
A COMPUTATIONAL APPROACH TO THE 2-TORSION
STRUCTURE OF ABELIAN THREEFOLDS

JOHN CULLINAN

Abstract. Let A be a three-dimensional abelian variety defined over a number field K. Using techniques

of group theory and explicit computations with Magma, we show that if A has an even number of Fp-

rational points for almost all primes p of K, then there exists a K-isogenous A′ which has an even number
of K-rational torsion points. We also show that there exist abelian varieties A of all dimensions ≥ 4 such

that #Ap(Fp) is even for almost all primes p of K, but there does not exist a K-isogenous A′ such that
#A′(K)tors is even.

1. Introduction

Given an abelian variety A defined over a number field K, the Mordell-Weil theorem asserts that A(K)
is a finitely-generated abelian group. Moreover, we can estimate the size of the torsion subgroup A(K)tor

by using the fact that there exists an injective homomorphism A(K)[m] ↪→ Ap(Fp), where A(K)[m] is the
K-rational kernel of the multiplication-by-m isogeny, and p is a prime of good reduction such that p - m.
This provides us with the basic divisibility property #A(K)[m] ≡ 0 (mod #Ap(Fp)), relating the torsion
subgroup of A(K) and the Fp-points of Ap for almost all primes p of OK . On the other hand, it is not clear
whether the converse holds. The relevant question, originally posed by Lang and investigated by Katz in [7],
is the following:

Question 1. Let m ≥ 2 be an integer and S a set of good primes for A of density 1. If #Ap(Fp) ≡ 0(m)
for all p ∈ S, does there exist a K-isogenous A′ such that #A′(K)tor ≡ 0(m)?

In [7], Katz showed that Lang’s question has a positive answer when A is an elliptic curve, and in the
special case m = ` is prime, for two-dimensional abelian varieties. However, he constructs explicit counter-
examples for all odd primes ` in all dimensions greater than 2. In this paper, we revisit Question 1 for
the prime ` = 2 when A is three-dimensional (the first case where the answer is unknown) and obtain the
following result:

Theorem 1. Let A be a three-dimensional abelian variety defined over a number field K. If #Ap(Fp) is
even for almost all primes p of K, then there exists a K-isogenous A′ such that #A′(K)tors is even.

It is natural to ask whether Theorem 1 can be extended to abelian varieties of dimension greater than 3.
It turns out that such a generalization is not possible; Serre constructed a counterexample in dimension 4,
and we have generalized this to all dimensions greater than 4. In particular, we show in Section 6 that there
exist abelian varieties A of all dimensions ≥ 4 such that #Ap(Fp) is even for almost all primes p of K, but
there does not exist a K-isogenous A′ such that #A′(K)tors is even.

Acknowledgments. We would like to thank Serre for providing us with the counter-example in dimension
4 and helpful comments. We would also like to thank the referee for providing us with the proof in the
Appendix, and Berger and Wong for useful discussions. Computations with Magma were performed at
http://magma.maths.usyd.edu.au/calc.

2. Background and Setup

The proof of Theorem 1 amounts to determining whether the subgroups of the finite simple group S6(2)
satisfy certain representation-theoretic properties. In this section we collect the relevant information about
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S6(2) which will be used in the paper, and outline the proof of Theorem 1.

For an abelian variety A of dimension n over a perfect field K, the `-adic Tate module T`(A) =
Hom(Q`/Z`, A(K)) is a free Z`-module of rank 2n, where K is a fixed algebraic closure of K. The mod `
representation ρ` : Gal(K/K) −→ Aut(T`(A)⊗ F`) ' GL2n(F`) is the representation-theoretic formulation
of the natural action of Gal(K/K) on the K-valued points of A of order `. The vector space T`(A) ⊗ F`

is equipped with a non-degenerate, skew-symmetric, Galois-invariant pairing (the Weil pairing) [5, p. 133],
hence im ρ` ≤ Sp2n(F`). Our approach uses a reformulation of Question 1, when m is a prime number `,
due to Katz in [7, p. 483]:

Question 2 (mod ` version of Question 1). If for all σ ∈ Gal(K/K) we have det(I − ρ`(σ)) = 0 in F`, does
the semisimplification of T`(A)⊗ F` contain the trivial representation?

We now take K to be a number field and the dimension of A to be 3. Set ` = 2, so that im ρ2 ≤ Sp6(F2).
It is known that [8, p. 25] Sp6(F2) is isomorphic to the finite simple group S6(2). Let G ≤ S6(2) denote
the image of the mod 2 representation. In Question 2, the condition on G is that each of its elements
have 1 as an eigenvalue in its (natural) degree-6, F2-representation. We call such subgroups fixed-point
subgroups of S6(2). The proof of Theorem 1 comes down to the fact that for every fixed-point subgroup G of
S6(2), the module F2[G] has a trivial Jordan-Hölder factor, hence our strategy is composed of two basic steps:

Step 1: Identify the fixed-point subgroups of S6(2).
Step 2: Compute the Jordan-Hölder series F2[G].

Any element of S6(2) lying in a 2-power conjugacy class necessarily has all of its eigenvalues equal to 1,
hence we are interested only in the eigenvalues of the odd-order conjugacy classes. For those, we refer to the
Brauer character table of S6(2) in characteristic 2 [6, p. 110]:

1451520 160 648 108 30 7 9 15
ind 1A 3A 3B 3C 5A 7A 9A 15A

φ1 + 1 1 1 1 1 1 1 1
φ2 − 6 3 -3 0 1 -1 0 -2
φ3 + 8 -4 -1 2 -2 1 -1 1
φ4 + 14 2 5 -1 -1 0 -1 2
φ5 + 48 -12 3 0 -2 -1 0 -2
φ6 + 64 4 -8 -2 -1 1 1 -1
φ7 + 112 -8 -5 -2 2 0 1 2
φ8 + 512 -16 8 -4 2 1 -1 -1

The splitting field of S6(2) is F2, hence the characteristic polynomials of the odd-order conjugacy classes of
S6(2) in its natural F2-representation are simply the reductions modulo 2 of the lifted C-valued polynomials,
which are obtained as in the case of ordinary representation theory. By expressing the elementary symmetric
polynomials in terms of the power-sum polynomials [9, p. 15], and then reducing modulo 2, we obtain the
characteristic polynomials of the odd-order classes:

Class Characteristic Polynomial

1A (x− 1)6

3A x6 + x5 + x4 + x2 + x + 1

3B x6 + x4 + x3 + x2 + 1

3C x6 + 1

5A x6 + x5 + x + 1

7A x6 + x5 + x4 + x3 + x2 + x + 1

9A x6 + x3 + 1

15A x6 + x4 + x3 + x2 + 1

It is now easy to check that the conjugacy classes 3B, 7A, 9A, and 15A do not afford 1 as an eigenvalue.
Therefore, any fixed-point subgroup G of S6(2) must be a proper subgroup of S6(2) with odd-order classes
of type 1A, 3A, 3C, or 5A.

We organize our search for the fixed-point subgroups G as follows. Since G ≤ S6(2) is proper, it must
be contained in some maximal subgroup of S6(2). We will show that no maximal subgroup of S6(2) is a
fixed-point subgroup, whence G must lie in (at least) a “level-2” maximal subgroup of S6(2). We iterate this
process until all fixed-point subgroups are found.
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3. The Subgroup Structure of S6(2)

Since our proof relies heavily on the subgroup structure of S6(2), we use this section to record its maximal
subgroups, as well as some basic results which will be used throughout the paper. We use Atlas notation,
e.g. Un(q) for PSUn(Fq2), and Ln(q) for PSLn(Fq).

Maximal Subgroups of S6(2) Index
U4(2):2 28
S8 36
U3(3):2 120

26:L3(2) 135

(21+4 × 22):(S3 × S3) 315
S3 × S6 336
L2(8):3 960

Definition 1. Any fixed-point subgroup of S6(2) whose semisimplification does not contain the trivial rep-
resentation will be called an obstruction.

Lemma 1. A cyclic fixed-point subgroup of S6(2) cannot be an obstruction.

Proof. If G = 〈g〉 is a fixed-point subgroup, then there exists v ∈ F6
2 such that g · v = v. Since G is cyclic,

this means all of G acts trivially on the line spanned by v, corresponding to a trivial Jordan-Hölder factor
in the semisimplification of F2[G]. �

Lemma 2. A fixed-point subgroup of S6(2) must have index divisible by 7.

Proof. The characteristic polynomial of the class 7A of S6(2) does not vanish at 1, hence no element of order
7 in S6(2) can have 1 as an eigenvalue. �

Definition 2. The semisimplification type of a representation V of a finite group G is the vector whose
entries are the dimensions of the Jordan-Hölder factors of V .

Since there are no non-trivial irreducible representations of a p-group in characteristic p, it follows that the
semisimplification type of a 2-subgroup of S6(2) is (1, 1, 1, 1, 1, 1). We therefore have the following lemma.

Lemma 3. Every 2-subgroup of S6(2) is a fixed-point subgroup, but not an obstruction.

4. The Role of magma

A polynomial over a field k has 1 as a root if and only if its coefficients sum to 0 in k. Therefore, G is a
fixed-point subgroup of S6(2) if and only if the characteristic polynomial of each conjugacy class has an even
number of terms. We use the computer program magma to determine the fixed-point subgroups as follows:

Step 1 C:=ConjugacyClasses(G);

for i:=1 to #C do
print CharacteristicPolynomial(C[i][3]);
end for;

Now suppose G is a fixed-point subgroup of S6(2) with generators a, b, . . . c. The following code will
determine the composition factors of G:

Step 2 A:=MatrixAlgebra<GF(2), 6 | a,b,...,c>;

M:=RModule(A);
B:=CompositionFactors(B);
B;

Remark. Since any one-dimensional composition factor over F2 is automatically trivial, it suffices to show
that the semisimplification of every fixed-point subgroup of S6(2) contains a one-dimensional factor.

Our approach is iterative, hence we require a compact, easy-to-read notational scheme to present our
results. Given a subgroup G of S6(2) which is not a fixed-point subgroup, we look to its maximal sub-
groups for fixed-point subgroups. Whenever one is found, the Magma code of Section 4 will show that the
semisimplification type has a “1”.

3



Let G1, . . . , Gn be the maximal subgroups of G, ordered so that G1, . . . , Gk are fixed-point subgroups,
and Gk+1, . . . , Gn are not; let ssi denote the semisimplification type of Gi We illustrate this in the following
table:

Maximal Subgroup Fixed-Point Semisimplification Type
G1, . . . , Gk Y ss1, . . . ssk
Gk+1 N -

Maximal Subgroup Fixed-Point Semisimplification Type
G(k+1)1

, . . . , G(k+1)k
Y ss(k+1)1

, . . . , ss(k+1)k
G(k+1)k+1

N -

Gk+2 N -

The table is iterative in the sense that for each maximal subgroup which is not a fixed-point subgroup, we
present its subgroup data in its entry in the table. Owing to the amount of data involved, we only present
our results for two of the maximal subgroups of S6(2), namely L2(8):3 and S8. The rest of the data can be
found at the website http://math.bard.edu/cullinan/groupdata.pdf. Moreover, the data presented is
only for conjugacy classes of subgroups, since conjugate subgroups have the same semisimplification types.

Remark. If a subgroup H of S6(2) is not a fixed-point subgroup, and has the property that all of its
subgroups are either cyclic or 2-groups, then we do not investigate its maximal subgroup structure since it
cannot contain an obstruction.

In the following section we provide some examples of the output of the computer search.

5. Examples

5.1. Subgroups of L2(8):3. The group L2(8) has three Brauer Characters of degree 2 which fuse to form
the single degree-6 Brauer Character of L2(8):3. The order of L2(8):3 is divisible by 7, hence it cannot be an
obstruction. The maximal subgroup structure of L2(8):3, along with its semisimplification data, displayed
in the following table:

Maximal Subgroup of L2(8):3 F-P Type
7:6 N -

Z/6 Y (1,1,1,1,2)
Z/7, D7 N -

9:6 N -
A3 o S2 N -

Z/6 Y (1,1,1,1,2)
Z/6, Z/3 N -

D9 N -
S3, Z/9 N -

9:3 N -
Z/9, Z/9, Z/9, Z/3× Z/3 N -

23:7:3 N -

23:3 Y (1, 1, 2, 2)
7:3 N -

23:7 N -
Z/2× Z/2× Z/2 Y (1,1,1,1,1,1)

Z/7 N -

There are no novel subgroups of L2(8):3 (in the sense of [3, p. xix]), whence the omission of L2(8) from the
table above.

5.2. Subgroups of S8. The order of S8 is divisible by 7, so S8 is not a fixed-point subgroup of S6(2). The
maximal subgroups [3, p. 22] of S8, along with their semisimplification data, are as follows:

Maximal Subgroup of S8 F-P Type

24:S4, S6 × S2, S4 o S2 Y (1, 1, 2, 2), (1,1,4), (1,1,4)

A8, S7, L2(7):2, 23:L2(7), S5 × S3 N -

We now provide a case-by-case description of the non-fixed-point groups, starting with S7. The alternating
group A7 is a maximal subgroup of S7, but we only include data for its subgroups isomorphic to L2(7) since
they fuse in S7 to form the novel subgroup 7:6. All other subgroups of A7 are ordinary and are therefore
subsumed by the maximal subgroups of S7.
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Maximal Subgroup of S7 F-P Type
S6, S5 × S2, S4 × S3 Y (1,1,4), (1,1,4), (1,1,2,2)

7:6 N -
Z/6 Y (1,1,1,1,2)

Z/7, D7 N -
L2(7) N -

S4, S4 Y (1,1,2,2), (1,1,2,2)
7:3 N -

L2(7) N -
S4, S4 Y (1,1,2,2), (1,1,2,2)

7:3 N -

Next we consider the subgroup L2(7):2 of S8. The two maximal subgroups of L2(7) isomorphic to S4 fuse
to form the novel maximal subgroups D8 and D6 of L2(7):2. The semisimplification data for L2(7):2 is given
by the following:

Maximal Subgroups of L2(7):2 F-P Type
D8, D6 Y (1,1,1,1,1,1), (1,1,2,2)

7:6 N -
Z/6 Y (1,1,1,1,2)

Z/7, D7 N -
S4, S4 Y (1,1,2,2), (1,1,2,2)

The maximal subgroup S5×S3 of S8 intersects the conjugacy class 15A of S6(2), hence is not a fixed-point
subgroup. The subgroup data is as follows:

Maximal Subgroups of S3 × S5 F-P Type
A3 × S5 N -

A3 ×D6, A3 × S4, S5 Y
(1,1,2,2),

(1,1,2,2),(1,1,4)
A3 × F20 N -

Z/12, F20 Y
(1,1,1,1,2),

(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2)

(1,1,4)
Z/15 N -

A3 × A5 N -

A3 × S3, A3 × A4, A5 Y
(1,1,2,2),

(1,1,2,2),(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

S3 × A5 N -

S3 × S3, S3 × A4, S2 × A5 Y
(1,1,2,2),

(1,1,2,2),(1,1,4)
S3 ×D5 N -

D6, S2 × S5 Y
(1,1,1,1,2),

(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

S3 × Z/15 N -

S3,Z/10 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

D15 N

S3, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N

A3 × A5 N -

A3 × S3, A3 × A4, A5 Y
(1,1,2,2),

(1,1,2,2),(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

3.S5 N -

S3 × S3, A4:S3, S5 Y
(1,1,2,2),

(1,1,2,2),(1,1,4)
(Z/15):(Z/4) N -

Z/3 o Z/4, Z/5 o Z/4 Y
(1,1,1,1,2),

(1,1,4)
D5 × A3 N -

Z/6, D5 Y
(1,1,1,1,2)

(1,1,4)
Z/15 N -

A3 × A5 N -

A3 o S3, A3 × A4, A5 Y
(1,1,2,2),

(1,1,2,2),(1,1,4)
D5 × A3 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -
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Maximal Subgroups of S3 × S5 (cont’d) F-P Type

S3 ×D6, S3 × S4, S2 × S5 Y
(1,1,1,1,2),

(1,1,2,2),(1,1,4)
S3 × F20 N -

S3 × Z/4, S2 × F20 Y
(1,1,1,1,2),

(1,1,4)
(Z/15):(Z/4) N -

Z/3 o Z/4, F20 Y
(1,1,1,1,2),

(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

A3 × F20 N -

Z/12, F20 Y
(1,1,1,1,2),

(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

S3 ×D5 N -

D6, S2 ×D5 Y
(1,1,1,1,2),

(1,1,4)
A3 ×D5 N -

Z/6, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

S3 × Z/15 N -

S3,Z/10 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N -

D15 N

S3, D5 Y
(1,1,1,1,2),

(1,1,4)
Z/15 N

We end with the subgroups of A8 which give rise to the novel subgroups 24:S4 and L2(7):2 of S8, namely
the two subgroups isomorphic to 23:L2(7). The data for each group is identical, so we only present it once.

Maximal Subgroups of 23:L3(2) F-P Type

23:S4, 23:S4 Y
(1,1,2,2)
(1,1,2,2)

L2(7) N -

S4, S4 Y
(1,1,2,2)
(1,1,2,2)

7:3 N -
L2(7) N -

S4, S4 Y
(1,1,2,2)
(1,1,2,2)

7:3 N -

23:3:7 N -

23:3 Y (1, 1, 2, 2)
7:3 N -

23:7 N -
Z/2× Z/2× Z/2 Y (1,1,1,1,1,1)

Z/7 N -

6. Higher-Dimensional Abelian Varieties

Recall that Katz proved Question 1 has a positive answer when A has dimension 1, that Question 2 has a
positive answer when A has dimension 2, and that counter-examples to Question 2 (and therefore Question
1) exist in all dimensions greater than 2, provided ` 6= 2.

The natural question is whether or not Theorem 1 is valid for abelian varieties of arbitrary dimension. The
answer is no: Serre has provided the following example of a eight-dimensional mod-2 representation for which
every element has a fixed-point, but whose Jordan-Hölder series does not contain the trivial representation
[10].

The simple group SL3(F2) has an irreducible 8-dimensional symplectic representation (the Steinberg
representation). The characteristic polynomials of the odd-order classes of SL3(F2) are as follows:

Class Characteristic Polynomial

3A x8 + x7 + x6 + x2 + x + 1

7A x8 + x7 + x + 1

7B x8 + x7 + x + 1

Each polynomial clearly has 1 as a root and the Steinberg representation is irreducible, hence the semisim-
plification does not contain the trivial representation.

To see there exists an abelian variety with the prescribed mod 2 representation, start with a 4-dimensional
abelian variety A over Q such that im ρ`,A = Sp8(F2). Extend the base field Q to the fixed-field K of
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SL3(F2). By Galois theory, the image of the mod 2 representation is SL3(F2). Thus Serre’s example pro-
duces a counter-example to Question 1.

We can easily extend Serre’s construction to produce counter-examples in all dimensions ≥ 4. For every
even integer n ≥ 2, there is an embedding of classical groups

Sp(n−m)×Spm ↪→ Spn

whenever m is even and 2 ≤ m < n/2 [8, Prop. 4.1.3]. Writing n = 8 + 2 · (n − 8)/2, we see that the
embedding

SL3(F2)× Sp2(F2)× · · · × Sp2(F2)︸ ︷︷ ︸
(n−8)/2

≤ Sp8(F2)× [Sp2(F2)](n−8)/2 ≤ Spn(F2)

clearly gives rise to a fixed-point subgroup of Spn(F2) without a trivial Jordan-Hölder factor. As stated in
the Introduction, this shows that there exist abelian varieties A of all dimensions ≥ 4 such that #Ap(Fp) is
even for almost all primes p of K, but there does not exist a K-isogenous A′ such that #A′(K)tors is even.

Appendix A. A Group-Theoretic Proof

Our basic strategy for the proof was first to use theoretical considerations to reduce the original problem
to a finite computation, and then to demonstrate how a computer algebra package can be used to perform
this computation. This technique was employed in several instances by the author in [4]. Upon submission
of the paper, the referee suggested an alternative argument that replaces the the computer algebra portion
of the finite calculation with arguments from group theory and geometric algebra. We would like to take
this opportunity to thank the referee and to present a sketch of their argument.

We start by recalling some facts from finite group theory; see [1] for details. Given a finite group G with
order divisible by p, let Op(G) be the smallest normal subgroup of G such that G/Op(G) is a p-group, and
let Op(G) be the largest normal p-subgroup of G. The Fitting Subgroup F (G) of G is the largest nilpotent
normal subgroup of G, and is isomorphic to the direct products of all the Op(G). Now let V = F6

2, and let
H ≤ S6(2) be an obstruction of minimal order.

Lemma 4. The group H cannot have a 2-group as a quotient, so that H = O2(H).

Proof. A 2-group acts unipotently on V , hence it’s Jordan-Hölder series has trivial factors. Since H is an
obstruction, this is impossible. �

A Sylow-3 subgroup S of S6(2) has order 81 and is isomorphic to Z/3 o Z/3 ' (Z/3× Z/3× Z/3) o Z/3.
Let T be a Sylow-3 subgroup of H.

Lemma 5. The group T is elementary abelian of order dividing 9, and is a proper subgroup of H.

Proof. Any central element of S lies in its elementary abelian subgroup (Z/3)3 and has no fixed points, hence
T is a proper subgroup of S. Moreover, if T contains any element of S outside (Z/3)3, plus any nontrivial
element of (Z/3)3, then T contains a central element of S and cannot be an obstruction. Hence #T divides
9. It is easy to check that H has no elements of order 9, so T must be elementary abelian. It is clear that
no elementary abelian subgroup of S6(2) of order 3 or 9 is an obstruction, hence T is a proper subgroup of
H. �

Lemma 6. The group H has even order.

Proof. Otherwise, #H divides 34 · 5, so either has a normal 3-subgroup or 5-subgroup. Since H does not
meet the conjugacy class 15A of S6(2), it must be the case that H is a 3-group or cyclic of order 5. By the
preceding argument, H cannot be a 3-group, and by Lemma 1, H cannot be cyclic. �

Since T is elementary abelian of order dividing 9, its Jordan-Hölder factors have dimension either 1 or 2.
Moreover, since T is not an obstruction it must be the case that T fixes a subspace of V of even dimension.
This observation will be used in the following lemma.
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Lemma 7. If N is a normal solvable subgroup of H, then N is a 2-group.

Proof. Suppose N is a minimal normal solvable subgroup of H which is not a 2-group. Then N = O2(N)P ,
where P is an elementary abelian p-group. By the Frattini argument, H = NNH(P ) = O2(N)NH(P ). Since
the Jordan-Hölder factors of O2(N) are all trivial, H and NH(P ) have isomorphic factors, hence we can
assume H = NH(P ).

Since P is either cyclic of order 5, or an elementary abelian 3-group, it fixes a nondegenerate (hence
even-dimensional) subspace of V . The normalizer stabilizes this decomposition, whence V = A ⊥ B with A
of dimension 2. Hence

H ≤ Sp2(F2)× Sp4(F2) ' S3 × S6.

By Lemma 4, H is in fact a subgroup of Z/3 × A6 and cannot be an obstruction due to the orthogonal
decomposition of the representation. Indeed, if H is a direct-product subgroup of Z/3×A6, then it cannot
be an obstruction since the fixed-points of H are composed of the fixed-points of the projections. Therefore
the projection Π of H onto A6 must have Z/3-quotient (Goursat’s Lemma [2, p. 864]). An analysis of the
subgroups Π of A6 with this property reveals that no such H can be an obstruction. �

A similar argument shows that H must act irreducibly on V (this involves analyzing the stabilizers of
both nondegenerate and totally singular decompositions of V ). Therefore O2(H) is trivial. Since F (H) is
the product of the Op(H), p = 2, 3, 5, it follows from the lemmas above that F (H) is trivial also. Thus the
product of the minimal normal subgroups is a direct product of simple groups. A simple factor cannot have
fixed-points, hence by minimality H is must be simple.

Therefore, any obstruction H must be a simple subgroup of S6(2) of index divisible by 7, possessing an
elementary abelian subgroup of order dividing 9, and having an irreducible degree-6 F2-representation. One
can check (via Magma or the Atlas [3]) that the only non-trivial, proper, simple subgroups of S6(2) are
A5, L2(7), A6, L2(8), A7, G2(2)′, A8, and U4(2). Of these, only A5, A6, and U4(2) have index divisible by 7
and possess an elementary abelian subgroup of order dividing 9. Out of these three groups, only U4(2) has
a six-dimensional, irreducible, F2-representation [6, p. 2, 4, 60]. The associated irreducible character takes
on the value −3 on the each of the classes 3A and 3B?? [6, p. 60], hence U4(2) meets the conjugacy class
3B of S6(2). By the remark at the end of Section 2, U4(2) is not a fixed-point subgroup. Therefore, S6(2)
contains no obstructions.
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