
{wq,...,Wi-1, Wk, Wit1, ..., Wk_1, Wi, Wk41,---, Wy }. Let ] € {1,...,m}. Itis clear
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thatif j # i and j # k, then the j-th row of [f]g’ is the same as the j-th row of [f]g. It

is also evident that the i-th row of [ f ]Z/ is the same as the k-th row of [ f ]Z, and that

the k-th row of [ f ];, is the same as the i-th row of [ f ]z;. Hence [ f ]g/ is obtained from

[f]’ by G applied to the columns of [ f].. For a Type 1 elementary move, observe that
g PY & app B yp y
G =g6°.

Type 2: Suppose G = Ey(i;a) forsomei € {1,...,n} and a € F such thata # 0. Theny’ =

{wi,..., wi—1,aw;, wis1, ..., wy}. Letr € {1,...,n}. Because f(v,) = aj,w1 + -+ +
Ay Wy, we therefore have f(v,) = aj,w1+-- -+a(i_1)rwi_1+(a,'ra_1)(awi)+a(i+1)rwi+1+
oo+ Aprwp. Let j € {1,...,m}. Itis now seen that if j # i, then the j-th row of [f]g

4
p

the i-th row of [ f ]Z. Hence [ f ]Z, is obtained from [ f ]g by G© applied to the rows of
[£1;-
p

is the same as the j-th row of [ f],. It is also seen that the i-th row of [ f ]g, is a1 times

Type 3: Suppose G = &s(k,i;a) for some i,k € {1,...,n} and a € F. Then y’ =

{wi,..., wi—1, w; + awg, Wis1, ..., Wn}. Letr € {1,...,n}. Because f(v,) = aj, w1 +
“or + aprwy, we therefore have f(v,) = ay,wy + -+ + ag-1),Wk—1 + (ag, — aa;)wy +
A1)  Wit1+ *  F A1) Wi1 2 (Wi + AW ) +A(41), Wig1+ -+, Wy Letj € {1,...,m}.
It is now seen that if j # k, then the j-th row of [f ]Z/ is the same as the j-th row of

Lf ]; It is also seen that the k-th row of [ f ]gl is —a times the i-th row of [ f ]g added to

the k-th row of [ f]%. Hence [ ]V’ is obtained from [ f]: by G° applied to the rows of
B B g Oy ppP

[f]g- O

Exercises

Exercise 6.1.1. Let V be a finite-dimensional vector space over a field F, and let f and y be
finite ordered subsets of V. Suppose that y can be obtained from 8 by a Type 1 elementary
move. Prove that  can be obtained from f by three Type 3 elementary moves followed by
one Type 2 elementary move.

Exercise 6.1.2. Let V and W be finite-dimensional vector spaces over a field F, let § be an
ordered basis for V, let y be an ordered basis for W, and let f: V — W be a linear map.

(1) Let B be the matrix obtained from [ f]} by a single elementary column operation &.
p Py & y p

If B’ is the basis for V obtained from by &, then B = [ f ]Z,.

(2) Let C be the matrix obtained from [ f ]g by a single elementary row operation G. If

y’ is the basis for W obtained from y by G©, then C = [ f ]Z’.
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6.2 | Elementary Matrices

Definition 6.2.1. Let F be a field. Let E € M, x,(F) be a matrix. The matrix E is an
elementary matrix of Type 1, Type 2 or Type 3, respectively, if E can be obtained from the
identity matrix by a single elementary column or row operation of Type 1, Type 2 or Type
3, respectively. A

Lemma 6.2.2. Let V be a finite-dimensional vector space over a field F, and let B and y be ordered
bases for V. Suppose that § can be obtained from y by a single elementary move &.

1. The matrix [1v]§ can be obtained from the identity matrix by & applied to the columns of the

identity matrix.

2. The matrix DV]Z can be obtained from the identity matrix by E applied to the rows of the

identity matrix.
Proof.

(1). We know from Lemma |5.5.3| (4)) that [11/]; = ]. Because f3 is obtained from y by &,

we can apply Lemma [6.1.10| (1) to deduce that he matrix HV]Z can be obtained from [1V];j

by & applied to the columns of [1v];.

(2). We know from Lemma [5.5.3¢ that [1vl§ = [. Because  is obtained from y by

&, it follows from Lemma [6.1.7| that y is obtained from g by EX. We can then apply

Lemmal6.1.10 H to deduce that he matrix [1v] can be obtained from [1V]£ by the (("JR)O
applied to the rows of [1V]§. By Lemma [6.1.6|(4) we know that (SR)O = & O

Lemma 6.2.3. Let F be a field. Let E € M, (F) be a matrix. Let V be a vector space over F, and
let y be an ordered basis for V.

1. Suppose that E is obtained from the identity matrix by a single elementary column operation
&. If B is obtained from y by &, then E = [1V]7ﬁ/.

2. Suppose that E is obtained from the identity matrix by a single elementary row operation G.
If B is obtained from y by G4, then E = [1V];.

Proof. This lemma follows immediately from Lemma together with Lemma @.
O

Corollary 6.2.4. Let F be a field. Let E € M, (F) be a matrix. Then E is an elementary matrix if
and only if for any finite-dimensional vector space V over F, and any ordered basis 'y for V, the
matrix E is the change of basis matrix that changes B-coordinates into y-coordinates, where f3 is
obtained from y by a single elementary move.
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Lemma 6.2.5. Let F be a field. Let A € My, (F).

1. Let E € My, (F) be the matrix obtained by performing a single elementary column operation
&E tol,. Let B € My,x,(F). Then B is obtained from A by & applied to the columns of A if
and only if B = AE.

2. Let G € My« (F) be the matrix obtained by performing a single elementary row operation G
to I,,. Let C € Myxn(F). Then C is obtained from A by G applied to the rows of A if and
only if C = GA.

Proof. Let p be the standard ordered basis for F", and let y be the standard ordered basis
for F. By Lemma [5.6.3| (1) we know that [LA]Z =

(1). Let g’ be obtained from 8 by &.
Clearly L4 = Lso1lp». By Theorem |5.6.1) we deduce that [LA]Z, = [LA]Z[lpn]g,. By

Lemma|6.2.2| (1) we know that the elementary matrix [1 Fn]g, is obtained from the identity

matrix by & applied to the columns of the identity matrix. That is, we see that [1 Fn]‘B =E.

2
Hence [LA]ﬁ, AE.

By Lemma [6.1.10| (1) we know that [LA] is obtained from [L]" g by & applied to the
columns of [LA]Z'
of A.

It follows that B is obtained from A by & applied to the columns of A if and only if
B =|[La ]ﬁ’ if and only if B = AE.

(2). Let y’ be obtained from y by G°. Then by Lemma we know that y is obtained
from y’ by (QO)R.
Clearly Lg = 1pmoLs. By Theorem 5.6.1) we deduce that [LA]); = [1pm] [LA] . By

That is, we know [La], g 18 obtamed from A by & applied to the columns

Lemma |6.2.2{(2) we know that the elementary matrix [1 pm]%;/ is obtained from the 1dent1ty

A
matrix by ((QO)R) applied to the rows of the identity matrix, which is the same as G
applied to the rows of the identity matrix by Lemma (@) and (). That is, we see that

[1e#]) = G. Hence [LA];' = GA.

By Lemma 6.1. 10 we know that [LA]E’

which is the same as G applied to the rows of [LA]Z by Lemma|6.1.6 H

can be obtained from [LA]g by (go)O applied

to the rows of [La]’,

ﬁ 4
That is, we know that [LA]Z is obtained from A by G applied to the rows of A.

It follows that C is obtained from A by G applied to the rows of A if and only if

C= [LA];’ if and only if C = GA. O

Lemma 6.2.6. Let F be a field. Let E € My, (F) be an elementary matrix.

1. E is invertible.
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2. IfE is obtained from the identity matrix by an elementary column (respectively row) operation
&, then E~1 is the elementary matrix obtained from the identity matrix by the elementary
column (respectively row) operation ER.

Proof. Suppose that E is obtained from the identity matrix by an elementary column
(respectively row) operation &. Let V be a vector space over F, and let y be an ordered
basis for V, and let § be obtained from y by & (respectively &*). Then by Lemma we
know that E = [1V]Z.

(1). Lemma implies that E is invertible.

(2). By Lemma|5.9.4{(2) we know that E~! = [1V]§. It follows from Lemma [6.1.7|that y

can be obtained from f by ER (respectively (SA)R). Then by Lemma 6.2.2) we know that
E~! is obtained from the identity matrix by EX applied to the columns of the identity

A
matrix (respectively ((SA)R) applied to the rows of the identity matrix, and observe that
A
((SA)R) = ER by Lemma 6.1.6((5) and ). O

Exercises

Exercise 6.2.1. Let F be a field. Let A € My;»,(F). Prove that A can be transformed into
an upper triangular matrix by a finite sequence of Type 1 and Type 3 elementary row
operations.

Exercise 6.2.2. Find a linear map f: R? — R? such that there is a basis f such that [ f ]g isa

Type 1 elementary matrix, and such that there is another basis y such that [ f ]; is a Type 2
elementary matrix.

Exercise 6.2.3. Let V be a finite-dimensional vector space over a field F, let f be an ordered
basis for V,and let f: V — V be a linear map. Then [ f ]g is an elementary matrix if and
only if f(B) can be obtained from f by an elementary move.
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6.3 | Rank of a Matrix

Friedberg-Insel-Spence, 4th ed. — Section 3.2

Definition 6.3.1. Let F be a field. Let A € My, (F).

1. The column rank of A, denoted columnrank A, is the dimension of the span of the
columns of A in F™

2. The row rank of A, denoted rowrank A, is the dimension of the span of the rows of
Ain F". A
Definition 6.3.2. Let F be a field. Let A € M;;x,,(F). The rank of A, denoted rank A, is the
column rank of A. A

Lemma 6.3.3. Let F be a field. Let A € Myx,(F). Then rankLg = rank A.

Proof. Note that rankL4 = dim(imA), and note that Ly is a map F" — F". Let
B = {e1,...,es}be the standard ordered basis for F". Then imLs = span{La(B)} =
span{Aei, ..., Ae,}. Note that Ae; is the ith column of A foralli € {1,...,n}. ThenimLy4
is the span of the columns of A. Hence rank L4 is the dimension of the span of the columns
of A. O

Lemma 6.3.4. Let V, W be vector spaces over a field F, and suppose that V and W are finite
dimensional. Let 5 be an ordered basis for V, and let y be an ordered basis for W. Let f: V — W
be a linear map. Then rank f = rank] f ]Z.

Proof. (We follow [Ber92, pp. 99-100].) Look at the commutative diagram in Remark [5.8.2|
Using that notation, and by Theorem 5.8.1) (2), we have Losodp = ¢y o f. Then
rank(Le(s) o ¢p) = rank(¢, o f). By Theorem we know that ¢g and ¢, are iso-
morphisms. It now follows from Lemma that rank Lo ) = rank f, and then use the
definition of ®(f) and Lemma [6.3.3| O

Lemma 6.3.5. Let F be a field. Let A € My, (F), let B € Myxy(F), let C € Myxyu(F), let
P € My, (F) and let Q € My, (F). Suppose that P and Q are invertible.

1. rank AQ = rank A.
2. rank PA = rank A.
3. rank PAQ = rank A.
4. rank AB < rank A.

5. rank AB < rank B.
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Proof. We prove Part (I); the remaining parts of this lemma are left to the reader in
Exercise [6.3.2]

(1). By Corollary we see that Lg is an isomorphism. We compute rank AQ =
rank(Lag) = rank(Ls o L) = rank(L4) = rank A, where the first equality is by Lemma

the second equality is by Lemma (®), the third equality is by Lemma (D), and
the fourth equality is by Lemma|6.3.3| O

Lemma 6.3.6. Let F be a field. Let A € Myxn(F). Let B € Myx,(F) be obtained from A by
performing an elementary row or column operation. Then rank B = rank A.

Proof. Combine Lemma Lemma and Lemma [6.3.5 O

Theorem 6.3.7. Let F be a field. Let A € My,x,(F). Suppose that rank A = r. Then there exist
matrices P € My, (F) and Q € My x,,(F) such that P and Q are invertible, and that

-l )

where O denotes the appropriate zero matrices.

Proof. Let f be the standard ordered basis for F”, and let y be the standard ordered basis
tor F". Then by Lemma [5.6.3| (1)) we know that [LA]Z = A. By Exercise [5.5.4|there is an

ordered basis a for F" and an ordered basis 6 for F” such that [L4]% has the form

I, O
[LA]g: lo Ol’

where O denotes the appropriate zero matrices, for some r € {0,1,...,n}. Now, by
Lemma and Lemma [6.3.4, we know that

rank A = ranklLy = rank[LA]Z = rank[g 8] =r.

Let Q be the change of coordinate matrix that changes a-coordinates into p-coordinates,
and let P be the change of coordinate matrix that changes y-coordinates into 6-coordinates.
We know from Lemma that Q and P are invertible. By Lemma we know
that P~ is the change of coordinate matrix that changes 5-coordinates into y-coordinates.
It now follows from Theorem [5.9.5(that [L4]S = (P‘l)‘l[LA]gQ = P[LA];;Q. Combining

this last fact with previous observations, the proof is complete. m]

Lemma 6.3.8. Let F be a field. Let A € My, (F). Then rank A’ = rank A.
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Proof. (This proof follows Friedberg-Insel-Spence, 4th ed.) By Theorem we know
that there are invertible matrices P € M,;x,,(F) and Q € M,;x,,(F) such that

PAQ = lg 8].

Let D denote the right hand side of the above equation. It is clear from the simple nature
of D that rank D = columnrank D = columnrank D = rank D. We know that P~! and
Q7! are invertible, and hence so are (P~!)f and (Q~!)! by using Lemma Note that

A =P7'DQL. Then, using Lemma and Lemma we have

rank A" = rank(Q")!D!(P™')! = rank D! = rank D = rank P"'DQ! = rank A. O

Theorem 6.3.9. Let F be a field. Let A € My,xn(F). Then columnrank A = rowrank A.

Proof. By Lemma we have rowrank A = columnrank A’ = rank A’ = rank A
columnrank A.

Remark 6.3.10. It follows from Theorem that rank A = rowrank A. 0

Exercises

Exercise 6.3.1. Let F be a field. Let A € My;,»,(F). Prove that rank A = 0 if and only if A is
the zero matrix.

Exercise 6.3.2. Prove Lemma @), @), @) and (B).

Exercise 6.3.3. Let V, W be vector spaces over a field F, and let f, g: V — W be linear
maps.

(1) Prove thatim(f + g) C im f +im g. (See Definition for the definition of the
sum of two subsets.)

(2) Suppose that W is finite-dimensional. Prove that rank(f + g) < rank f + rank g.
(3) Let F be a field. Let A, B € My,x,,(F). Prove that rank(A + B) < rank A + rank B.

Exercise 6.3.4. Let F be a field. Let A € M;,x,(F). Suppose that rank A = m. Prove that
there exists B € M,;x;,;,(F) such that AB = I,.
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6.4 | Invertibility of Matrices

Friedberg-Insel-Spence, 4th ed. — Section 3.2

Corollary 6.4.1. Let F be a field. Let A € Myx,(F). Then A is invertible if and only if rank A = n.

Proof. Combine Corollaries and Lemma [6.3.3] O
Theorem 6.4.2. Let F be a field. Let A € My, (F).

(1) The following are equivalent.

(a) There exists B € My, x,,(F) such that AB = I,,.
(b) There exists C € M, x,,(F) such that CA = I,,.

(c) A is invertible.
(2)

(a) If a matrix B € My, (F) satisfies AB = I,,, then A is invertible and B = AL
(b) If a matrix C € Myx,,(F) satisfies CA = I,,, then A is invertible and C = AL

Proof. (We follow [Ber92, pp. 126-127].)

(1). Itis clear that (c) implies each of (a) and (b). We will show that (a) implies (c); the
proof that (b) implies (c) is similar. Let V be an n-dimensional vector space over F, and let
p be an ordered basis for V. By Theorem [5.8.1we know that there are unique linear maps
f,8:V — V such that ®(f) = A and ®(g) = B. By Theorem[5.6.1]and Lemma 5.5.3 () we
deduce that ®(f o g) = O(f)P(g) = AB =1 = ®(1y). It follows from Lemma that
f og =1y. Hence g is a right inverse of f. It follows from Corollary 4.4.5 that g is a left
inverse of f, which means that g o f = 1y. Be applying @ to both sides of this equation, we
deduce that BA = I, and hence A has an inverse, and hence is invertible.

(2). This part follows from the proof of Part (1). |

Theorem 6.4.3. Let F be a field. Let A € My, (F). Then A is invertible if and only if A is the
product of finitely many elementary matrices.

Proof. First, suppose that A is the product of finitely many elementary matrices. It
follows immediately that A is invertible, because elementary matrices are invertible by
Lemma (1), and the product of finitely many invertible matrices is invertible by
Lemma and induction.

Now suppose that A is invertible. Let  be the standard ordered basis for F"”. By

Lemma [5.6.3( (1) we know that [LA]g = A. By Corollary 5.7.2( (1) we know that L4 is an
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isomorphism. Let y = L4(p). It follows from Lemma that y is an ordered basis for F".
From Exercise[5.7.1 H we know that [LA]; is the identity matrix.

We now use Theorem to see that there is a finite collection of bases f =
ao,a1,...,a, = y of F" such that a; is obtained from a;-; by an elementary move.
Clearly

I—A = 11:;1 O---Oan OLA.
N’
p times

We then use Theorem [5.6.1]to deduce that

[LaTy = [pndae - LT TLall,

and hence

A=[1p]e - [Ip ]l '
Finally, we know by definition that [1 pn]gj‘l is an elementary matrix foralli € {1,...,p}.
We have therefore expressed A as a product of finitely many elementary matrices. O

Corollary 6.4.4. Let F be a field. Let A € My,x,(F). Suppose that rank A = r. The A can
be transformed by a finite number of elementary row and column operations into the matrix
D € My, (F) given by

I, O
o=|5 o)
where O denotes the appropriate zero matrices.
Proof. Combine Theorem [6.3.7/and Theorem and Lemma [6.2.5 O

Definition 6.4.5. Let F be a field. Let A € M;;x,(F), and let B € My, (F). The augmented
matrix formed by A and B, denoted [A|B], is the m X (n + p) matrix formed by the columns
of A and B, in that order. A

Remark 6.4.6. Let F be a field. Let A € My;x,(F), let B € My;xp(F), and let C € My, (F).
Then C[A|B] = [CA|CB] o

Theorem 6.4.7. Let F be a field. Let A € M, (F).

1. A is invertible if and only if A can be transformed by a finite number of elementary row
operations into I,.

2. If A is invertible, then [A|L,] can be transformed by a finite number of elementary row
operations into [I,|B] for some B € Myx,(F), and then B = A™L.

Proof. We do both parts of the theorem together.

Suppose that A is invertible. By Theorem [6.4.3|we know that A is the product of finitely
many elementary matrices. Let A = E1E; - - - Ex, where Eq, Ey, ..., Ey are n X n elementary
matrices. Then A = E1E;---Exl,. By Lemma we know that Eq, E,, ..., Ej are
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invertible. Hence, using Lemma , we see that (Ex) YEe_1) ™t ---(E1)'A = I,.
By Lemma we know that (Ex)7™!, (Ex_1)7! ..., (E1)™! are elementary matrices.
By Lemma we can think of each of (Ex)™!, (Ex-1)™! ..., (E1)™! as obtained by do-
ing an elementary row operation applied to the identity matrix. By Lemma we
see that (Ex)"!(Ex—1)7'---(E1)"'A is the result of doing k row operations to A. But
(Ex) Y(Ex-1)"' -+ (E1) A = I,;, so we deduce that A can be transformed by a finite number
of elementary row operations into I,,. That proves one of the directions of Part (T).

Moreover, let B = (Ex)™'(Ex1)~ - -+ (E1)~'. Hence BA = I,,. Then by Theorem 2)
implies that B = A™!. Using Remark we see that

(Ex) M (Ek=1) "+ (E) T [AlL]
= [(E) ' (Ex) ™+ (E)TANER) ™ (Exo1) ™t -+ (E1) '] = [14|B].

By Lemma we see that (Ex)"'(Ex_1)7!--- (E1)"![A]l,,] is the result of doing k row
operations to [A|I,]. That proves Part .

Next, suppose that A can be transformed by a finite number of elementary row
operations into I,. By Lemma there are elementary matrices G1,Go, ..., Gy
such that G1G2---GyA = I,. Let D = G1G2---Gp. Then DA = I,. It follows from
Theorem [6.4.2(2) that A is invertible. O
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6.5 | Linear Equations-Theory

Friedberg-Insel-Spence, 4th ed. — Section 3.3

Definition 6.5.1. Let F be a field. Let m,n € N. A system of m linear equations in
n unknowns over F is a system of equations with unknowns x1, x2, ..., x,, that can be

written in the form
aiix1 +apxy +---+adipxy = bl

ar1X1 + axpXxXy + -+ doyXy = bz
@)
A1 X1 + Ap2X2 + -+ Ay Xy = by,
for some a11,412,...,4mn € Fand by,bs,...,b,, € F. A

Remark 6.5.2. The system of linear equations given in Equation (1) can be rewritten via
matrices as follows. Let

a1 daip a3 - i b1 X1

A1 dyp a3 -+ Ay by X2
A=| . ) L . and b=| . and x =

Aml Am2 Am3 - Amn b Xn

Observe that A € My;x,(F), and b € F™ and x € F". The system of linear equations is
equivalent to the single equation Ax = b. ¢

Definition 6.5.3. Let F be a field. Let A € M,;x,(F), and b € F™.
1. A solution to the equation Ax = b is any vector y € F" such that Ay = b.
2. The solution set of the equation Ax = b is the set of all solutions of the equation.
3. The equation Ax = b is consistent if the solution set is not empty.
4. The equation Ax = b is inconsistent if the solution set is empty.
5. The equation Ax = b is homogeneous if b = 0.
6. The equation Ax = b is non-homogeneous if b # 0. A

Theorem 6.5.4. Let F be a field. Let A € My, (F). Let K be the solution set of the homogeneous
system of linear equations Ax = 0.

1. K is a subspace of F".

2. dim(K) = n — rank(A).
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3. If m < n, then the system of equations has a non-zero solution.
Proof. The proof is based upon the observation is that K = ker L4.

(1). This part of the theorem follows immediately from Lemma applied to the
linear map L.

(2). Observe that nullity(L4) = dim(K). By Lemma we know that rank(Ly) =
rank(A). The Rank-Nullity Theorem (Theorem 4.3.2) says that nullity(L4) + rank(L4) =
dim(F"), which implies that dim(K) + rank(A) = n.

(3). Suppose that m < n. We know by Remark [6.3.10| that rank A = rowrank A. But
rowrank A < m < n, so that rank A < n. It follows from Part of this theorem that
dim(K) > 0, and therefore K has elements other than 0. O

Theorem 6.5.5. Let F be a field. Let A € My,;x,(F) and let b € F™. Let Ky be the solution set of
the homogeneous system of linear equations Ax = 0. If s is any solution to the system of linear
equations Ax = b, then the solution set of Ax = b is s + Kp.

Theorem 6.5.6. Let F be a field. Let A € My x,(F) and let b € F".
1. If A is invertible, the system of linear equations Ax = b has a unique solution.

2. If A is not invertible, the system of linear equations Ax = b has either no solutions or
infinitely many solutions

Proof. By Corollary[5.7.2)(T) we know that A is invertible if and only if L 4 is an isomorphism.
By Corollary we know that L4 is an isomorphism if and only if it is injective. By
Lemma [4.2.4) we know that L4 is injective if and only if ker Ly = {0}.

Let Ky be the solution set of the homogeneous system of linear equations Ax = 0.
Observe that Kiy = ker Ls. By Theorem[6.5.5, we know that if s is any solution to the system
of linear equations Ax = b, then the solution set of Ax = bis s + Kg.

First, suppose that A is invertible. Then Ky = {0}. Moreover, because A is invertible,
we know that x = A~1b is a solution. Hence the solution setis A~'b + {0} = {A~'b}. Hence
there is a unique solution.

Second, suppose that A is not invertible. Then Ky # {0}. Because Ky = kerlL4 is a
non-trivial subspace of F", then it is an infinite set.

If Ax = b has no solution, then there is nothing to prove. Suppose that Ax = b has a
solution s. Then the solution set is s + Ky, which is infinite. ]

Corollary 6.5.7. Let F be a field. Let A € My, (F) and let b € F". The system of linear equations
Ax = b has a unique solution if and only if A is invertible.
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7.1 | Determinants—the 2 X 2 Case

Friedberg-Insel-Spence, 4th ed. — Section 4.1

Definition 7.1.1. Let F be a field. Let A € Mxo(F). Suppose A is given by A = [‘Cl Z]. The
determinant of A, denoted det A, is defined by det A = det[? Z ] =ad — bc. A

Theorem 7.1.2. Let F be a field. Let A € Maxa(F).
1. A is invertible if and only if det A # 0.
2. If A = [ 1 322 ] is invertible, then

A1 1 lﬂzz —61121'

- detA|—-ax an

Exercises

Exercise 7.1.1. Let F be a field. Let A € Mpxo(F). Let B be obtained from A by interchanging
the two columns. Prove that det B = — det A.

Exercise 7.1.2. Let F be a field. Let 6: Maxo(F) — F be a function that satisfies the following
three properties.

1. The map 6 is a linear function of each column, when the other column is held fixed.
2. If A € Myxo(F) and A has two identical columns, then 6(A) = 0.
3. 6(I) =1.

Using only what has been discussed so far in these notes, prove that 6(A) = det A for all
A € Mpyo(F). Do not use any theorems stated later in these notes.
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7.2 | Determinants—Axiomatic Characterization

Friedberg-Insel-Spence, 4th ed. — Section 4.2

Definition 7.2.1. Let F be a field, and let n € N. Let 6: M;,x,,(F) — F be a function. The
function ¢ is n-linear if it is linear as a function of each column when the other columns
are fixed. That is, if (a1]...|a,) € Myx,(F),ifi € {1,...,n},if x € F" and if ¢ € F, then

O(ai] ... lai-1|ai + x|aj] ... lay) =
o(ar]...lailailaisal .. . lan) + o(a1|.. . |ai-1lx|aisl . . . |a,)
and
o(ar| ... |ai-1|cailai| ... lan) = c - 0(a1|...|ai-alailail ... |an). A

Definition 7.2.2. Let F be a field, and let n € N. Let 6: M;,x,,(F) — F be a function. The
function ¢ is alternating if 6(A) = 0 whenever A € M,,«,(F) has two identical adjacent
columns. A

Theorem 7.2.3. Let F be a field. Let n € N. Then there is a unique function 6: Myx,(F) — F
satisfying the following three criteria.

1. 6 is n-linear.
2. 6 is alternating.
3. 6(I,) = 1.
Lemma 7.2.4. Let F be a field. Let A € M« (F), and let c € F.
1. If B is obtained from A by interchanging two columns, then det B = — det A.
2. If any two columns of A are identical, then det A = 0.

3. If B is obtained from A by adding a scalar multiple of one column to another column, then
det B = det A.

4. If A has a column that is entirely zero, then det A = 0.
5. If the columns of A are linearly dependent, then det A = 0.
6. Ifrank A < n, then detA = 0.

Proof.
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(1). We first prove the result for interchanging two adjacent columns. Suppose that
A = (a1]az| - - - |a,), and we interchange columns i and 7 + 1. Observe that the alternating
property implies that det(ay|- - - |a; + ai+1|a; + ai+1] - - - |an,) = 0, and then use linearity and
alternating to derive the result. Next, we show that interchanging any two columns can
be obtained by an odd number of interchanges of adjacent columns, which is proved by
induction on the distance of the two columns to be interchanged.

(2). If we interchange the two identical columns, on the one hand we do not change the
matrix, and on the other hand we obtain negative of the original determinant. The only
way out is if the original determinant were zero.

(3). This part is relatively straightforward, using linearity, and Part (2) of this lemma.
(4). This part is straightforward, using linearity to factor out a zero.

(5). Suppose that the columns are linearly dependent. Then there is a column, say
ay, that is a linear combination of the other columns. Hence, we can subtract a linear
combination of the other columns from this column to obtain a zero column, without
changing the determinant.

(6). This part follows from Part of this lemma and the definition of rank of a
matrix. m|

Lemma 7.2.5. Let F be a field. Let A € Myx,(F). If A is upper triangular or lower triangular,
then det A is the product of the diagonal elements of A.

Proof. We outline the proof, omitting some of the details.

Suppose that A is upper triangular or lower triangular.

First, suppose that A has a zero on the diagonal. It can then be seen that rank A < n. By
Lemma (6) it then follows that det A = 0, which is what the product of the diagonal
elements equals.

Second, suppose that all the diagonal elements of A are non-zero. Let dy, ..., d, be the
diagonal elements. We then factor out the diagonal elements, resulting in a matrix B that
has every diagonal element equal to 1. By the n-linearity of the determinant, we see that
det A =dq ---d, det B. It can be seen that by doing appropriate Type 3 column operations
on B, we can transform B into [,,. By Lemma we deduce that det B = detI,, = 1. It
follows that detA =dy---d,,. O

Exercises

Exercise 7.2.1. Let F be a field. Let n € N. Let 6, y: Myxx(F) — F be functions, and let
k € F.

(1) Suppose that 6 and y are n-linear. Prove that 6 + y and 6 — y and ko6 are n-linear.
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(2) Suppose that 6 and y are alternating. Prove that 6+ and 6 —y and k¢ are alternating.

Exercise 7.2.2. Let F be afield. Let n € N. Let A € M,,x,,(F). Let 6: M,,»,,(F) — F be defined
by 0(X) = det(AX) for all X € M, x,(F). Prove that 0 is n-linear and alternating.

Exercise 7.2.3. Let F be a field. Let A € M;,«,(F), and let k € F. Prove that det(kA) =
k" det A.

Exercise 7.2.4. Let F be a field. Let A € M,,«,(F). For which values of # is it the case that
det(—A) = det A?

Exercise 7.2.5. Let F be a field. Let A € M;x,(F). Suppose that A is given by A =
(a1|laz|---|a,), where a; € F" is a column vector for all € {1,...,n}i. Let B € M, x,,(F) be
given by B = (a,|a,—1|---|a1). Calculate det B in terms of det A.
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7.3 | Determinants—Elementary Matrices and Con-
sequences

Friedberg-Insel-Spence, 4th ed. — Section 4.3

Lemma 7.3.1. Let F be a field. Let E € M,,x,,(F) be an elementary matrix.
1. If E is obtained from I,, by interchanging two columns, then detE = —1.
2. If E is obtained from I,, by multiplying a column by a non-zero scalar k, then det E = k.
3. If E is obtained from I, by adding a scalar multiple of one column to another, then detE = 1.
4. detE! = detE.
Proof. Left to the reader in Exercise m]
Theorem 7.3.2. Let F be a field. Let A, B € My, (F). Then det(AB) = det A - det B.

First Proof of Theorem We have three cases regarding B.
Case 1: Suppose that B is an elementary matrix. There are now three subcases,
depending upon the type of elementary matrix that B is.

Type 1: Suppose that B is obtained from I, by a Type 1 column operation, which means
switching two columns. By Lemma(6.2.5|AB is the result of switching two columns
of A. By Lemma(7.3.1] (T) we know that det B = —1. By Lemma we know that
det(AB) = —det A, and it follows that det(AB) = det A - det B.

Type 2: Suppose that B is obtained from I, by a Type 2 column operation, which means
one column is multiplied by a non-zero element ¢ € F. By Lemma AB is
the result of multiplying a column of A by c. By the axioms for the determinant
function, we see that det B = cdetI, = ¢, and that det(AB) = c det A. It follows that
det(AB) = det A - detB.

Type 3: Suppose that B is obtained from I,, by a Type 3 column operation, which means
adding a scalar multiple of one column to another column. By Lemma AB
is the result of adding a scalar multiple of one column of A to another column of
A. By Lemma we know that det B = 1. By Lemma we know that
det(AB) = det A, and it follows that det(AB) = det A - det B.

Case 2: Suppose that rank B < n. Hence by Corollary we know that B is not
invertible. By Lemma we see that rank AB < rank B < n. By Lemma (6) we
deduce that det AB = 0 and det B = 0. Then det AB = 0 = detA - detB.
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Case 3: Suppose that rank B = n. Hence by Corollary we know that B is invertible.
By Theorem we see that B is the product of finitely many elementary matrices. Let
B = E1E;---Ey, where Eq, Ey, ..., Ey are n X n elementary matrices. Then by Case 1 we
have

det(AB) = det(AE1E; - - - Ey)
= det(AE{E; - - - Ex_1) det(Ey)
= det(AE1E; - - - Ex_p) det(Ex_1) det(Eg)

= det(A) det(Eq) det(Ey) - - - det(Ex_1) det(Ey)
= det(A) det(E1E,) det(E3) - - - det(Ex_1) det(Ey)
= det(A) det(E1EE3) - - - det(Ex_1) det(Ey)

= det(A)det(E1EzE3--- Ex) = det A - det B. O

Second Proof of Theorem[7.3.2] (We follow [Cur74) pp. 147-148].) There are two cases.

First, suppose that detA = 1. Let 6: M;,x,(F) — F be defined by 6(X) = det(AX) for all

X € Myxn(F). By Exercise we know that ¢ is n-linear and alternating. Moreover, we

have 6(I,,) = det(Al,) = detA = 1. Hence 6 satisfies the three criteria in Theorem [7.2.3]

and therefore 6 = det. It follows that det(AB) = 6(B) = detB =1-detB = det A - detB.
Next, suppose that det A # 1. Let y: M,,x,(F) — F be defined by

det X — det(AX)
1—-detA

for all X € M,,x,(F). By Exercise and Exercise we know that y is n-linear and
alternating. Moreover, we have

y(X) =

detl, —det(Al,) 1-detA _
1—detA T 1—detA

y(n) =
Hence y satisfies the three criteria in Theorem and therefore y = det. It follows that

det B — det(AB)

detB = y(B) = T~ detA

Hence detB - (1 —det A) = det B — det(AB), and it follows that det B - det A = det(AB). O
Corollary 7.3.3. Let F be a field. Let A € M, (F).

1. A is invertible if and only if det A # 0.
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2. If A is invertible, then
1

det(A™!) = ——.

etA™) det A

Proof. First, suppose that A is invertible. Then there is a matrix A7l e M, xp (F) such that
AA™l =1, = A71A. By Theorem and the definition of the determinant function we
deduce that detA - det(A™) = det(I,,) = 1. Because detA and det(A~') are real numbers, it
follows that det A # 0 and that det(A™!) = L

detA"
Now suppose that A is not invertible. By Corollary we deduce that rank A < n.
By Lemma (6) we deduce that det A = 0. O

Corollary 7.3.4. Let F be a field. Let A € My, (F) and let b € F". The system of linear equations
Ax = b has a unique solution if and only if det A # 0.

Proof. Combine Corollary and Corollary (@. O

Corollary 7.3.5. Let F be a field. Let A, B € Myx,(F). Suppose that A and B are similar. Then
det A = detB.

Proof. Because A and B are similar, there is an invertible matrix Q € M;x,(F) such that
A = Q7'BQ. Using Theorem and Corollary we deduce that det Q # 0, and that

detA = det(Q'BQ) = det(Q~') - detB - detQ = ﬁ -detB - detQ = detB. O

Theorem 7.3.6. Let F be a field. Let A € Myx,,(F). Then det A' = det A.

Proof. First, suppose that A is not invertible. By Corollary[6.4.1jwe deduce that rank A < 7.
By Lemma we see that rank A’ = rank A < n. It now follows from Lemma @ we
deduce that det A’ = 0 = det A.

Second, suppose that A is invertible. By Theorem [6.4.3| we see that A is the product
of finitely many elementary matrices. Let A = E1E; - - - Ex, where E1,Ey, ..., Exaren X n
elementary matrices. By Lemma @) we see that det(E;)! = detE; foralli € {1,...,k}.
It follows from Lemma and Theorem that

det A" = det(E1E; - - - Ex)!
= det[(Ex) (Ex—1)' - -~ (E1)']
= det(Ey)" - det(Ex_1)" - - - det(Eq)
= det(Ey) - det(Ex_1) - - - det(Eq)
= det(Eq) - det(Ep) - - - det(Ey)
= det(E1E; - - - Ex) = det A. O

Definition 7.3.7. Let V be a vector space over a field F, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. The determinant of the linear map f is defined to
be equal to det[f ], for any ordered basis  for V. A
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Exercises

Exercise 7.3.1. Prove Lemma

Exercise 7.3.2. Let Q € Myx,(R). The matrix Q is an orthogonal matrix if QQ! = I.
Prove that if Q is orthogonal, then det Q = +1.

Exercise 7.3.3. Let F be a field. Let B € M;x,(F). Suppose that B is given by B =
(b1|b2| - - - |bn), where b; € F" is a column vector for all i. Assume that b; # b; wheni # j.
Let p = {b1,...,bs}. Prove that 8 is a basis for F" if and only if det B # 0.
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7.4 | Determinants—Computing

Friedberg-Insel-Spence, 4th ed. — Section 4.2

Definition 7.4.1. Let F be a field. Let A € M,,«,,(F). Leti,j € {1,...,n}.

1. Let A; j be the (n —1) X (n — 1) matrix obtained by deleting the i row and j column
of A.

2. The ijth cofactor of A, denoted A;}, is defined by A;; = (=1)i* detAi]-.
3. The cofactor matrix of A, denoted cof A, is the matrix [A;;]. A

Theorem 7.4.2. Let F be a field. Let n € N be such that n > 2. Let A € Myx,(F). Let
ie{l,...,n}. Then

n

n
detA = Z(_l)i+kﬂik -det(Aj) = Z aikAik
k=1 k=1

and
n

n
detA = Z(—l)i+kaki . det(Akl-) = ApiAxi.
k=1 k=1
Theorem 7.4.3 (Cramer’s Rule). Let F be a field. Let A € Myx,(F) and let b € F". Ifdet A # 0,
then the system of linear equations Ax = b has a unique solution, which is given by

o= det M;
"7 detA

foreachi e {1,...,n}, where M; € Myx,,(F) is obtained by replacing the ith column of A with b.
Proof. Suppose det A # 0. By Corollary we know that the system of linear equations

1
Ax = b has a unique solution. Let x = l : ] be that unique solution.
X

Let {eq, ..., e, } be the standard basis for F".

Letk € {1,...,n}. Let v be the k™ column of A. Observe that Aey = vy. Let Xi be the
result of taking I,, and replacing the k' column by x. Observe that AXy = M.

We can find det Xy by expanding along the k' row, which yields det X; = x;. Also,

using Theorem we see that det My = det(AXy) = detA - det X = det A - xi, and that

yields xj = 0k O

Theorem 7.4.4. Let F be a field. Let A € Myx,,(F). If det A # 0O, then A is invertible and

Al L

= fA).
de’cA(CO )
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Proof. The proof is outlined in Exercise O

Exercises

Exercise 7.4.1. Let F be a field. Let A € M;;»,,(F). Suppose det A # 0. The purpose of this

exercise is to prove that
1
-1

- detA

Let {e1, ..., e, } be the standard basis for F".
Recall the definition of the cofactor matrix cof A = [Ai]'] of A given in Definition m

(cof A)".

(1) Letj k€ {1,...,n}. Let By € Myx,(F) be obtained by replacing the k' column of A
with e;. Prove that det By = A .

(2) Letr € {1,...,n}. Let D, be the the rt" column of (cof A)¢. Prove that AD, = detA-e,.
(Hint: Use Cramer’s Rule with the system of linear equations Ax = e;.)

(3) Prove that A(cof A)' = detA - I,,.

(4) Deduce that
A !

- det A

Exercise 7.4.2. Let F be a field. Let A € M, x,(F). Suppose that thereissomep € {1,...,n—
1}, and there are matrices B € M,x,(F), and C € My (,—)(F) and D € M, _p)x(u—p)(F), such
that A can be written as

4 - lB cl

(cof A):.

O D
where O € M(;,_p)xp(F) is the zero matrix. Prove that det A = detB - det D.
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7.5

Determinants—Proof of Theorem
orem 7.4.2

7.2.3

and The-

Friedberg-Insel-Spence, 4th ed. — Section 4.5

Proof of Theorem|7.2.3|and Theorem Step 1: We start with the uniqueness part of
Theorem [7.2.3] Here we follow [Cur74, pp. 140-141]. Let n € N, and let 6, y: My (F) — F
satisfying the three criteria listed in Theorem We will show that 6 = y. Define
A: Myxn(F) — F by A(A) = 6(A) — y(A) for all A € M,x,(F). We will show that A is
constantly zero, and that will imply that 6 = y.

We can easily deduce some elementary properties of A. Because 6 and y are both
n-linear and alternating, it is easy to see that A is also n-linear and alternating. Moreover,
we can apply Lemma to each of 6 and y, and we can then deduce that if A € M,;,,(F),
and then if B is obtained from A by interchanging two colums, then AB = —AA, and if any
two columns of A are identical, then AA = 0. Finally, because 6(I,) = 1 = y(I,), it follows
that A(I,) = 0.

We can think of A as a function of n column vectors in F". If A € M;,«x,(F), and if
A can be written as columns (a1|-- - |a,), then we will write A(A) as A(a1,...,a,). As

always, let ey, ..

., e, denote the standard basis for F”. We then see that I,, = (e1|---|en),

and hence A(ey, ..., e,) = 0. Next, suppose that ky,...,k, € {1,...,n}. We claim that

A(ekl, ..

.,ek,) = 0. There are two cases to look at. If the numbers ki, ..

7

k, are not all

distinct, then the matrix (ek, | - - - |ex,) has at least two identical columns, and in that case we

know A(ex,, .
distinct. Then ki, . .

., ek,) = 0. On the other hand, suppose that the numbers kq, ..
., k;, can be obtained by rearranging the numbers 1, ..., n. In that case,

.,k are all

the matrix (eg, | - - - |ex,) is obtained from the identity matrix by a finite number of column
interchanges. If follows that A(ek,, ..., ex,) = £A(e1, ..., en) = 0. Thus we have proved the

claim.

Finally, suppose that we have A € M,x,(F). We write A as (ai|---|a,). For each
j € {1,...,n}, we can write a; = ZZ:l cjkex, for some scalars cxj. Then, using the
n-linearity of A, we see that

n

n
A(ﬂl, o /ai/l) = A(Z Clklekll cecy Z Ci’lknekn)
k1=1

kn,=1

n n
= Z Z Clky ** * Cok, A€y, - - -, €k,) = 0.
k1=1 kn=1

We now see that A is constantly zero, and that proves uniqueness.

Step 2: We now simultaneously show the existence part of Theorem and all of
Theorem Here we follow follow [Lan66, pp. 96-98]. For this part we will leave out
the details. We proceed by induction on n.
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Base Case: It is easy to define determinants in the 1 X 1 and the 2 X 2 cases. It is trivial
to see that the definition of the determinant in the 1 X 1 case satisfies the three properties
listed in Theorem [7.2.3] and we know from Section[7.1|that the definition of the determinant
in the 2 X 2 case satisfies the three properties listed in Theorem [7.2.3]

Inductive Step: Let n € N. Suppose that n > 3, and that determinants have been
defined in the (1 —1)x(n —1) case, in a way that satisfies the three properties in Theorem
and also satisfies Theorem [7.4.2]

Leti € {1,...,n}. We then define maps 6;, yi: Myx,(F) — F as follows. If A € M, (F),
then let

n n

5i(A) = ) (-1)**ay - det(Ay) and yi(A) = D (<1)*ay; - det(Ay)).
k=1 k=1

With a bit of work, it can be shown that 6; and y; satisfy the three properties listed in
Theorem 7.2.3] We will skip those details, leaving them to the reader.

We now know by Step 1 of this proof that 61,...,04,y1,..., Vs are all equal. We then
define the n X n determinant to be the function det: M, x,(F) — F given by det(A) =
0i(A) =yi(A) forany i € {1,...,n}, where A € Myx,,(F). It now follows immediately that
the n X n determinant satisfies all three properties of Theorem[7.2.3} and that Theorem7.4.2]
holds as well. O
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8.1 | Eigenvalues

Friedberg-Insel-Spence, 4th ed. — Section 5.1

Definition 8.1.1. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Let v € V. The
vector v is an eigenvector of f if v # 0 and f(v) = Av for some A € F; the scalar A is
theeigenvalue of f corresponding to v.

2. Let A € Myxu(F). Let v € F". The vector v is an eigenvector of A if v # 0 and
Av = Av for some A € F; the scalar A is theeigenvalue of A corresponding tov. A

Lemma 8.1.2. Let F be a field. Let A € My« (F). Then A € F is an eigenvalue of A if and only if

Proof. Let A € F. Then A is an eigenvalue of A if and only if there is some non-zero vector
v € F" such that Av = Av, which is true if and only if (A — AL,)v = 0. But, we know that
(A — AL,)0 = 0, so there is a non-zero vector v € F" such that (A — Al,)v = 0 if and only
if the system of linear equations (A — Al,;)x = 0 has more than one solution, which, by
Corollary[7.3.4} is true if and only if det(A — AI,) = 0. O

Definition 8.1.3. Let F be a field. Let A € M,,x,(F). The characteristic polynomial of A is
det(A — xI). A

Remark 8.1.4. Let F be a field. Let A € M;,»,(F). The eigenvalues of A are precisely the
roots of the characteristic polynomial of A. ¢

Lemma 8.1.5. Let F be a field. Let A € My, (F).

1. The characteristic polynomial of A has degree n, and leading coefficient (—1)".

2. A has at most n distinct eigenvalues.
Proof. The proof of this lemma is straightforward, and we omit the details. m|
Theorem 8.1.6. Let n € N. Let A € Myxn(R). If n is odd, then A has at least one eigenvalue.

Lemma 8.1.7. Let F be a field. Let A € Myx,(F). If A is upper-triangular or lower-triangular,
then the eigenvalues of A are the diagonal elements of A.

Proof. Observe that the matrix A — Al is upper-triangular or lower-triangular-. The result
then follows straightforwardly from Lemma O

Lemma 8.1.8. Let F be a field. Let A € My,x,(F), and let A € F be an eigenvalue of A. Let v € F".
Then v is an eigenvector for A if and only if v # 0 and (A — AlL,)v = 0.
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Proof. Trivial. O

Lemma 8.1.9. Let F be a field. Let A, B € Myx,(F). Suppose that A and B are similar. Then A
and B have the same characteristic polynomials, and the same eigenvalues.

Proof. 1t is left to the reader in Exercise to show that A and B have the same
characteristic polynomials. Because the eigenvalues of a matrix are just the roots of the
characteristic polynomial, then there is nothing more to prove. m|

Lemma 8.1.10. Let V' be a vector space over a field F, and let f: V — V be a linear map. Suppose
that V is finite-dimensional. Let § and B’ be ordered bases for V. Then [ f g and [ f g have the
same characteristic polynomials, and the same eigenvalues.

Proof. The result follows immediately from Corollary[5.9.10jand Lemma|8.1.9| O

Definition 8.1.11. Let V be a vector space over a field F, and let f: V — V be a linear
map. Suppose that V is finite-dimensional. The characteristic polynomial of f is the
characteristic polynomial of the matrix [ f g for any ordered basis  of V. A

Theorem 8.1.12. Let V' be a vector space over a field F. Suppose that V is finite-dimensional. Let
n = dim(V'). Let B be an ordered basis for V. Let f: V — V be a linear map. Let A € F.

1. Letv € V. Then v is an eigenvector of f with eigenvalue A if and only if [v]g is an eigenvector
of the matrix [ f | with eigenvalue A.

2. Let y € F". There is a unique u € V such that [u]g = y. Then y is an eigenvector of the
matrix [ f]g with eigenvalue A if and only if u is an eigenvector of f with eigenvalue A.

Proof. We will prove Part (1); the other part is similar, and we omit the details.

(1). First, suppose that v € V is an eigenvalue of f with eigenvalue A. Then f(v) = Av.
By Theorem[5.6.2]we see that [ f(v)]s = [ f]g[v]s. Hence [Av]g = [flg[v]g. By Theorem5.4.5]
we know that ¢ is a linear map, and from that we deduce that A[v]g = [f]s[v]p, and that
means that [v]g is an eigenvector of the matrix [ f |3 with eigenvalue A.

Second, suppose that [v]g is an eigenvector of the matrix [ f|g with eigenvalue A. Then
[flslv]s = Alv]g. Asbefore we deduce that [f(v)]s = [Av]g. By Theorem [5.4.5 we know
that ¢ is injective, and from that we deduce that we deduce that f(v) = Av, and that
means that v is an eigenvector of f with eigenvalue A. m|

Corollary 8.1.13. Let V be a vector space over a field F, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. Let § be an ordered basis for V. Then the eigenvectors and
eigenvalues of f are the same as the eigenvalues and eigenvectors of the matrix [ f]g.

Lemma 8.1.14. Let V be a vector space over a field F, let f: V — V be a linear map, and let
A € F be an eigenvalue of f. Let v € V. Then v is an eigenvector for A if and only if v # 0 and
v € ker(f — Aly).
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Proof. Trivial. O

Exercises

Exercise 8.1.1. Let A = [ 1;1]. Find the eigenvalues of A, and find an eigenvector for each
eigenvalue.

—_

Exercise 8.1.2. Let B = [ 8 %

) (8)]' Find the eigenvalues of B, and find an eigenvector for

each eigenvalue.

Exercise 8.1.3. Let Q: Ry[x] — Ry[x] be defined by Q(f) = (2x + 1)f’ + x2f” for all
f € Ry[x]. Find the eigenvalues of (.

Exercise 8.1.4. Let V be a finite-dimensional vector space over a field F,and let f: V — V
be a linear map.

(1) Prove that f is an isomorphism if and only if 0 is not an eigenvalue of f.

(2) Suppose that f is an isomorphism. Prove that A € F is an eigenvalue of f if and only
if 71 is an eigenvalue of f1.

Exercise 8.1.5. Let F be a field. Let A,B € M,,x,(F). Suppose that A and B are similar.
Prove that A and B have the same characteristic polynomial.
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8.2 | Multiplicity of Eigenvalues

Friedberg-Insel-Spence, 4th ed. — Section 5.2

Definition 8.2.1. Let F be a field. Let f € F[x], and letr € F.
1. The element r is a root of f (also called zero of f) if f(r) = 0.

2. Suppose that r is a root of f. Let k € N. The root r has multiplicity k if (x — r)¥ isa
factor of f, and if (x — r)°* is not a root of s for any s € N such that s > k. A

A
Definition 8.2.2. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Suppose that
V is finite-dimensional. Let A be an eigenvalue of f. The multiplicity of A as an
eigenvalue of f is its multiplicity as a root of the characteristic polynomial of f.

2. Let A € M;x(F). Let A be an eigenvalue of A. The multiplicity of A as an eigenvalue
of A is its multiplicity as a root of the characteristic polynomial of A. A

Definition 8.2.3. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Let A be an
eigenvalue of f. The eigenspace of A, denoted E,, is the set

Er = {x € V | x is an eigenvector for A or x = 0}.

2. Let A € Myx(F). Let A be an eigenvalue of A. The eigenspace of A, denoted E,, is
the set
Er = {x € F" | x is an eigenvector for A or x = 0}.

Lemma 8.2.4. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Let A be an eigenvalue of
f.
1. Ey = ker(f — Aly).
2. E) isa subspace of V.

2. Let A € My (F). Let A be an eigenvalue of A.

1. E, is the solution set of the homogeneous system of linear equations (A — Al,)v = 0.
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2. E, is a subspace of F".
Proof.

(1). This part of the lemma follows from Lemma(8.1.14 and Lemma (.
(2). This part of the lemma follows from Lemma and Lemma (@. O

Lemma 8.2.5. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Suppose that V is finite-
dimensional. Let A be an eigenvalue of f. If A has multiplicity m, then 1 < dim(E,) < m.

2. Let A € Myxn(F). Let A be an eigenvalue of A. If A has multiplicity m, then 1 < dim(E,) <
m.

Proof. We prove Part (2) of the lemma; the other part is very similar, but it uses the matrix
representation of f, and we omit the details.

@). Letp = dim(E,). Itis evident that p > 1, because A must have an eigenvector, which
is by definition not the zero vector. Let {vy,..., vp} be an ordered basis for E,. Then
{v1,...,vp} is linear independent, and by Corollary {v1,...,vp} can be extended
to a basis f = {v1,...,0p, Ups1,...,0s} of F". Clearly p < n. Note that Av; = Av; for all
ie{l,...,p}

First, suppose that p = n. Then A = Al,. Then the characteristic polynomial of A is
(A = x)", so that A has multiplicity n. That is, we have m = n. It also follows that A — AI,
is the zero matrix. By Lemma [8.2.4) we deduce that Ey = F”, and hence dim(E;) = n = m.
Hence dim(E,) = m, so that dim(E,) < m.

Now suppose p < n. It is then seen that the matrix A has the form

[, B
[ el

where B € M, (;,—p)(F) and C € M(;,_p)x(u—p)(F), and where O € M,_,)x,(F) is the zero
matrix. Then [f]g — xI, has the form

A_xln:lﬂp—xlp B l

O C—xlyyp
It now follows from Exercise that the characteristic polynomial of A is
det(A — xI,,) = det(Al, — xIp) - det(C — xI;,—p) = (A — x)P - det(C — xI;,—p).

We deduce that (A — x)” is a factor of the characteristic polynomial, which means that the
multiplicity of A is at least p. Hence p < m. O
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Theorem 8.2.6. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Let Aq,..., Ay € F
be distinct eigenvalue of f. Let v; € Ey, — {0} foralli € {1,...,k}. Then vy, ..., vy are
linearly independent.

2. Let A € Myxu(F). Let Ay, ..., Ax € F be distinct eigenvalue of A. Let v; € Ej, — {0} for all
ie€{l,...,k}. Thenvy,..., vy are linearly independent.

Proof. We prove Part (2) of the lemma; the other part is very similar, but it uses the matrix
representation of f, and we omit the details.

(@). The proof is by induction on k.
Base Case: Suppose that k = 1. It follows from Lemma that the single vector
01 is linearly independent.
Inductive Step: suppose thatk > 2, and that the resultis true for k—1. Letay, ..., ar € F.
Suppose that
a101 + -+ +axovr = 0. (1)

Observe thatifi € {1,...,k—=1},then (A—Arl,)v; = (Ai—Ay)v;, and that (A— Ay L))o = 0.
Multiplying both sides of Equation (1) by A — AxI, yields

a1(A1 = Ap)vr + -+ ag-1(Ag-1 = Ap)vg—1 + 0= 0.

By the inductive hypothesis we know that vy, ..., vx_; are linearly independent. It follows
that aj(A; — Ax) =0 foralli € {1,...,k —1}. Because A4, ..., Ay are distinct, we know
that A\; — Ay # Oforalli € {1,...,k —1}. It follows thata; =0 foralli € {1,...,k—1}.
Equation then reduces to a;v; = 0, and because v, # 0, it follows that a, = 0. We
deduce that vy, ..., vy are linearly independent. O

Corollary 8.2.7. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Let Ay,..., A, € F be
distinct eigenvalue of f. Let S; C E, be a finite linearly independent set foralli € {1, ..., k}.
Then S1 U - - - U Sy is linearly independent.

2. Let A € Myxu(F). Let A1, ..., Ak € F be distinct eigenvalue of f. Let S; C E,, be a finite
linearly independent set forall i € {1,...,k}. Then S U --- U Sy is linearly independent.

Proof. We prove Part (2) of the lemma; the other part is very similar, and we omit the
details.
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(@). Foreachi e {1,...,k},letS; = {vi, : ..,vii}. Then

1 1 k k
S1U--USk={v3,...,0,,...,01,...,0p }.

Letcl,... cl,...,c% ... ck € F. Suppose that
1,1 1.1 k. .k ko k _
ClUy+F €U+ U+ 0, Uy, =0

For each i € {1,...,k}, let w; = civi + -+ ciivii. Then wy + --- + wr = 0. By
Lemma @), we know that E,, is a subspace of F". Because S; C E,,, it follows that
w; € E;,. We now use Exercise8.2.5)to deduce that w; = 0 forall i € {1,...,k}.

Leti € {1,...,k}. Because w; = 0, we see that civi+- . -+c£i7}£i = (. Because {vi, e, vil,}
is linearly independent, then ci =0,... c;i =

It now follows that S; U - - - U Sy is linearly independent. O

Corollary 8.2.8. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. If A1, ..., Ax € F areall
the distinct eigenvalue of f, then

k
> dim(E;) < n.
i=1
2. Let A € My (F). If Aq, ..., Ak € F are all the distinct eigenvalue of A, then
k
Z dim(E,,) < n.
i=1

Proof. The proofs of the two parts are identical.

Foreachi € {1,...,k}, let B; be a basis for E,,. Then B; is linearly independent for
alli € {1,...,k}. By Corollary we know By U - -- U By is linearly independent.
It follows from Corollary that |B; U --- U Bx| < n. However, we also see that
|B1U---UBg| = Z;‘:l |Bi| = 2;_; dim(E},), which completes the proof. O

Exercises

Exercise 8.2.1. Let A = [_13 %] Find the eigenspace for each eigenvalue of A.

-10
2 (2)] . Find the eigenspace for each eigenvalue of B.

oW

Exercise 8.2.2. Let B = [ )
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Exercise 8.2.3. Let V be a finite-dimensional vector space over a field F,and let f: V — V
be a linear map. Suppose that f has distinct eigenvalues A1, ..., Ay with multiplicities
my, ..., my respectively. Suppose that § is a basis for V such that [ f |5 is an upper triangular
matrix. Prove that the diagonal entries of [ f ] are Ay, ..., A, and that A; occurs m; times
on the diagonal for 7 € {1,...,k}.

Exercise 8.2.4. Let V be a finite-dimensional vector space over a field F,and let f: V — V
be a linear map. Suppose that f is an isomorphism. Let A € F be an eigenvalue of f. By
Exercise we know that 17! is an eigenvalue of f~!. Prove that the eigenspace of f
corresponding to A is the same as the eigenspace of f~! corresponding to A 1.

Exercise 8.2.5. Let F be a field. Let A € M, (F). Let Ay,..., Ay € F be distinct eigenvalue
of A. Letv; € E), foralli € {1,...,k}. Prove that if v1 + -+ + v = 0, then v; = 0 for all
ied{l,..., k}.
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8.3 | Diagonalizability

Friedberg-Insel-Spence, 4th ed. — Section 5.2

Definition 8.3.1. Let V be a vector space over a field F, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. The linear map f is diagonalizable if there is a basis
B of V such that [ f]s is a diagonal matrix. A

Theorem 8.3.2. Let V be a vector space over a field F, and let f: V — V be a linear map. Suppose
that V is finite-dimensional. The following are equivalent.

a. f is diagonalizable.
b. There is an ordered basis for V consisting of eigenvectors of f.

c. If A, ..., Ax € F are all the distinct eigenvalue of f, then
k
Z dim(E,,) = n.
i=1

Proof. The equivalence of Part (a) and Part (b) is trivial.

Suppose Part (D) is true. Let § be an ordered basis of eigenvectors of f.

Let Ay, ..., Ak € F be all the distinct eigenvalue of f. Then the ordered basis f can be
written as a union f = 1 U- - -U B, where f3; consists of those elements of g that correspond
to the eigenvalue A;, foralli € {1,...,k}. Clearly n = |B] = |B1 U --- U Bi| = Zle |Bil-

Leti € {1,...,k}. Then ; is a subset of §, so B; is linearly independent. Because f; is a
linearly independent subset of E,,, then we know by Lemma that |8;| < dim(Ey,).
It then follows that n = Zle |Bi| < dim(E},,).

On the other hand, we know by Corollary that Zle dim(E),) < n. We deduce
that Zle dim(E,,;) = n, which is Part .

Now suppose that Part (c) is true. Hence Zi.‘:l dim(E,,) = n.

Foreachi e {1,...,k}, let y; be abasis for E;,. Then Zle lyil = n.

We know that y; is a linearly independent set for all i € {1, ..., k}. By Corollary[8.2.7]
we know that y1 U - - - U y is linearly independent. It follows from Lemma () that
Y1 U--- Uy is abasis for V. By definition every element in yq U - - - U yi is an eigenvalue of
f,and hence f has a basis of eigenvectors, which is Part (b). m|

Theorem 8.3.3. Let V be a vector space over a field F, and let f : V — V be a linear map. Suppose
that V is finite-dimensional. Let n = dim(V'). Suppose that f has n distinct eigenvalues. Then f
is diagonalizable.
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Proof. Let Aq,..., A, € F be the distinct eigenvalue of f. Let v; € E), — {0} for all
i € {1,...,n}. Thenby Theorem[8.2.6/(I) we know that {v1, ..., v, } is linearly independent.
It follows from Corollary (@) that {v1,...,v,} is a basis for V. It now follows from
Theorem [8.3.2]that f is diagonalizable. O

Definition 8.3.4. Let F be a field. Let f € F[x]. The polynomial f splits over F if there are
c,a1,az...,ar € Fsuchthat f = c(x —ay)(x —az)--- (x —ax). A

Remark 8.3.5. Let F be a field. Let p € F[x]. Then p splits if and only if the sum of the
multiplicities of the roots of p equals the degree of p. 0

Lemma 8.3.6. Let V be a vector space over a field F, and let f: V — V be a linear map. Suppose
that V is finite-dimensional. If f is diagonalizable, then the characteristic polynomial of f splits.

Proof. Suppose that f is diagonalizable. Then there is a basis  of V such that [f]z is a
diagonal matrix. Let n = dim(V). Suppose the diagonal entries of this diagonal matrix are
A1, ..., Ay. Then the characteristic polynomial of f is the characteristic polynomial of [ f g,
and it is straightforward to see that that characteristic polynomial is (A; — x)--- (A, — x) =
(=1)"(x = A1) -+ (x = Ay,). Hence the characteristic polynomial of f splits. O

Corollary 8.3.7. Let V be a vector space over a field F, and let f : V' — V be a linear map. Suppose
that V is finite-dimensional. Then f is diagonalizable if and only if the following two conditions
hold.

(a) The characteristic polynomial of f splits.
(b) The multiplicity of each eigenvalue A of f equals dim(E,).

Proof. Let py denote the characteristic polynomial of f. Let Ay,..., Ax be all the dis-
tinct eigenvalue of f. For each i € {1,...,k}, let m; denote the multiplicity of A;. By
Lemma[8.2.5/ (1), we know that dim(E,,) < m; foralli € {1,...,k}.

First, suppose that f is diagonalizable. Then by Lemma we know that p ¢ splits.
Hence Part (a) holds.

By Theorem [8.3.2) we know that Zle dim(E,,) = n. Because py splits, we know by

Remark [8.3.5| that Zi-‘:l m; equals the degree of ps, and by Lemma [8.1.5/ (1) we deduce
that Zi-‘:l m; = n. Hence Zle dim(E,;) = Zle m;. This last equality, combined with the
fact that dim(E),) < m; for all i € {1,...,k}, implies that in fact dim(E,,) = m; for all
i €{1,...,k}. Hence Part (b) holds.

Now suppose that Part (a) and Part (b)) both hold.

By Part (b) we know that dim(E,;) = m; foralli € {1,...,k}.

As before, Part @) says that p splits, and we deduce that Z’;zl m; = n. It follows that
>k dim(Ey,) = n.

It now follows from Theorem that f is diagonalizable. O

Definition 8.3.8. Let F be a field. Let A € M,x,(F). The matrix A is diagonalizable if
La: F" — F" is diagonalizable. A
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Lemma 8.3.9. Let F be a field. Let A € Myx,(F). Then A is diagonalizable if and only if there is
an invertible matrix Q € Myx,, (F) such that Q='AQ is a diagonal matrix.

Proof. First, suppose that A is diagonalizable. Hence L is diagonalizable, which means
that there is an ordered basis y of F" such that [L4], is a diagonal matrix. By Corollary
there is an invertible matrix Q € M;x,(F) such that [La], = Q7 'AQ. Hence Q'AQ is a
diagonal matrix.

Second, suppose that there is an invertible matrix P € M,x,(F) such that P"1AP is a
diagonal matrix. Let g be the standard ordered basis for F". By Lemma there is
an ordered basis ' for F" such that P is the change of coordinate matrix that changes
B’-coordinates into f-coordinates. By Corollarywe know that [La]g = P~ [La]gP. We
see from Lemma that [La]g = A. Hence [Lalp = P~'AP, which means that [Lalp
is a diagonal matrix, which in turn means that L4 is diagonalizable, which means that A is
diagonalizable. O

Corollary 8.3.10. Let F be a field. Let A € My, (F). Then A is diagonalizable if and only if the
following two conditions hold.

(a) The characteristic polynomial of A splits.

(b) The multiplicity of each eigenvalue A of A equals dim(E ).

Proof. This corollary is just a rephrasing of Corollary which is straightforward using
Lemmal5.6.3 O

Remark 8.3.11. Let F be a field. Let A € M,,x,(F). Suppose that A is diagonalizable. To find
an invertible matrix Q € M,x,(F) such that Q"'AQ is a diagonal matrix, use the following
steps.

(1). Let g be the standard basis for F".

(2). Find the eigenvalues of A.

(3). For each eigenvalue A, find a basis for E,.

(4). Assemble all the bases for the eigenspaces into a basis for F”; call this basis f’.

(5). The matrix Q is the change of coordinate matrix that changes ’-coordinates into
p-coordinates. As in Remark that matrix is formed by writing the elements of ' in
terms of  and putting the coordinates of each element of " in terms of § into a column
vector, and assembling these column vectors into a matrix. ¢

Lemma 8.3.12. Let F be a field. Let A € Myux,(F). Suppose that A is diagonalizable. Let
Q € Myx,,(F) be an invertible matrix such that Q~'AQ is a diagonal matrix. Let D = Q7'AQ.
Then A" = QD"Q~L.

Proof. Because D = Q7'AQ, then A = QDQ!. It follows that
A" =(QDQ™H)(QDQ™)---(QDQ™) =QD"Q™". O
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Theorem 8.3.13. Let F be a field.

1. Let V be a vector space over F, and let f: V — V be a linear map. Suppose that V
is finite-dimensional. Then f is diagonalizable if and only if V is the direct sum of the

eigenspaces of f.
2. Let A € Myxun(F). Then A is diagonalizable if and only if F" is the direct sum of the
eigenspaces of A.
Proof. We omit the proof. It is on pp. 275-278 of Friedberg-Insel-Spence, 4th ed. m|
Exercises

Exercise 8.3.1. Let A = [_13 %]
(1) Find an invertible matrix Q € Mpx2(R) such that Q"' AQ is a diagonal matrix.
(2) Use Part (1)) of this exercise to find an expression for A", where n € N.

Exercise 8.3.2. For each of the following matrices, determine whether or not the matrix is
diagonalizable, and explain why or why not.

W teea=| 374
-112

(2) Let A = [%3 ¢ ]

Exercise 8.3.3. Use diagonalization to find the general solution of the system of linear
ordinary differential equations

x' =x+4y
y' =2x +3y.

Exercise 8.3.4. Let F be a field. Let A € M,x,(F). Suppose that A has two distinct
eigenvalues A, u € F, and that dim(E,) = n — 1. Prove that A is diagonalizable.

Exercise 8.3.5. Let V be a vector space over a field F, and let f,g: V — V be linear
maps. Suppose that V is finite-dimensional. We say that f and g are simultaneously
diagonalizable if there exists an ordered basis 8 for V such that [ f]z and [g]s are both
diagonal matrices.

Suppose that f and g are simultaneously diagonalizable. Prove that go f = fo g.
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9.1 | Inner Products

Friedberg-Insel-Spence, 4th ed. — Section 6.1

Definition 9.1.1. Let V be a vector space over R. An inner product on V is a function
(,): V xV — R that satisfies the following properties. Let x,y,z € V and letc € R

1. (x+y,z)=(x,z)+(y,z).

2. {cx,y) =c{x,y).

3. {(x,y) =(y,x) (Symmetry Law).

4. if x # 0 then (x,x) >0 (Positive Definite Law). A

Definition 9.1.2. An inner product space is a vector space over R with a specific choice of
inner product. A

Lemma 9.1.3. Let V be an inner product space over R, let x,y,z € V, and let ¢ € R.
1. (x,y+2z)=(x,y)+(x,2).
2. (x,cy) =c{x,y).
3. (x,0) =0=(0,x).
4. (x,x) =0ifand only if x = 0.
5. If (w,y) =((w,z) forallw € V, then y = z.

Proof. Part (1) and Part (2) follow immediately from the analogous parts of the definition
of an inner product, together with the Symmetry Law.

For Part (3), observe that (x, 0) = (x,0+ 0) = {x, 0) + (x, 0), and then use cancelation.

It follows from Part (3) that (0,0) = 0. If x # 0, then we know that (x, x) > 0. Those
two observations imply Part ().

For Part , suppose that (w, y) = (w, z) for all w € V. Then (w, y + (-z)) = 0 for all
w € V. In particular, we deduce that (y + (-z), y + (—z)) = 0. By Part (4) it follows that

y + (=z) = 0, and that implies that y = z. O
Definition 9.1.4. Let V be an inner product space. Let x € V. The norm of x, denoted as
||x||, is defined by |[|x|| = /{x, x). A
Remark 9.1.5. Let V be an inner product space. Let x € V. Then llx|1? = (x, x). o

Lemma 9.1.6. Let V be an inner product space over R, let x, y € V, and let c € R.

L. |lex]l = lef - lx]l.
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2. ||x|| = 0.
3. ||x|| = 0 if and only if x = 0.
4. |(x, )| < x|l - llyll  (Cauchy Schwarz Inequality).
5 |lx +yll < |lx|| + [lyll (Triangle Inequality).
Proof. Observe that for any real number a € R, we have a® = |a|* and Va2 = |a|.

@, @), B). These three part are straightforward, and we omit the details.

(). There are two cases. First, suppose that that y = 0. In that case ||y|| = 0, and
(x,y) = 0,soclearly [(x, y)| = 0 = |[x]| - [[y]l.
Second, suppose that y # 0. Then (y, y) # 0. Let b € R. Then ||x — by|| > 0, and hence

0 < [lx = byll® = (x + (=b)y, x + (=b)y) = (x, x) + 2(=b){x, y) + b*(y, y).

That holds for any value of b, and in particular it holds for b = %, which is defined
because (y, y) # 0. We then have
(v, ¥) (v, y)° lyll?

The desired result follows.

(8. Using Part (@), we compute

lx+yll> = (x +y, x +y) = (x,x) + 2(x, y) + (¥, y)
= ||xII* + 21¢x, )| + [lyl)?
< I+ 20x0 - Nyl + Nyli* = Al + ]

The desired result follows. O

Definition 9.1.7. Let V be an inner product space. Letx,y € V,and letS C V.
1. The vectors x, y are orthogonal if (x, y) = 0.
2. The vector x is a unit vector if ||x|| = 1.
3. The set S is an orthogonal set if v, w € S and v # w implies v, w are orthogonal.

4. The set S is an orthonormal set if S is orthogonal and every vector in S is a unit
vector. A
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Remark 9.1.8. Let V be an inner product space. Let S = {v1, ..., vx} be asubset of V. Then
S is an orthonormal set if and only if

1, ifi=j
vi,0;) = 0ji =
wirvj) = 0 {Qiﬂij
foralli,je{l,..., k}. o
Remark 9.1.9. Let V be an inner product space. Let x € V. Suppose x # 0. Then ”i—” is a
unit vector. Hence, there is a unit vector that is a scalar multiple of the vector x. ¢
Exercises

Exercise 9.1.1. Let C(|—7, 7t]) denote the set of all continuous functions [-7t, 1] — R.

We define an inner product on C([-7, 1]) as follows. Let (f, g) = sz f(t)g(t)dt for all

f, g € C([-m, mt]). It can be verified that this definition is indeed an inner product.
Leta(t) =sint,letb(t) =tandletc(t) =t forall t € [-7, t].

(1) Which pairs of a, b and c are orthogonal?
(2) Find ||b]].
(3) Find a unit vector that is a scalar multiple of b.

Exercise 9.1.2. Let V be an inner product space over R, let g be a basis for V, and let
x,y € V. Suppose that V is finite-dimensional.

(a) Prove thatif (x,b) =0forall b € , then x = 0.
(b) Prove that if (x,b) = (y,b) forall b € §, then x = y.

Exercise 9.1.3. Let V be an inner product space over R, and let f: V — V be a linear map.
Suppose that f preserves the norm on V, that is, suppose that || f(x)|| = ||x|| forall x € V.
Prove that f is injective.

Exercise 9.1.4. Let V be an inner product space over R, and let x, y € V. Prove that

_1 2_ L P
(x,y) = glx+ P = 7l = yIP,

which is called the polar identity.
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9.2 | Orthonormal Bases

Friedberg-Insel-Spence, 4th ed. — Section 6.2

Definition 9.2.1. Let V be a vector space over a field F, and let B C V. The set B is a
orthogonal basis, respectively orthonormal basis, for V if B is a basis for V and if it is
orthogonal, respectively orthonormal, set. A

Lemma 9.2.2. Let V be an inner product space over R, and let S = {v1,...,vx} € V. Suppose
that v; # O foralli € {1,...,k}. Let y € span(S).

1. If S is orthogonal, then

2. If S is orthonormal, then
k
y = (v, o)
i=1

Proof.

(1). Suppose that S is orthogonal. Because y € span(S), there are cy, ..., cx € F such
that y = c1o1 + -+ + cx k.

Leti e {1,...,k}. Because S is orthogonal, then (v;, v;) =0foralls € {1,...,k} such
that s # i. Then

(y,vi)y = (101 + - - + CkVk, Vi)
2
=101, vi) + - - + ck{Vk, vi) = ci{vi, vi) = cillvil|”.

,0i
Hence ¢; = <”yv ”’2>,
i

and that completes the proof of this part of the lemma.

(2). Suppose that S is orthonormal. Then ||v1-||2 =1foralli € {1,...,k}. This part of
the lemma now follows immediately from Part (). m|

Corollary 9.2.3. Let V be an inner product space over R, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. Let p = {v1,...,v,} be an ordered orthonormal basis for V.

Let [a,-]'] = [flp. Then ajj = (f(vj), v;) foralli,j € {1,...,n}.

Proof. Letj € {1,...,n}. By Remark5.5.2, we know that f(v;) = X/, a;jv;.

By Lemma , we also know that f(v;) = Xi_(f(vj), vi)v;. Equating these two
expressions for f(v;) and using Theorem implies that a;; = (f(v;), v;) for all
ie{l,...,n} O
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Lemma 9.2.4. Let V be an inner product space over R, and let S = {v1,..., v} C V.
1. If S is orthogonal and if v; # 0 forall i € {1, ..., k}, then S is linearly independent.

2. If S is orthonormal, then S is linearly independent.

Proof.
(1). Suppose S is orthogonal. Let ay,...,a, € R. Suppose a1v1 + ... + a,vx = 0. Then
0 € span(S). It then follows from Lemma 9.2.2 , using y = 0, thata; = <”0 T|2> =0 for all

i €{1,...,k}. Hence S is linearly independent.

(2). This part follows immediately from Part (I), together with the fact that a vector
with norm 1 cannot be 0. |

Corollary 9.2.5. Let V be an inner product space over R. Suppose that V is finite-dimensional.
Let n = dim(V). Let S = {vy,...,0,} C V.

1. If S is orthogonal and if v; # 0 forall i € {1,...,n}, then S is a basis for V.
2. If S is orthonormal, then Sis a basis for V.

Proof. Combine Lemma and Corollary . O

Theorem 9.2.6 (Gram-Schmidt). Let V be an inner product space over R, and let S =
{wi,...,w,} € V. Suppose that S is linearly independent. Let S’ = {vy,...,v,} C V be
defined recursively as follows. Let v1 = w1, and let

- 3 S, 0

= loill?

forallk e {2,...,n}.
1. S’ is orthogonal.
2. None of the vectors in S’ is 0.
3. span(S’) = span(S).

Proof. We prove all three parts of the theorem by induction on 7, which is the number of
elements of S.

For each k € {1,...,n}, let Sy = {w1,...wr}. Then (Sx) = {v1,...vx} for all k €
{1,...,n}.

Base Case: Let k = 1. Observe that (S1)’ = Sy, because v; = wy. Clearly all three parts
of the theorem hold for S;.
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Inductive Step: Second, let k € {2,...,n}. Suppose that all three parts of the theorem
hold for Si_;. We will show that all three parts of the theorem hold for S, which will
complete the proof.

By the inductive hypothesis we know that (Sx_1)’ is orthogonal. Let r € {1,...,k —1}.
Then

k-1 k-1

(Wi, v;) (Wi, v;)
<vk,vr>=<Wk—Z — vi,vr>=<wk,vr>—z == (vi, vr)
i=1 ||Uz|| i=1 ||Uz||
(Wi, vy) (Wk, vy) 2
= (W, Ur) — i ,”27 (Vr,0y) = (Wk, Vr) — i ’||2r los||” = 0.
v, v,

Hence Part (I) holds for Sg.

By the inductive hypothesis we know that none of the vectors in (Sk_1)" is 0. Suppose
that v = 0. Then Equation (1) implies that wy = Y%~} <ﬁ’;fﬁ§>
But by the inductive hypothesis, we know that span((ék_l)’ ) = span(Sk_1), and hence
wi € span(Sk-1). By Lemma we deduce that Si is linearly dependent, which by
Lemma implies that S is linearly dependent, which is a contradiction. We conclude
that v # 0. Hence Part (2) holds for Sk.

By the inductive hypothesis we know thatspan((Sx-1)’) = span(Sx-1). Hence span((Sx-1)")
span(Sk). Clearly Zi.:ll %vi € span((Sk-1)’), and hence Zi:ll <ﬁ]z’)‘flz|’2">vi € span(Sg-1). It
therefore follows from Eéluation that vy € span(Sy). Puttingl all that together we
deduce that span((Sx)’) € span(Sx). We know Sy is linearly independent. Because we
have already proved Part (I)) and Part (2) for Sy, it follows from Lemma that
(Sx) is linearly independent. Hence (S¢)” and Sy are bases for span((Sx)’) and span(Sk),
respectively. Hence dim(span((Sx)’)) = |(Sk)’| = k = |Sk| = dim(span(Sk)). It then follows
from Theorem 3.6.10| (3) that span((Sx)’) = span(Sk). Hence Part (3) holds for Sy. O

v;. Hence wy € span((Sk-1)’).

Corollary 9.2.7. Let V be an inner product space over R. Suppose that V is finite-dimensional.
Then V has an orthonormal basis.

Proof. Let B be any finite basis for V. Applying the Gram-Schmidt process (Theorem9.2.6)
to B yields an orthogonal basis S for V. Dividing each element of S by its norm yields an
orthonormal basis for V. m|

Corollary 9.2.8. Let V be an inner product space over R. Suppose that V is finite-dimensional.
Let S = {vq,..., v} be an orthonormal set.

1. Let S’ be the result of doing the Gram-Schmidt process to S. Then S" = S.
2. S can be extended to an orthonormal basis for V.
Proof.

(1). Left to the reader in Exercise[9.2.3



122 CHAPTER 9. INNER PRODUCT SPACES

(2). By Lemma we know that S is linearly independent, and then by Corol-
lary we see that S can be extended to a basis B of V. Applying the Gram-Schmidt
process (Theorem[9.2.6) to B yields an orthogonal basis T for V. By Part (1)) of this corollary,
we see that when the Gram-Schmidt process was applied to B, it did not change S. Hence
S C T. Finally, divide every element of T by its norm to obtain an orthonormal basis for V
that contains S. O

Exercises

Exercise 9.2.1. Let B = {[_(1)1 ], [Z], [?] }. It can be verified that S is a basis for R, but not
an orthogonal basis; there is no need to do that verification.
(1) Apply the Gram-Schmidt process to B, to obtain an orthogonal basis S for R3.

(2) Use S to make an orthonormal basis T for R3.

Exercise 9.2.2. Let V be an inner product space over R. Suppose that V is finite-dimensional.
Let {v1,...,v,} be an orthonormal basis for V, and let x, y € V. Prove that

(x,y) = Z(X, vi){Y, i),
i

which is called the Parseval’s Identity.
Exercise 9.2.3. Prove Corollary (.
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9.3 | Orthogonal Complement

Friedberg-Insel-Spence, 4th ed. — Section 6.2

Definition 9.3.1. Let V be an inner product space.

1. Let S C V. Suppose that S # 0. The orthogonal complement of S, denoted S+, is
the set
St={xeV|{(x,yy=0forally € S}.

2. Let0+ =V. A
Lemma 9.3.2. Let V be an inner product space over R, and let A,B C V.

1. {0} =V.

2. Atisasubspace of V.

3. IfA C B, then B- C A+,

4. A C A+

5. IfA # 0, then An A+ = {0}.
Proof. Left to the reader in Exercise[9.3.1] O

Lemma 9.3.3. Let V be an inner product space over R, and let W C 'V be a subspace. Suppose
that V is finite-dimensional.

1. dim(W) + dim(W+) = dim(V).
2. WH =W,

3. WeW+=V.
Proof. We know from Theorem 3.6.10|that W is finite-dimensional and dim(W) < dim(V).

(1). By Corollarywe know that W has an orthonormal basis. Let S = {v1,..., v}
be such a basis of W. By Corollary we know that S can be extended to an
orthonormal basis B = {v1,...,v,} of V, where n > k. Then dim(W) = k and dim(V) = n.
Let T = {Uk+1,--.,0n}. We will show that T is a basis for W+, and that will prove Part
of the lemma.

First, we note that T is orthonormal, so by Lemma we know that T is linearly
independent. Because B is orthonormal, then T C S+. By Exercise we know that
St = (span(S))* = W+. Hence T C W+. By Lemma [9.3.22) and Lemma we see
that span(T) € W+.

Let z € Wt. By Lemma[9.2.2 (2) we know that z = 31" (z, v;)v;. But z € W+ implies
that (z,v;) =0 foralli € {1,...,k}. Hence z = X, ,,(z,vi)v; € span(T). Therefore
W+ C span(T). We conclude that span(T) = W+. Hence T is a basis for W+.
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(2). We know by Lemma (@) that W ¢ W+, By Part (1) we know that lemAHT1
dim(W) + dim(W+) = dim(V), and by applying that part of the lemma to W+ we see that
dim(W+)+dim(W++) = dim(V). It follows that dim(W) = dim(W*+). By Lemma[3.6.10|(3)
we deduce that W = W++

(3). We use the sets S and T from the proof of Part (1) of the lemma. Recall from that
part of the proof that span(S) = W and span(T) = W+. The desired result now follows
from Exercise [3.6.3l O

Exercises

Exercise 9.3.1. Prove Lemma

Exercise 9.3.2. Let V be an inner product space over R, let W C V be a subspace, let g be a
basis for W, and let z € V. Prove that

Wh={xeV|(x,by=0forallb € g}.

Exercise 9.3.3. Let V be an inner product space over R, and let S C V. Prove that
St = (span(S))™.

Exercise 9.3.4. Let V be an inner product space over R, and let X, Y C V be subspaces.
Suppose that V is finite-dimensional. Recall the definition of X+Y given in Definition[3.3.8|

(a) Prove that (X +Y)" = Xt n Y™

(b) Prove that (X NY)* = X+ + Y+
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9.4 | Adjoint of a Linear Map

Friedberg-Insel-Spence, 4th ed. — Section 6.3

Lemma 9.4.1. Let V be an inner product space over R, and let h: V' — R be a linear map. Suppose
that 'V is finite-dimensional. Then there exists a unique y € V such that h(x) = {x, y) for all
xeV.

Proof. By Corollary we know that V has an orthonormal basis. Let f = {v1,...,v,}

be such a basis for V. Let y = }}"_; h(v;)v;. Let p: V — R be defined by p(x) = (x, y) for

all x € V. We know that p is a linear map, using the definition of an inner product.
Leti={1,...,n}. Then

p(or) = (v, y) = (g, D h(@)o) = > W(vi)(o, ;) = h(o) - 1= h(vy).
i=1 i=1

Hence h and p agree on the basis for V, and therefore by Corollary we see that h = p.
To show that y is unique, suppose there is some y’ € V such that h(x) = (x, y’) for all
x € V. Then (x,y) = (x,y’) forall x € V. It follows from Lemma thaty =y’. O

Theorem 9.4.2. Let V be an inner product space over R, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. Then there exists a unique function f*: V. — V such that

(f(x),y) =Ax, f(y)) forall x,y € V.

Proof. We define the function f*: V. — V as follows. Letv € V. Let g,: V — R be
defined by g,(x) = (f(x),v) for all x € V. Then g is a linear map by the definition of
inner products. By Lemma([9.4.1| there is a unique w, € V such that g,(x) = (x, w,) for all
x € V. Let f*(v) = w,. We have now defined the function f*.

Letx,y € V. Then (f(x), ) = g,(x) = (x,w,) = (x, f(y)).

To show that f* is unique, suppose there is some linear map q: V. — V such that

(f(x),y) =(x,q(y)) forall x, y € V. Then (x, f*(y)) = (x,q(y)) forall x, y € V. It follows
from Lemma[9.1.3|(5) that f*(y) = q(y) forall y € V. Hence f* = 4. O

Definition 9.4.3. Let V be an inner product space over R, and let f: V — V be a linear
map. An adjoint of f is a function f*: V — V such that (f(x), y) = (x, f*(y)) for all
x,yeV. A

Remark 9.4.4. Let V be an inner product space over R, and let f: V — V be a linear
map. Suppose that V is finite-dimensional. Then Lemma says that f has a unique
adjoint. 0

Remark 9.4.5. Let V be an inner product space over R, and let f: V — V be a linear
map. Suppose that V is finite-dimensional. It is straightforward to verify that (x, f(y)) =
(f*(x),y) forallx,y € V. o
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Lemma 9.4.6. Let V be an inner product space over R, and let f: V — V be a linear map. Suppose
that f has an adjoint.

1. The adjoint of f is unique.
2. The adjoint of f is a linear map.
Proof.

(1). The uniqueness part of the proof of Theorem holds whether or not V is
finite-dimensional.

(2). Letx,y e Vandletc e R. If w € V, then
(w, ff(x +y)) ={f(w),x +y) = (f(w),x) +{f(w), y)
= (w, f(x)) +<{w, f(y)) = (w, f(x) + f(¥)).
It follows from Lemma[9.1.3|(5) that f*(x + y) = f*(x) + f*(y).

A similar argument shows that f*(cx) = c f*(x), and we omit the details. Hence f*is a
linear map. m|

Lemma 9.4.7. Let V be an inner product space over R, let f,g: V — V be linear maps, and let
c € R. Suppose that f and g have adjoints.

1. f + g has an adjoint, and (f + g)* = f* + g".
2. cf has an adjoint, and (cf)* = cf™.

3. go f hasan adjoint, and (go f) = f*o g™
4. f* has an adjoint, and f* = f.

5. 1y has an adjoint, and (1y)* = 1y.

Proof. We prove Part (I); the remaining parts of this lemma are left to the reader in
Exercise[9.4.1]

(1). Letx,y € V. Then
(f+8)x),y) =(f(x)+g(x),y) ={f(x), y) +{g(x), y)

={x, f'(y)) +<x, & (y)) = x, f(y) + & (W)
={x, (f + &)y

We therefore see that the function f* + ¢" satisfies Definition with respect to the
function f + g. Hence f + g has an adjoint, which is f* + g*. O
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Definition 9.4.8. Let V be a vector space over F,let W C V be asubspace,andlet f: V — V
be a linear map. The subspace W is invariant under f if f(W) C W. A

Lemma 9.4.9. Let V be an inner product space over R, let f: V. — V be a linear map, and let
W C V be a subspace. Suppose that f has an adjoint.

1. W is invariant under f if and only if W+ is invariant under f*.
2. If W is invariant under f and f*, then f|W has an adjoint, and (f|W)* = f*|W.
Proof.

(1). Suppose that W is invariant under f. That means that f(W) C W. Let y € W+.
For each x € W, we have (f*(v), x) = (x, f*(y)) = (f(x),y) = 0, because f(x) € W and
y € W, It follows that f*(y) € W+. We deduce that f*(W+) € W+, which means that W+
is invariant under f*.

Now suppose W+ is invariant under f*. Hence f*(W+) C W+. A similar argument as
before shows that f*(W++) € W+, However, by Lemma (@) we know that f* = f,
and by Lemma we know that W++ = W. Hence f(W) € W, which means that W
is invariant under f.

(2). Suppose that W is invariant under f and f*. Let x, y € W. Then ((f|W)(x), y) =
(f(x),y) =Lx, f(y)) = {x, (fIW)(y)). We therefore see that the function f*|W satisfies
Definition with respect to the function f|W. Hence f|W has an adjoint, which is
frIW. O

Theorem 9.4.10. Let V be an inner product space over R, and let f: V — V be a linear
map. Suppose that V is finite-dimensional. Let  be an ordered orthonormal basis for V. Then

15 = (1)

Proof. Let p = {v1,...,v,}. Let [aij] = [f]g and [cij] = [f*lg- Leti,j € {1,...,n}. By

Corollary 0.2.3] we know that a;; = (f(v;), v;), and that ¢;; = (f*(v}), vi) = (vi, f*(v})) =
(f(vi),v;) = aj;. Hence [c;j| = [aij]t, which means [f*] = ([f]ﬁ)t. O

Exercises

Exercise 9.4.1. Prove Lemma[9.4.7/(), (3), @) and (5).

Exercise 9.4.2. Let V be an inner product space over R, and let f : V' — V be a linear map.
(1) Let g = f + f*. Prove that g has an adjoint, and that ¢* = g.

(2) Let h = f o f*. Prove that h has an adjoint, and that h* = h.
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Exercise 9.4.3. Let V be an inner product space over R, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. Suppose that f is an isomorphism. Prove that f~ is
an isomorphism, and that (f*)~! = (f~1)".

Exercise 9.4.4. Let V be an inner product space over R, and let f: V — V be a linear map.
Suppose that f has an adjoint.

(1) Prove that (im f*)* = ker f.

(2) Suppose that V is finite dimensional. Prove that im f* = (ker f)™.
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9.5 | Self-Adjoint Linear Maps

Friedberg-Insel-Spence, 4th ed. — Section 6.4

Definition 9.5.1. Let V be an inner product space over R, and let f: V — V be a linear

map. The function f is self-adjoint if f* = f. A
Remark 9.5.2. Let V be an inner product space over R, and let f: V — V be a linear map.
The function f is self-adjoint if and only if (f(x), y) = (x, f(y)) forallx,y € V. 0
Lemma 9.5.3.

1. Let V be an inner product space over R, and let f: V' — V be a linear map. Suppose that V
is finite-dimensional. Let p be an ordered orthonormal basis for V. Then f is self-adjoint if
and only if [ f | is symmetric.

2. Let A € Myxu(R). Then A is symmetric if and only if L is self-adjoint.

Proof.

(1). By Theorem9.4.10|we know that [f*]g = ([f]ﬁ)t.

Suppose that f is self-adjoint. Then f* = f. Because [f*]s = ([f ]5)t, it follows that
[flp = ([f]ﬁ)t, which means that [ f]g is symmetric.

Suppose that [ f] is symmetric. Then [f]g = ([f]ﬁ)t. Because [ f*]p = ([f]ﬁ)t, it follows
that [f]g = [f*]s. By Lemma we deduce that f = f*, which means that f is
self-adjoint.

(2). Let y be the standard ordered basis for R". Observe that y is an orthonormal basis.
By Part (1) of this lemma, we see that L4 is self-adjoint if and only if [L4], is symmetric.
By Lemma we know that [La], = A, which implies that L, is self-adjoint if and
only if A is symmetric. O

Definition 9.5.4. Let n € N. The (n — 1)-sphere in R", denoted S}, is the set
S"l={veR"||v| =1} A
Theorem 9.5.5. Let A € My, (R). If A is symmetric, then A has an eigenvector.

Proof. This proof is from [Lan66, p. 192]. Suppose that A is symmetric. Let f: "1 - R
be defined by f(x) = (Ax, x) for all x € S"~1. It can be shown (using the methods of Real
Analysis) that f is differentiable, and hence continuous.

Let v € S""! be such that f achieves its maximum value at v.
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Let w € S"71. Suppose that (v, w) = 0. We will show that (Av, w) = 0. It will then
follow that Av is orthogonal to all the vectors in S" N {v}*; we deduce that Av is orthogonal
to {v}", and hence Av is orthogonal to span({v})" . Therefore Av € span({v})"*. By
Lemma @) we deduce that Av € span({v}). It follows that Av is a multiple of v,
which means that v is an eigenvector of A, which is what we are trying to prove.

We now show that (Av,w) = 0. Let c: (-/2,7/2) — S"7! be defined by c(t) =
(cost)v + (sint)w for all t € (—1/2,1/2). Lett € (—m/2,1/2). Recalling that v and w
are unit vectors, and that (v, w) = 0, we see that ||c(t)||2 = {c(t), c(t)) = (cost)*(v, v) +
2(cos t)(sin t){v, w) + (sin t)*(w, w) = (cos t)*> + (sin t)?> = 1. Hence c(t) is a unit vector, and
so c(t) € S"7!, which makes the function ¢ validly defined.

Clearly c is differentiable. It is straightforward to see that c(0) = v and ¢’(0) = w. We
can form the function f o c. Because each of f and c are differentiable, so is f o c. Because
f(v) is the maximal value of f, then certainly (f o ¢)(0) is the largest value of f oc. Hence
(foc)(0) =0.

By hypothesis A is symmetric, and hence by Lemma we know

It is then seen that L4 is self-adjoint, which means L, = La. We then use the Product
Rule to compute

(foo)(t) = %(AC(t), c(t)) = (AC(t), c(£)) + (Ac(t), '(£))

= (La(c’(£)), c(t)) + (Ac(t), (1)) = (' (1), Ly (c(D)) + (Ac(t), c'(1))
= (c'(£), La(e(t)) + (Ac(t), (1)) = (c(t), Ac(t)) + (Ac(t), c'(£))

=2(Ac(t), c'(t)).
We deduce that
0 =(foc)(0) =2(Ac(0),c’(0)) = 2(Av, w),
which is what we needed to show. m|

Corollary 9.5.6. Let V be an inner product space over R, and let f: V — V be a linear map.
Suppose that V is finite-dimensional. If f is self-adjoint, then f has an eigenvector.

Proof. Suppose that f is self-adjoint. By Corollary 9.2.7 there is an ordered orthonormal
basis f for V. By Lemma the matrix [ f]s is symmetric. We now use Theorem[9.5.5
to deduce that the matrix [ f]s has an eigenvector. It now follows from Corollary 8.1.13]
that f has an eigenvector. m|

Theorem 9.5.7 (Spectral Theorem). Let V be an inner product space over R, and let f: V. — V
be a linear map. Suppose that V is finite-dimensional. Then f is self-adjoint if and only if V has an
orthonormal basis of eigenvectors of f.

Proof. First, suppose f is self-adjoint. That means f* = f. Let n = dim(V). The proof is
by induction on .
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Base Case: Suppose that n = 1. Then V' = R (thought of as a vector space over itself),
and f is a linear map R — R. Clearly {1} is an orthonormal basis for V, and f(1) is some
multiple of 1, so 1 is an eigenvector of f.

Inductive Step: Let n € N. Suppose n > 2, and suppose that the result is true for
n — 1. By Corollary 9.5.6, we know that f has an eigenvector; let w be an eigenvector of
f By definition w # 0. Let v = Then v is an eigenvector and a unit vector. Let

= span({v}). By Lemma 3.4 & ) we see that W is a subspace of V. Clearly {v} is a
ba51s for W, and hence d1m(W) = 1. Because v is an eigenvector of v, then f(v) € W, and it
follows that f(W) € W, which means that W is invariant under f. By Lemma [0.4.9) (1) we
know that W+ is invariant under f*. Because f* = f, it follows that W+ is invariant under
f. By Lemma[9.4.9|(2) applied to W+, we see that (f|W*)" = f*|W* = f|W*. Hence f|W*
is self-adjoint. By Lemma we know that dim(W+) = n — 1. We can then apply the
inductive hypothesis to f|W+, to find an orthonormal basis {vy, ..., v,} for W+. Clearly
{v,v2,...,v,} is orthonormal, and by Corollary we deduce that it is a basis for V.

Second, suppose that V has an orthonormal basis of eigenvectors of f. Let f =
{v1,...,v,} be such a basis, with corresponding eigenvalues {A1,...,A,}. Letx,y € V.
Thenx = a1v1+---+a,v,and y = bjv1+---+b,v, foruniqueas, ..., a,,b1,...,b, € R. Itis
then straightforward to see thatboth ( f(x), y) and (x, f(y)) areequalto A1a1b1+- - -+A,a,b,.
Hence f is self-adjoint by Remark[9.5.2] O

Corollary 9.5.8. Let F be a field. Let A € My, (F). Then A is symmetric if and only if there is an
invertible matrix P, which has orthonormal columns, such that P~1AP is a diagonal matrix.

Proof. Left to the reader in Exercise O

Exercises

Exercise 9.5.1. Let V be an inner product space over R, and let f, g: V — V be self-adjoint
linear maps. Prove that g o f is self-adjoint if and only if go f = fo g.

Exercise 9.5.2. Prove Corollary

Exercise 9.5.3. Let F be a field. Let A € M;;»,(R). We say that A is Gramian if there exists
B € M;;x,(R) such that A = B'B.

Prove that A is Gramian if and only if A is symmetric and all of its eigenvalues are
non-negative.
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