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ABSTRACT. The application of the theory of partially ordered sets to voting systems is
an important development in the mathematical theory of elections. Many of the results
in this area are on the comparative properties between traditional elections with linearly
ordered ballots and those with partially ordered ballots. In this paper we present a scoring
procedure, called the partial Borda count, that extends the classic Borda count to allow for
arbitrary partially ordered preference rankings. We characterize the partial Borda count in
the context of weighting procedures and in the context of social choice functions.

1. INTRODUCTION

In this paper we consider the problem of generalizing elections with linearly ordered
ballots to those with partially ordered ballots. In principle, partially ordered ballots provide
voters with greater flexibility for expressing their true beliefs while still giving the option
of submitting a traditional, linearly ordered ballot. The motivation behind introducing par-
tially ordered ballots is simple: it provides a platform that is less restrictive than traditional
ranked ballots. For example, given alternatives a1, . . . ,a6, suppose a voter’s true prefer-
ences are given by Figure 1, representing the fact that a1 is preferred to all alternatives; a2
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a3 a4

a5

a6

FIGURE 1. Partially ordered ballot

is preferred to a3 and a4; a5 is preferred to a6; and there are no other preferences among
the alternatives. The problem is how to determine winners from the aggregate ballots.

Voting with partially ordered preferences has been an active area of mathematics since
Arrow’s seminal work (1950). For example, Brown (1974, 1975) explores much of the
underlying set theory (filters) associated with partial orders, acyclic relations, and lat-
tice theory applied to voting theory. Ferejohn and Fishburn (1979) introduce the notion
of binary decision rules and apply it to a generalization of Arrow’s theorem; similarly
Barthélemy (1982) applies non-linear preference orders to generalizing Arrow’s theorem.
More recently, Fagin et al. (2004) and Ackerman et al. (2012) have studied special cases
of partially ordered ballots – the so-called bucket orders – which are commonly referred to
as weak orders or strict weak orders in the social choice literature.

Our work was originally motivated by the results of Ackerman et al. (2012). There,
the authors present a method they call bucket averaging that applies to the special class
of partially ordered preference rankings they call bucket orders. The bucket averaging
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method is an approximation to the linear extension method. There, a partially ordered
ballot is replaced by all possible linearly ordered (traditional) ballots and the Borda count
is applied to these so-called linear extensions. The authors prove that their bucket averaging
method gives the same results as the linear extension method, and they further show that the
computational complexity of bucket averaging is less expensive than the linear extension
method. From a practical perspective, approval voting fits naturally into the theory of
bucket ordered ballots, where all bucket orders have rank 2.

In this paper we describe a simple score-based voting procedure for partially ordered
ballots that is inspired by the classic Borda count for linearly ordered ballots, and yields
the classic Borda count results if all voters submit linearly ordered ballots. More generally
it yields the same results as the linear extension method (equivalently, Bucket averaging
method) if voters submit bucket ordered ballots. We place no restrictions on our partial
orders (such as the bucket orders above), and even allow for totally disconnected ballots.
We briefly describe our results; detailed definitions appear later in the paper.

Given a partial order on a fixed set A of alternatives, let down(a), for a ∈ A, be the num-
ber of alternatives that are ranked below a, and incomp(a) be the number of alternatives
that are incomparable to a. Assign a weight of 2down(a)+ incomp(a) to each a ∈ A. We
call this method of assigning weights the partial Borda weighting procedure. This weight-
ing procedure in turn gives rise to a social choice function, which aggregates the weights
given to the alternatives according to each voter’s preference ranking and declares the al-
ternatives with highest total weight the winners.

Our first main result characterizes partial Borda in the context of weighting procedures;
i.e., methods of assigning weights to individual alternatives in an arbitrary partially ordered
ballot.

Theorem 1. The partial Borda weighting procedure is the unique weighting procedure,
up to affine transformation, that has constant total weights and is linear in the quantities
down(a) and incomp(a).

Our second main result, which is an adaptation of a result of Young (1974) on the clas-
sic Borda count, characterizes partial Borda in the context of social choice functions; i.e.,
methods of assigning winners to collections of ballots:

Theorem 2. The partial Borda choice function is the unique social choice function (among
those whose domain consists of all profiles of partially ordered ballots) that is consistent,
faithful, neutral, and has the cancellation property.

In the concluding section of the paper we will discuss further conditions that our voting
procedure does and does not satisfy. For instance, partial Borda count satisfies the mono-
tone and Pareto conditions (appropriately generalized to partially ordered ballots) but fails
to satisfy plurality. We also show that the partial Borda count specializes to the bucket
averaging method of Ackerman et al. (2012).

2. PARTIAL BORDA WEIGHTS

In this section we describe an extension of the classic Borda score to the context of par-
tially ordered ballots. We consider elections where the voters submit ballots which consist
of partially ordered preference rankings of the alternatives. Such preference rankings can
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be represented by combinatorial objects called partially ordered sets (posets, for short).
Throughout this paper, fix a set A of alternatives, with |A|= n > 1.

The terminology surrounding the theory of posets differs slightly among social-choice
theorists and combinatorialists. We will follow the combinatorial conventions in Stanley’s
book (1997). Let us recall basic definitions and establish notation needed for the paper.

A relation 4 is a partial order on A, and (A,4) is called a poset, if the following
properties hold:

• Reflexivity: a4 a for all a ∈ A.
• Antisymmetry: If a4 b and b4 a then a = b.
• Transitivity: If a4 b and b4 c then a4 c.

Write a ≺ b if a 4 b and a 6= b. If a ≺ b and there is no c ∈ A such that a ≺ c ≺ b, then
say that b covers a. A poset can be visually represented by its Hasse diagram, in which
elements of the poset are represented by nodes, and a line is drawn from one node a up to
another node b whenever b covers a. Two elements a and b in a poset are comparable if
either a4 b or b4 a. They are incomparable otherwise. A poset is linearly ordered of all
pairs of elements are comparable.

Next we go over voting theoretic terminology. Fix an infinite set X , thought of as names
of potential voters. Let R denote the set of real numbers.

• A profile is a map p from some finite subset V ⊆ X to the set of partial orders on
A. Call V the voter set of p. The partial order p(v) is denoted by 4v when p is
understood from the context. We may refer to 4v as the (partially ordered) ballot
cast by v.

• A social choice function is a map from the set of profiles to the set of non-empty
subsets of A.

• A weight function is a map from A to R.
• A weighting procedure is a map from the set of partial orders on A to the set of

weight functions. The weight function associated with a partial order4 is denoted
by w4, and w4(a) is referred to as the weight of a.

• A scoring procedure is a map from the set of profiles to the set of weight functions.
The weight function associated with a profile p is denoted by sp. We call sp the
score function of p, and sp(a) the score of a.

Every weighting procedure naturally gives rise to a scoring procedure, whereby the
score function of a profile is defined as the sum of the weight functions of individual ballots.
To set notation, if p is a profile with voter set V and 4v is the partial order associated with
v ∈V , then the corresponding score function of p is defined by

(1) sp(a) = ∑
v∈V

w4v(a).

Every scoring procedure in turn gives rise to a social choice function f , where f (p) is the
set of alternatives a ∈ A whose score sp(a) is highest among all alternatives.

Given a partial order 4, define the down set and incomparable set of a ∈ A by

Down(a) = {b ∈ A | b≺ a};
Incomp(a) = {b ∈ A | b is incomparable to a}.

Let down(a) = |Down(a)| and incomp(a) = | Incomp(a)|. When it is important to empha-
size the dependency on 4 we write down4(a) and incomp4(a).
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We propose the following weighting procedure.

Definition 1. The partial Borda weighting procedure is the weighting procedure that asso-
ciates a partial order 4 with the weight function w4 : A→ R given by

(2) w4(a) = 2 down4(a)+ incomp4(a).

The corresponding scoring procedure defined by (1) is called the partial Borda scoring
procedure, and the score function sp is called the partial Borda score. The corresponding
social choice function that chooses alternatives with the highest score is called the partial
Borda choice function.

Remark 1. We offer another, equivalent, interpretation of the partial Borda weight func-
tion that gives some insight into (2) and facilitates later proofs. Given a partial order 4 on
A, start by giving each a ∈ A a weight of n− 1. (We think of a as initially receiving one
“point” for each of the other alternatives.) Then, for every pair a,b ∈ A with a ≺ b, we
decrease the weight of a by 1 and increase the weight of b by 1. Informally, an alternative
must “give away” one point to every alternative that is ranked above it. After reallocating
weights in this manner, the final weight assignments agree with (2).

Example. Suppose that there are 6 voters and 5 alternatives, A = {a,b,c,d,e}, and the
profile p consisting of the posets submitted by these voters is depicted in Figure 2. Next to
each alternative we indicate the weight assigned by the partial Borda weighting procedure.
Note that the weights depend only on the poset and not on the voter who submitted it.
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FIGURE 2. Partial Borda weights for several posets

The scores of the alternatives are as follows: sp(a) = 15, sp(b) = 23, sp(c) = 22,
sp(d) = 27, sp(e) = 33. Thus, the partial Borda choice set is {e}.

We will show that the partial Borda weighting procedure is characterized, up to affine
transformation, by the following two properties:

• Constant total weight: There is a constant δ ∈R such that ∑a∈A w4(a) = δ for all
partial orders 4.

• Linearity: There are constants α,β ,γ ∈ R such that

w4(a) = α ·down(a)+β · incomp(a)+ γ

for all a ∈ A and partial orders 4.
The constant total weight condition holds for classic Borda (where δ = ∑

n
i=1(i− 1) =

n(n−1)/2) and is a reasonable condition to impose on a weighting procedure if we wish
to avoid favoring certain preference rankings over others.
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The linearity condition implies that, just as in classic Borda, if a voter changes the
preference relation among alternatives that are ranked below some alternative a, or among
alternatives that are not comparable to a, then the weight assigned to a should not change.
(Of course in classic Borda, there would be no incomparable alternatives.) On the other
hand, if a voter changes preferences by, for example, taking an alternative originally ranked
below a and making it incomparable to a, then the weight assigned to a by the voter changes
by a constant amount, in this case β −α .

Our first main result is that the constant total weight and linearity conditions character-
ize the partial Borda weighting procedure, up to an affine transformation.

Theorem 1. The partial Borda weighting procedure w4 satisfies the constant total weight
and linearity conditions. Conversely, if w′4 is any weighting procedure satisfying these
conditions, with constant total weight δ and linearity coefficients α , β , and γ , then

(3) α = 2β =
2(δ − γ n)
n(n−1)

and

(4) w′4(a) = β ·w4(a)+
[

δ

n
−β (n−1)

]
.

Proof. The partial Borda weighting procedure is linear by definition. With the interpreta-
tion of the weight function given in Remark 1 it is clear that, because each of the n alter-
natives initially receives a weight of n−1, the sum of the weights of all the alternatives is
always n(n−1).

Conversely, suppose we are given a weighting procedure w′ with δ = ∑a∈A w′4(a) and
w′4(a) =α ·down(a)+β · incomp(a)+γ for constants α,β ,γ,δ ∈R. Pick an arbitrary lin-
ear ordering41 of the elements of A, say a1 ≺1 a2 ≺1 · · · ≺1 an. Then δ = ∑

n
i=1 w′41

(ai) =

∑
n
i=1(α(i−1)+β ·0+ γ) = αn(n−1)/2+ γ n. Next, let 42 be the partial order in which

all pairs of alternatives are incomparable. Then δ = ∑a∈A w′4(a) = β n(n−1)+ γ n. Solv-
ing for α and β gives (3), and we also get γ = δ/n− β (n− 1). Moreover, w′4(a) =
2β ·down(a)+β · incomp(a)+ γ = β ·w4(a)+ γ , which proves (4). �

If two weighting procedures w and w′ are related by w′4(a) = t ·w4(a)+u for constants
t, u, such that t > 0, and if the corresponding score functions s and s′ are defined as in (1),
then clearly sp(a) > sp(b) if and only if s′p(a) > s′p(b) for all a,b ∈ A and all profiles p.
Thus the corresponding social choice functions defined by these two scoring procedures
are equal. Accordingly, we have the following consequence of Theorem 1.

Corollary 1. If a weighting procedure has constant total weights and is linear with β > 0,
then the corresponding social choice function (defined in the usual manner by aggregating
weights and declaring alternatives with the highest score to be winners) is the partial
Borda choice function.
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3. CHARACTERIZATION OF THE PARTIAL BORDA CHOICE FUNCTION

Our main result in this section is a characterization of the partial Borda choice function
in terms of four properties:

Theorem 2. The partial Borda choice function is the unique social choice function that is
consistent, faithful, neutral, and has the cancellation property.

This result is anticipated by Young (1974), who characterizes the classic Borda choice
function in terms of these same four properties, one caveat being that we adopt a different
notion of faithfulness that seems better suited to posets. Indeed, Young suggests a way
to extend the definition of Borda score to partially ordered ballots and mentions that his
characterization should extend to partially ordered preference rankings. Our partial Borda
score turns out to be closely related to the definition he proposes (see Lemma 2 and the
preceding discussion). However, our proof of uniqueness, which is specific to partially
ordered preferences, is quite different from Young’s proof, which is specific to linearly
ordered preferences. Neither result is an obvious specialization of the other. Our proof
is elementary and self-contained; in particular we avoid the linear algebraic and graph
theoretic techniques used by Young.

We establish notation and some preliminary results, followed by an outline of the proof
of Theorem 2 before going through the details. As before, A is a fixed set of alternatives
with |A|= n. If p1 and p2 are disjoint profiles, meaning their underlying voter sets V1 and
V2 are disjoint, then p1+ p2 denotes the profile with voter set V1∪V2, which when restricted
to Vi agrees with pi. Let f be a social choice function. For a profile p and a 6= b ∈ A, let
πab(p) denote the number of voters who rank a above b. Let us define consistent, faithful,
neutral, and the cancellation property for an arbitrary social choice function f based on
partially ordered preferences.

• Consistent: For disjoint profiles p1 and p2, if f (p1)∩ f (p2) 6= /0 then f (p1)∩
f (p2) = f (p1 + p2). (Consistency is also called the convexity criterion when the
underlying geometry is emphasized (see Woodall (1994).)

• Faithful: For any profile p consisting of just one voter, if a ∈ A is an alternative
and the voter ranks b above a for some b ∈ A, then a /∈ f (p).

• Neutral: For any profile p and permutation σ of A, f (σ(p)) = σ( f (p)). Here
σ(p) denotes the profile in which every voter relabels the alternatives according
to σ ; that is, a voter prefers a over b in p if and only if that voter prefers σ(a) to
σ(b) in σ(p).

• Cancellation property: For any profile p, if πab(p) = πba(p) for all a 6= b ∈ A then
f (p) = A.

Two profiles p1 and p2 with voter sets V1 and V2 are isomorphic (respectively, anti-
isomorphic) if there is a bijection φ : V1→ V2 such that for all v ∈ V1, the partial order in
p1 corresponding to voter v is identical to (respectively, the dual of) the partial order in p2
corresponding to voter φ(v). (Two partial orders 4 and 4′ on A are dual to each other if
for all a,b ∈ A, a4 b if and only if b4′ a.)

Lemma 1. Suppose f is consistent and has the cancellation property. If p and q are
isomorphic profiles, then f (p) = f (q).

Proof. First suppose p and q are disjoint. Let t be a profile that is disjoint from p and q and
anti-isomorphic to p, hence also q. By the cancellation property, f (p+ t) = A = f (t +q).
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By consistency, f (p) = f (p)∩A = f (p+ t + q) = A∩ f (q) = f (q). If p and q are not
disjoint, create isomorphic copies p′ and q′ that are disjoint from each other and from p
and q. We then have f (p) = f (p′) = f (q′) = f (q). �

This lemma gives us the flexibility to pass freely between a profile and its isomorphism
class. When we refer to p as a profile we will usually mean p is an isomorphism class of
profiles. When we need to refer to the underlying voter set, we assume that an arbitrary
representative of the isomorphism class has been chosen. The “+” operation that was
originally defined on profiles with disjoint voter sets extends naturally to a well-defined
commutative operation on isomorphism classes.

If a 6= b ∈ A, let 〈a,b〉 denote a profile with just a single voter, who ranks b above a
and expresses no other preferences. The profile 〈a,b〉+ 〈b,a〉 is called a 2-cycle. We say a
profile p is reduced if p = ∑

k
i=1〈ai,bi〉 for some a1,b1, . . . ,ak,bk ∈ A such that ai 6= b j for

all i, j. Given profiles p and q and score functions sp and s′q, we say that sp is a shift of s′q
if there is a constant N (possibly depending on p and q) such that sp(a) = s′q(a)+N for
all a ∈ A; in this situation it is clear that the corresponding choice sets f (p) and f ′(q) are
equal.

Young (1974) uses the score function s′p(a) = ∑b∈A−{a}(πab(p)−πba(p)) as the work-
ing definition of the classic Borda score function (where p is a profile of linearly ordered
ballots). This score function is easily seen to produce the same choice set as the usual
Borda score function in which the ith lowest ranked alternative in a ballot is assigned
weight i−1. Young proposes using s′p to define a Borda score for partial orders. We show
that our partial Borda score sp is a shift of the one proposed by Young:

Lemma 2. For a profile p with m voters, the partial Borda score of an alternative a ∈ A is

(5) sp(a) = m · (n−1)+ ∑
b∈A−{a}

(πab(p)−πba(p))

Proof. With the interpretation of the partial Borda weight function given in Remark 1,
initially each of the m voters assigns weight n− 1 to each alternative a ∈ A, so a receives
an initial total score of m(n−1). But then a receives an additional ∑b∈A−{a}πab(p) points
from the lower-ranked alternatives while giving away ∑b∈A−{a}πba(p) points to higher-
ranked alternatives. The resulting net score is exactly as in (5). �

Let us give a quick overview of the proof of Theorem 2. It is immediate from the
definitions that the partial Borda choice function satisfies consistency and neutrality. Partial
Borda satisfies faithfulness by Proposition 3, and the cancellation property by Equation (5).
Now we outline the proof of uniqueness. Given a social choice function f satisfying these
four properties and a profile p, we will construct a new profile q that is reduced, and has the
property that f (p) = f (q) and the partial Borda scores sp and sq are shifts of each other.
Lemmas 3, 4, and 5 will show that each step of the construction preserves f (p) as well
as sp, up to a shift. The steps to constructing q are: (1) add together profiles of the form
〈a,b〉, one for each instance a voter in p expresses preference for b over a (see Lemma 3);
(2) remove 2-cycles from q (see Lemma 4); (3) replace terms of the form 〈a,b〉+ 〈b,c〉
with 〈a,c〉 (see Lemma 5); (4) repeat steps (2) and (3) until q is reduced. Lemma 6 is a
specialized result needed for Lemma 7, which in turn gives a simple expression for f (q).
Having q be reduced will be an important assumption in deriving this expression. It will
then be clear that f (q) coincides with the partial Borda choice set of q. Because q maintains
the same choice set and partial Borda choice set as p, we conclude f (p) is the partial Borda
choice set of p.
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For the remaining discussion, assume f is a social choice function that is neutral, con-
sistent, faithful, and has the cancellation property, and sp is the partial Borda score. We
will frequently refer to the following property, which is an immediate consequence of con-
sistency:

Deletion Property: If p and q are profiles and f (p) = A, then f (p+q) = f (q).

Lemmas 3 to 8 constitute our proof of the “uniqueness” part of Theorem 2.

Lemma 3. For any profile p, there is a profile q = ∑
k
i=1〈ai,bi〉 such that f (q) = f (p) and

sq is a shift of sp.

Proof. Let V be the voter set for p and

q = ∑
v∈V

∑
a,b∈A
a≺vb

〈a,b〉 and q′ = ∑
v∈V

∑
a,b∈A
a≺vb

〈b,a〉

By the cancellation property, f (q′+ q) = f (p+ q′) = A. Applying the deletion property
twice, we get f (p) = f (p+q′+q) = f (q). As for Borda scores, because πab(p) = πab(q)
for all a,b, then according to (5), sq must be a shift of sp. �

Lemma 4. Suppose q is obtained by removing a 2-cycle 〈a,b〉+ 〈b,a〉 from a profile p.
Then f (q) = f (p) and sq is a shift of sp.

Proof. By the deletion property, f (p) = f (q+ 〈a,b〉+ 〈b,a〉) = f (q). Removing a 2-cycle
from p does not change πxy(p)−πyx(p) for any x 6= y ∈ A. Hence, by (5), sq is a shift of
sp. �

In the previous lemma we allow p= 〈a,b〉+〈b,a〉, in which case q is the “empty profile”
that has no voters. In this situation we set f (q) = A and sq(a) = 0 for all a ∈ A.

Lemma 5. Suppose q is obtained by replacing a copy of 〈a,b〉+ 〈b,c〉 in a profile p by
〈a,c〉, where a, b, c are distinct. Then f (q) = f (p) and sq is a shift of sp.

Proof. Let t = 〈a,b〉+ 〈b,c〉+ 〈c,a〉. We first show that f (t) = A. Let t ′ = 〈b,a〉+ 〈c,b〉+
〈a,c〉. Suppose one of the elements from the set {a,b,c}, let us say a, is in f (t). Let σ be
the cyclic permutation (abc) of A. Then σ(p) = p. By neutrality, b = σ(a) ∈ σ( f (t)) =
f (σ(t)) = f (t). Applying σ again, we get c ∈ f (t). Let τ be the transposition (ac).
Then τ(t) is isomorphic to t ′, and hence f (t ′) = f (τ(t)) = τ( f (t)) = f (t). In particular,
f (t)∩ f (t ′) 6= /0. Applying the cancellation property and then consistency, A = f (t + t ′) =
f (t)∩ f (t ′). Therefore, f (t) = A. Suppose instead that some alternative d /∈ {a,b,c} is in
f (t). Then d = τ(d) ∈ τ( f (t)) = f (t ′), which means f (t)∩ f (t ′) 6= /0. As before it follows
that f (t) = A.

To show f (q) = f (p), we write p = 〈a,b〉+ 〈b,c〉+ p′ for some p′. Then apply the
deletion property twice, to get

f (p)= f ((〈a,c〉+〈c,a〉)+(〈a,b〉+〈b,c〉+ p′))= f (t+〈a,c〉+ p′)= f (〈a,c〉+ p′)= f (q).

Finally, it is easy to verify that for any x ∈ A,

∑
y∈A−{x}

(πxy(q)−πyx(q)) = ∑
y∈A−{x}

(πxy(p)−πyx(p)).

Therefore, by (5), sq is a shift of sp. �
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Lemma 6. Let a1,b1,a2,b2, . . . ,ak,bk be elements of A such that b1, . . . ,bk are distinct,
a1, . . . ,ak are not necessarily distinct, and ai 6= b j for all i, j. Then f (∑k

i=1〈ai,bi〉) =
{b1, . . . ,bk}.
Proof. Let c1, . . . ,c` be distinct elements such that, as sets, {c1, . . . ,c`}= {a1, . . . ,ak}.

First consider the case ` = k = 1. Suppose c ∈ f (〈c1,b1〉) for some c distinct from
c1 and b1. Let τ be the permutation of A that transposes c1 and b1. By neutrality,
c = τ(c) ∈ τ( f (〈c1,b1〉)) = f (〈b1,c1〉). Thus c ∈ f (〈c1,b1〉)∩ f (〈b1,c1〉). Then by the
cancellation property and consistency, A= f (〈c1,b1〉+〈b1,c1〉)= f (〈c1,b1〉)∩ f (〈b1,c1〉).
Hence f (〈c1,b1〉) = A, contradicting that fact that, by faithfulness, c1 /∈ f (〈c1,b1〉). We
conclude that f (〈c1,b1〉) cannot contain alternatives other than c1 or b1. Having just ob-
served that it cannot contain c1, we must have f (〈c1,b1〉) = {b1}.

Continue to assume ` = 1 and proceed by induction on k. Let k ≥ 2, {b1, . . . ,bk} be
a subset of A, and c1 ∈ A be outside of this subset. By consistency, f (∑k

i=1〈bi,c1〉) =
{c1}. This means c1 cannot be in f (∑k

i=1〈c1,bi〉) because otherwise we would have, by
consistency and cancellation, {c1}= f (∑k

i=1〈bi,c1〉)∩ f (∑k
i=1〈c1,bi〉) = f (∑k

i=1(〈bi,c1〉+
〈c1,bi〉)) = A, a contradiction.

Suppose next that d ∈ f (∑k
i=1〈c1,bi〉) for some d distinct from c1, b1, . . . , bk. With

τ as before, d = τ(d) ∈ f (τ(∑k
i=1〈c1,bi〉)) = f (〈b1,c1〉+∑

k
i=2〈c1,bi〉). Therefore, d ∈

f (∑k
i=1〈c1,bi〉)∩ f (〈b1,c1〉+∑

k
i=2〈c1,bi〉)= f (〈c1,b1〉+〈b1,c1〉+∑

k
i=2〈c1,bi〉+∑

k
i=2〈c1,bi〉)=

A ∩ f (∑k
i=2〈c1,bi〉) ∩ f (∑k

i=2〈c1,bi〉) = {b2, . . . ,bk}, by induction. It follows that d ∈
{b2, . . . ,bk}, a contradiction. We have now shown that f (∑k

i=1〈c1,bi〉) cannot contain any
alternatives outside the set {b1, . . . ,bk}. There must be some b j in the set f (∑k

i=1〈c1,bi〉).
By transposing this b j with each of the remaining bi’s and using neutrality, we conclude
that every bi is in this set. This completes the proof of the lemma in the case ` = 1 and k
arbitrary.

We now consider the general case 1 ≤ ` ≤ k. Consider the cyclic permutation σ =
(c1c2 · · ·c`) of A. Let p = ∑

k
i=1〈ai,bi〉 and q = p+σ(p)+σ2(p)+ · · ·+σ `−1(p). Then

f (q) = f (∑`
i=1 ∑

k
j=1〈ci,b j〉) =

⋂`
i=1 f (∑k

j=1〈ci,b j〉) =
⋂k

i=1{b1, . . . ,bk}= {b1, . . . ,bk}, by
the `= 1 case.

Suppose there is some d /∈ {a1,b1, . . . ,ak,bk} such that d ∈ f (p). By neutrality d =
σ i(d) ∈ f (σ i(p)) for i = 1, . . . , `−1. Therefore d ∈ f (p)∩ f (σ(p))∩·· ·∩ f (σ `−1(p)) =
f (q)= {b1, . . . ,bk}, a contradiction. No such d can exist. It follows that f (p)⊆{a1, . . . ,ak}∪
{b1, . . . ,bk}.

Suppose next that there is some a ∈ {a1, . . . ,ak} such that a ∈ f (p). Let S = {i : ai =

a}. Then a ∈ {a}∩ f (p) = f (∑i∈S〈bi,a〉)∩ f (∑k
i=1〈ai,bi〉) = f (∑i∈S(〈bi,ai〉+ 〈ai,bi〉)+

∑i/∈S〈ai,bi〉)= f (∑i/∈S〈ai,bi〉). As in the previous paragraph one can show that f (∑i/∈S〈ai,bi〉)
is a subset of {ai : i /∈ S}∪{bi : i /∈ S}. We have reached a contradiction as a is not con-
tained in the latter set. Therefore no such a exists. It follows that f (p)⊆ {b1, . . . ,bk} and
hence the permutation σ fixes f (p). We have f (p) = f (p)∩σ( f (p))∩·· ·∩σ `−1( f (p)) =
f (q) = {b1, . . . ,bk}. �

Given a reduced profile p = ∑
k
i=1〈ai,bi〉, let λ (b), b ∈ A, be the number of voters who

express a preference for b; that is, λ (b) = |{i : b = bi}|. Also let µ = max{λ (b) : b ∈ A}.
Lemma 7. If p is a reduced profile as before, then f (p) = {b ∈ A : λ (b) = µ}.
Proof. Order the alternatives b1, . . . ,bn so that µ = λ (b1)≥ λ (b2)≥ ·· ·≥ λ (b`)> λ (b`+1)=
· · · = λ (bn) = 0. Thus for each i = 1, . . . , `, there are λ (bi) voters who cast ballots of the
form 〈∗,bi〉, where ∗ stands for some alternative whose name will not matter. Furthermore,
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none of the voters show any preference for any of the alternatives b`+1, . . . ,bn. The sum-
mands of p can be arranged as follows in a left-justified array of ` rows, with the ith row
having λ (bi) terms:

p = 〈∗,b1〉+ 〈∗,b1〉+ · · ·+ 〈∗,b1〉 (λ (b1) terms)

+ 〈∗,b2〉+ 〈∗,b2〉+ · · ·
... (λ (b2) terms)

...
...

+ 〈∗,b`〉+ · · · (λ (b`) terms)

Let pi be the sum of the terms in the ith column, for i= 1, . . . ,λ (b1). Let m= |{i : λ (bi) = µ}|,
the number of terms in the last column. Because each pi is reduced, Lemma 6 is applicable,
and we have {b1, . . . ,b`}= f (p1)⊇ f (p2)⊇ ·· · ⊇ f (pµ) = {b1, . . . ,bm}. By consistency,
f (p) = f (p1 + · · ·+ pµ) = f (p1)∩·· ·∩ f (pµ) = {b1, . . . ,bm}= {b ∈ A : λ (b) = µ}. �
Lemma 8. f is the partial Borda choice function.

Proof. Given any profile p, let q be as in Lemma 3. Repeatedly apply Lemmas 4 and 5,
removing 2-cycles from q and replacing terms of the form 〈a,b〉+ 〈b,c〉 with 〈a,c〉. Each
application of one of these lemmas will decrease the number of terms in q, so the procedure
will eventually terminate, resulting in a reduced profile q such that f (p) = f (q) and sq is
a shift of sp. The choice set f (q), as described in Lemma 7, clearly agrees with partial
Borda choice set for q. Furthermore, since sq is a shift of sp, the partial Borda choice set
of q equals that of p. �

4. FURTHER PROPERTIES OF PARTIAL BORDA

We explore connections between the partial Borda count and certain voting systems in-
volving bucket ordered ballots. We also consider some well-known properties in the math-
ematical theory of elections, namely the monotone and Pareto conditions, in the context of
the partial Borda count.

In Ackerman et al. (2012), the authors study a scoring procedure for profiles consisting
of bucket ordered ballots. We will show that the partial Borda score function specializes to
theirs when we restrict to bucket orders. As before A is a fixed set of n alternatives. Recall
that a partial order 4 on A is called a bucket order (or bucket poset) if A can be partitioned
into a disjoint union A = A1∪A2∪·· ·∪Ak of nonempty sets (called buckets) such that for
all a,b ∈ A, we have a ≺ b if and only if a ∈ Ai and b ∈ A j for some i < j. We refer to Ai
as an equivalence class.

One way to determine the social choices from a profile of bucket orders is to replace
each bucket order with the (in principle, much larger) set of all its linear extensions and
then use the usual Borda function to score the linearly ordered ballots. One of the main
results of Ackerman et al. is to show that the result of such a scoring procedure is the
same as their bucket averaging method, defined as follows. Given a bucket order, which
partitions A into equivalence classes A1, . . . , Ak, let ni = |Ai| and assign the following
weight to each member of Ai:

(n1 + · · ·+ni−1)+(n1 + · · ·+ni−1 +1)+ · · ·+(n1 + · · ·+ni−1 +ni−1)
ni

=
2(n1 + · · ·ni−1)+ni−1

2
.

In other words, the weight assigned to each alternative in Ai is the average of the Borda
weights of these alternatives in some (any) linear extension of the bucket order. We can
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immediately deduce the following result describing how partial Borda weight function
extends the bucket averaging weight function.

Proposition 1. Suppose 4 is a bucket order on A. Then the bucket averaging method
of Ackerman et al. assigns a weight of w4(a)/2 to each a ∈ A, where w4(a) is the partial
Borda weight of a. Consequently, the partial Borda count, when restricted to bucket orders,
will produce the same social choices as the bucket averaging method.

Bucket orders arise naturally in Borda count elections that allow for truncated ballots.
In particular, suppose we modify a traditional Borda count so that voters are allowed to
rank a proper subset and give the unranked alternatives a score of zero. An extreme ver-
sion, so-called bullet voting, is when a voter only ranks a single alternative (Niemi 1984).
For example (using our convention of multiplying the Borda scores by 2), given five alter-
natives a1, . . . ,a5, a voter could give scores of 8 to a1, 6 to a2, and 0 to a3,a4,a5. A bullet
vote in this example would give a single alternative a score of 8, and all others a score of 0.

One can create a bucket order from a truncated linear order by placing all unranked
alternatives into a single equivalence class at the bottom. However, for such a partial
ordering of the alternatives, our partial Borda procedure would give each of the unranked
alternatives a weight equal to the size of the equivalence class minus one, whereas the
truncated Borda procedure would given them a weight of zero.

Proposition 2. The truncated Borda procedure and the partial Borda procedure do not
necessarily produce the same social choices.

Proof. Suppose the following ballots are submitted in a truncated Borda count election,
with the horizontal lines indicating the truncation:

a
b
c
d

×5


b
c
d
a

×4.

Then a receives a score of 30, while b,c, and d receive scores of 24, 16, and 8, respectively.
However, if we replace the five truncated ballots with

a

b c d

then the partial Borda scores of a, b, c, and d are 30, 34, 26, and 18 points, respectively,
and b is the social choice. �

Next we consider two properties related to monotonicity. Recall the following defini-
tions from Saari (1995). A social choice function based on linearly ordered preferences is
said to satisfy the monotone condition if, when a∈ A is a social choice from a given profile
p, and the only voters to change their preferences give a a higher ranking (but preserving
the original relations between other alternatives), then a is a social choice in the new pro-
file. The function satisfies the Pareto condition if, whenever every voter in p prefers a over
b then b is not a social choice.

The monotone and Pareto conditions can be defined as follows for an arbitrary social
choice function f , whose domain is the set of profiles whose ballots are partial orders:
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• Monotone condition: Let p be a profile and a be in the choice set f (p). Suppose
one of the voters changes his original preference order from 4 to a preference
order 4′ with the property that for all b,c ∈ A−{a},

b≺ c⇐⇒ b≺′ c, b≺ a =⇒ b≺′ a, and a 6≺ b =⇒ a 6≺′ b
Then a is in the choice set f (p′) of the new profile p′.

• Pareto condition: For a profile p and alternatives a,b ∈ A, if every voter in p
prefers b over a, then a /∈ f (p).

Proposition 3. The partial Borda choice function satisfies the monotone and Pareto con-
ditions.

Proof. Let 4 be a partial order on A. We claim that the partial Borda weight function w4
is strictly order-preserving; i.e., a ≺ b implies w4(a) < w4(b). Suppose a ≺ b. With the
interpretation of partial Borda weights given in Remark 1, b and a initially have the same
weight (n− 1). For every point that a gains from a lower ranked alternative, b also gains
a point, and for every point b loses to a higher ranked alternative, a also loses a point.
Furthermore, a loses an extra point to b. Thus in the end w4(b) ≥ w4(a)+ 2 > w4(a).
Having shown that w4 strictly order-preserving, it follows that if every voter in a profile p
prefers b over a, then sp(b)> sp(a). Hence the Pareto condition is satisfied.

Next, suppose a ∈ f (p) and that one voter changes his preference order, as described
in the definition of the monotone condition above, resulting in a new profile p′. Again
using Remark 1, it is clear that w4′(a) ≥ w4(a) and that w4′(b) ≤ w4(b) for all b 6= a.
The implies sp′(a) ≥ sp(a) and sp′(b) ≤ sp(b), and consequently a ∈ f (p′). Hence the
monotone condition is satisfied. �

Lastly, we show that partial Borda, unlike classic Borda, does not satisfy the plurality
condition: if the number of ballots in which a is the single most preferred alternative is
greater than the number of ballots in which alternative b is shown any preference over
another alternative, then a receives a higher score than b.

Proposition 4. Partial Borda count does not satisfy the plurality condition.

Proof. To see this, suppose there are 19 voters and three alternatives: a1,a2, and a3. Par-
tition the voters into two subsets of size 10 and 9 with ballots as in Figure 3, respectively.
The partial Borda scores for this profile are s(a1) = 40, s(a2) = 28, and s(a3) = 46. �

a1

a2 a3 a1

a2

a3

×9×10

FIGURE 3. Plurality Counterexample

Acknowledgements. We benefitted greatly from conversations about this work with Bill
Zwicker. We are also very grateful to the reviewers and editors, whose detailed comments
and suggestions led to revisions and a new result (Theorem 2) that we feel significantly
improved the paper.



A BORDA COUNT FOR PARTIALLY ORDERED BALLOTS 13

REFERENCES

[1] M. Ackerman, S. Choi, P. Coughlin, E. Gottlieb, J. Wood, Elections with partially ordered preferences. To
appear in Public Choice.

[2] K. Arrow, A Difficulty in the Concept of Social Welfare, The Journal of Political Economy 58 (4), 328-346
(1950)
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