# THE DISCRIMINANT OF A COMPOSITION 

JOHN CULLINAN

This lemma may be useful in the following contexts: a) to compute the discriminant of an iterated rational function, or b) to extract the discriminant of $f$ or $g$ from that of $f \circ g$. Let $k$ be a field and $f, g \in k[x]$. Suppose $\operatorname{deg}(f)=\epsilon$ and $\operatorname{deg}(g)=\delta$. Suppose further that neither $f$ nor $g$ has zero discriminant and that $\operatorname{Res}(f, g) \neq 0$, i.e. $f$ and $g$ have no common roots.

Lemma. With all notation as above, the discriminant of the composition $f \circ g$ is given by the formula

$$
\operatorname{disc} f \circ g=(-1)^{\epsilon \delta(3 \epsilon \delta-2 \delta-1) / 2} \ell(f)^{\delta-1} \ell(g)^{\epsilon \epsilon \epsilon \delta-\delta-1)}(\operatorname{disc} f)^{\delta} \operatorname{Res}\left(f \circ g, g^{\prime}\right)
$$

where $\ell$ denotes the leading term of the polynomial.
Proof. The definition of discriminant in terms of the resultant is gives us

$$
\operatorname{disc} f \circ g=(-1)^{\binom{\epsilon \delta}{2}} \ell(f \circ g)^{-1} \operatorname{Res}\left(f \circ g,\left(f^{\prime} \circ g\right) g^{\prime}\right) .
$$

Applying the identity $\operatorname{Res}(P, Q R)=\operatorname{Res}(P, Q) \operatorname{Res}(P, R)$, we focus on the resultant $\operatorname{Res}\left(f \circ g,\left(f^{\prime} \circ g\right) g^{\prime}\right)$ :

$$
\begin{aligned}
\operatorname{Res}\left(f \circ g,\left(f^{\prime} \circ g\right) g^{\prime}\right) & =(-1)^{\epsilon \delta((\epsilon-1) \delta)} \ell\left(f^{\prime} \circ g\right)^{\epsilon \delta} \prod_{\left\{\theta: f^{\prime}(g(\theta))=0\right\}} f(g(\theta)) \\
& =(-1)^{\epsilon \delta((\epsilon-1) \delta)} \ell\left(f^{\prime} \circ g\right)^{\epsilon \delta}\left[\prod_{\left\{\rho: f^{\prime}(\rho)=0\right\}} f(\rho)\right]^{\delta} \\
& =(-1)^{\epsilon \delta((\epsilon-1) \delta)} \ell\left(f^{\prime} \circ g\right)^{\epsilon \delta}\left[\left(\epsilon \ell(f)^{-\epsilon} \operatorname{Res}\left(f, f^{\prime}\right)\right]^{\delta}\right. \\
& =(-1)^{\epsilon \delta((\epsilon-1) \delta)} \ell\left(f^{\prime} \circ g\right)^{\epsilon \delta}\left(\epsilon \ell(f)^{-\epsilon \delta} \ell(f)^{\delta}(\operatorname{disc} f)^{\delta} .\right.
\end{aligned}
$$

Putting this resultant back into the discriminant formula above and working out the leading terms yields the desired formula.

