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Abstract. The equation (x | k)n + (y | k)n = (z | k)n is a degree-n, falling-factorial
version of the Fermat equation, where (x | k)n = x(x−k)(x− 2k) · · · (x−(n− 1)k). We
give an interpretation of the integral and rational solutions to this problem in terms of a
probabilistic game and then use the theory of elliptic curves over function fields to generate
all such solutions when n = 3. We conclude with some observations on the combinatorial
properties of solutions for n > 4. This generalizes the recent work of Green [G].

1.. Introduction

It is now nearly 20 years since perhaps the most famous Diophantine problem was
solved: there are no non-trivial integer solutions to the Fermat equation xn + yn = zn once
n > 2. Variants on this problem abound and we take as our motivation a recent one which
appeared in [G]; to describe it we recall the standard notation for the falling Pochammer
symbol. Let K be a field of characteristic 0 and n a positive integer. Then for x ∈ K we
define

xn
def
= x(x− 1) · · · (x−n+ 1).

In [G] Green posed the Diophantine problem of determining the integral solutions to
xn + yn = zn. Such an equation defines an algebraic curve and the number of its rational
points is related to its genus: if the genus is greater than 1, then there are only finitely
many rational points and if the genus is 0, then if there is one rational point, there are
infinitely many. The interesting case is that of genus 1, where the algebraic curve (an
elliptic curve) may have a finite number of rational points or an infinite number.

In this paper we consider a generalization of Green’s Diophantine equation and offer
an interesting combinatorial interpretation of the solution. We begin by introducing the
notation

(x | k)n
def
= x(x− k)(x− 2k) · · · (x− (n− 1)k),

so that xn = (x | 1)n. The aim of this paper is to interpret the solutions to

(x | k)n + (y | k)n = (z | k)n(1.1)

in the context of a probabilistic combinatorial variant on “roulette”. We will describe the
game in detail in the next section, but give a brief introduction here.

Let x be a positive integer and consider a circle (“wheel”) divided into x arcs (“slots”)
of equal size, labeled clockwise with the integers 1, . . . , x. Fix a positive integer n and
choose an (n − 1)-tuple of nonnegative integers (k1, . . . ,kn−1) with the condition that
x > k1 + · · ·+ kn−1. In round 0 a player spins the wheel. Whatever slot the ball lands
on, that slot along with the following k1 − 1 slots (in clockwise order) will be considered
“toxic.” In each subsequent round (say the ith) if the ball lands in a toxic slot, the game
is over. If not, that slot along with the following ki − 1 non-toxic slots will henceforth be
considered toxic (previously-declared toxic slots will be skipped over at this stage). The
player wins if she survives n rounds, including the 0th. Assuming the ball is equally likely
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to land on all slots, what is the probability of her winning? If X is the Bernoulli random
variable for her success, it is easy to see that

P(X = 1) =

∏n−1
i=0

(
x− si

)
xn

where si =
∑i
j=1 kj with the assumption that s0 = 0. In the special case ki = k for all

1 6 i 6 n− 1, which is what we focus on for this paper, we have

P(X = 1) =
(x | k)n
xn

,

and the total number of cases where she wins is equal to (x | k)n. Our main combinatorial
result is the following (see the Section 2. for detailed definitions).

Theorem 1.1. Let y, z ∈ N such that m = z−y > 0. Then the difference (z | k)n−(y | k)n counts
the number of winning cases in an n-round-altered game on a z-wheel with at least one landing in a
safe zone of size m.

In fact, this game is still valid if x is allowed to be a rational number. Returning to the
Diophantine problem, we can then try to find all rational solutions to Equation (1.1). As in
[G], the interesting case occurs when n = 3 and (1.1) defines an elliptic curve:

(x | k)3 + (y | k)3 = (z | k)3 .(1.2)

Our approach is to translate the rational solutions to (1.2) to those on an elliptic curve E
defined over the function field Q(λ) and then use techniques of arithmetic geometry to
determine all solutions. Our main number-theoretic result is the following.

Theorem 1.2. With all notation as above, we have E(Q(λ)) ' Z×Z with generators

P
def
= (3,−9/2) and Q

def
= (3− 3λ, 9λ− 9/2).

Moreover, the rank rλ of any specialization is > 2 unless λ = 0 or ±1/2. In those exceptional cases
the Mordell-Weil groups are isomorphic to Z/3 and Z/2×Z/2×Z, respectively.

It is easy to pass from the λ-parameterization back to the k-parameterization, hence
Theorem 1.2 describes all parametric solutions to (1.2). We note that there will be additional
rational solutions not covered by Theorem 1.2 at specializations for which rλ > 2. This
project falls naturally into a larger class of problems where techniques of elliptic curves
are used to solve combinatorial problems. We point out [BCN] and [BG] as two particular
examples where the rational points on certain elliptic curves over function fields are used
to parameterize rational 4- and 5-tilings of the unit square.

The layout of the paper is as follows. We begin with the game-interpretation of Equation
(1.1). Then in Section 3. we give an alternative formulation in terms of elliptic curves
over function fields. Finally, we give some concluding remarks and further directions for
research.

2.. A Combinatorial Game

Recall the initial setup of the Introduction. We define an x-wheel to be a wheel with x slots,
as above. Note that the game still makes sense on a continuous x-wheel, i.e. if x,k ∈ R>0 and
at each round, arcs of total length k are declared toxic. In the continuous version we assume
that the ball lands on the wheel uniformly at random. The probability of winning is still
(x | k)n /x

n. We start by rewriting Equation (1.1) with n = 3 as (x | k)3 = (z | k)3 − (y | k)3
and focus on the right side. Each of these terms represent the number of winning cases on
a z- and y-wheel, respectively. To have a combinatorial interpretation of this difference, we
look at the game from a new perspective and alter the rules slightly.
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Write z = y+m with m > 0 and on a z-wheel declare m consecutive slots as a safe zone.
If the ball lands in one of the remaining y slots these m would be skipped over. If the
ball lands in one of the m slots, the player is safe for that round and k available non-toxic
slots following the safe zone would be declared toxic. The rest of the rules are as before.
We define this to be an n-round-altered game. We will start by showing that the number of
winning games in an 3-round-altered game is equal to (z | k)3.

Since z = y+m we can write (z | k)3 = (y | k)3 + 3my
2 + (3m2 − 6km)y+ (m3 − 3km2 +

2k2m). A straightforward argument based on the number of landings in the safe zone
shows the number of winning cases in the n-round-altered game is equal to

y(y−k)(y−2k)+m((y−k)(y−2k)+y(y−2k)+y(y−k))+m2((y−2k)+(y−k)+y)+m3 =

(y | k)3 +m(3y2 − 6ky+ 2k2) +m2(3y− 3k) +m3 =

(y | k)3 + 3my
2 + (3m2 − 6km)y+ (m3 − 3km2 + 2k2) = (z | k)3 .

Thus (z | k)3 − (y | k)3 counts the number of winning cases with at least one landing in
the safe zone in the n-round-altered game. To establish this in general, we will use the
well-known identity

(2.1) (x | k)n =

n∑
j=1

[
n

j

]
(−k)n−jxj

(see [AS, 24.1.3]) where
[
n
j

]
is the notation for the unsigned Stirling numbers of the first

kind.

Lemma 2.1. For n > 1 and 1 6 i 6 n,
n∑
j=i

[
n

j

](
j

i

)
(−k)n−jyj−i =

∑
06a1<···<ai6n−1

(y | k)n
(y− a1k) · · · (y− aik)

.

Proof. We will prove this lemma by induction on n, where n = 1 and 2 are trivial to check
and n = 3 was shown above. Recall

[
n
j

]
= (n− 1)

[
n−1
j

]
+
[
n−1
j−1

]
and

(
j
i

)
=
(
j−1
i

)
+
(
j−1
i−1

)
.

Therefore, for 1 6 i 6 n we have
n∑
j=i

[
n

j

](
j

i

)
(−k)n−jyj−i =

n∑
j=i

(
(n− 1)

[
n− 1

j

]
+

[
n− 1

j− 1

])(
j

i

)
(−k)n−jyj−i

= (n− 1)(−k)

n∑
j=i

[
n− 1

j

](
j

i

)
(−k)n−1−jyj−i +

n∑
j=i

[
n− 1

j− 1

](
j

i

)
(−k)n−jyj−i

= (−nk+ k)

n−1∑
j=i

[
n− 1

j

](
j

i

)
(−k)n−1−jyj−i +

n∑
j=i

[
n− 1

j− 1

](
j− 1

i

)
(−k)n−jyj−i

+

n∑
j=i

[
n− 1

j− 1

](
j− 1

i− 1

)
(−k)n−jyj−i

= (−nk+ k)

n−1∑
j=i

[
n− 1

j

](
j

i

)
(−k)n−1−jyj−i +

n−1∑
j=i

[
n− 1

j

](
j

i

)
(−k)n−1−jyj−i+1

+

n−1∑
j=i−1

[
n− 1

j

](
j

i− 1

)
(−k)n−1−jyj−(i−1)
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= (y−nk+ k)

n−1∑
j=i

[
n− 1

j

](
j

i

)
(−k)n−1−jyj−i

+

n−1∑
j=i−1

[
n− 1

j

](
j

i− 1

)
(−k)n−1−jyj−(i−1)

= (y−nk+ k)

 ∑
06a1<···<ai6n−2

(y | k)n−1
(y− a1k) · · · (y− aik)


+

 ∑
06a1<···<ai−16n−2

(y | k)n−1
(y− a1k) · · · (y− ai−1k)


=

∑
06a1<···<ai6n−2

(y | k)n
(y− a1k) · · · (y− aik)

+
∑

06a1<···<ai−16n−2

(y | k)n−1 (y−nk+ k)

(y− a1k) · · · (y− ai−1k)(y−nk+ k)

=
∑

06a1<···<ai6n−2

(y | k)n
(y− a1k) · · · (y− aik)

+
∑

06a1<···<ai−16n−2,ai=n−1

(y | k)n
(y− a1k) · · · (y− aik)

=
∑

06a1<···<ai6n−1

(y | k)n
(y− a1k) · · · (y− aik)

. �

We are now ready to prove Theorem 1.1.

Theorem 2.1 (Theorem 1.1 in Section 1.). Let y, z ∈ N such that m = z− y > 0. Then the
difference (z | k)n − (y | k)n counts the number of winning cases in an n-round-altered game on a
z-wheel with at least one landing in a safe zone of size m.
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Proof. Using identity (2.1) and applying Lemma 2.1, we have

(y+m | k)n − (y | k)n =

n∑
j=1

[
n

j

]
(−k)n−j

(
(y+m)j − yj

)

=

n∑
j=1

[
n

j

]
(−k)n−j

 j∑
i=1

(
j

i

)
miyj−i


=

n∑
j=1

j∑
i=1

[
n

j

](
j

i

)
(−k)n−jmiyj−i

=

n∑
i=1

n∑
j=i

[
n

j

](
j

i

)
(−k)n−jmiyj−i

=

n∑
i=1

mi

 n∑
j=i

[
n

j

](
j

i

)
(−k)n−jyj−i


=

n∑
i=1

mi

 ∑
06a1<···<ai6n−1

(y | k)n
(y− a1k) · · · (y− aik)

 .

A straightforward counting argument shows that the terms in this last sum counts the
number of cases in an n-round-altered game with exactly i landing landings in the safe
zone and a1, . . . ,ai indicate the rounds in which the ball lands in the safe zone. �

Even though the above interpretation of (z | k)n − (y | k)n seems ad hoc at first, there is
in fact a good intuitive argument. In order that (z | k)n and (y | k)n be positive integers
and count the number of winning cases for wheels of size z and y, respectively, we need to
assume that z > y > (n− 1)k. To avoid trivial cases, we need to make a slightly stronger
assumption that z > y > (n− 1)k. Note that at the end of any winning case using the
z-wheel, there are z− (n− 1)k− 1 unused slots. But this is greater than z− y− 1 = m− 1.
This shows that at least m slots are not used at the end of each winning case. Even though
the position of these slots varies from case to case, their existence explains why the above
argument should work: for every winning case there is a given set of safe slots. If we give
a priori safe status to m fixed slots at the beginning the n-round-altered game, we should
get the same number of winning cases, i.e., (z | k)n. Removing the cases that never use the
safe zone, i.e., (y | k)n results in the cases that use the safe zone at least once.

In the final section of the paper we will present additional combinatorial interpretations
and identities related to Equation (1.1). In the next section we take a different approach
to the equation and describe its rational solutions in the context of elliptic curves over
function fields.

3.. Elliptic Curves

Fix k ∈ Z and note that for any integral solution (x,y, z) to (1.2) we may write z = y+m
for some m ∈ Z. Then (1.2) reduces to

3my2 + (3m2 − 6km)y = x3 − 3kx2 + 2k2x− (m3 − 3km2 + 2k2m).(3.2)

This defines (an affine patch of) a genus 1 curve over the function field Q(m, k); under the
standard embedding into P2, the point [0 : 1 : 0] is a Q(m,k)-rational point on this curve.
Thus, (3.2) defines an elliptic curve E(m,k) over the function field Q(m,k).

From the point of view of elliptic curves, there is a convenient reparameterization of
E(m,k) that will ease computations. Let λ ∈ Q and write k = λm. Then the elliptic curve
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E(m, λm) may be put into short Weierstrass form through the substitutions

X = 3x/m− 3λ and Y = 9y/m+ 9/2− 9λ.

In fact, these substitutions show that the curve E(m, λm) is constant with respect to m. We
therefore set the following notation that we will use for the rest of the paper. Let E/Q(λ)

be the elliptic curve with Weierstrass equation

E : Y2 = X3 − 9λ2X+ 27λ2 − 27/4,

given by the above substitutions. By the Mordell-Weil theorem, the Q(λ)-rational points of
E form a finitely generated abelian group. That is, there is an isomorphism

E(Q(λ)) ' Tors×Zr,

where Tors is a finite abelian group and r is a non-negative integer. The main purpose of
this section is to prove that Tors is trivial and that r = 2.

Some of our proofs rely on Silverman’s Specialization Theorem [Si, Thm. III.11.4] for
elliptic curves over function fields. To describe it, we begin by noting that E corresponds to
an elliptic fibration E → P1 with generic fiber isomorphic to E. We write Eλ for the fiber
above λ ∈ P1(Q) and so Eλ defines an elliptic curve over Q for all but finitely many λ. For
good specializations we set

Eλ(Q) ' Torsλ×Zrλ .

In this context, the specialization theorem tell us E(Q(λ)) 6 Eλ(Q) for all but finitely
many λ ∈ Q. That is, for all but finitely many λ we have Tors 6 Torsλ and r 6 rλ. For
completeness, note that the discriminant and j-invariant of E are given by

∆ = 36(64λ6 − 432λ4 + 216λ2 − 27) and j = 21239λ6/∆,

respectively. We write ∆λ and jλ for the discriminant and j-invariants of the specializations
Eλ. Note that ∆, viewed as a polynomial over Q, is irreducible. Thus Eλ is non-degenerate
for every λ ∈ Q. We are now prepared to prove Theorem 1.2.

Theorem 1.2 shows that the parametric solutions to (1.2) are generated by Q(λ)-rational
points on E. Tracing back through the substitutions, we find that the generators of E(Q(λ))

give rise to the “obvious” solutions of (1.2)

P 7→ (λm+m, λm−m) and

Q 7→ (m, 2λm−m).

Any other parametric solution to (1.2) comes from an E-linear combination of P and Q. In
terms of the original m and k, P and Q may be written as

(3m2,−9m3/2) and (3m2 − 3km,−9m2(m− 2k)/2),

respectively. We now prove Theorem 1.2 via a series of lemmas and propositions.

Lemma 3.2. The torsion subgroup Tors of E(Q(λ)) is trivial.

Proof. If E had a non-trivial Q(λ)-rational torsion point, then so would Eλ(Q) for all λ ∈ Q
(of possibly different order). It is routine to check that E1(Q) has trivial torsion, hence Tors
is trivial. �

Lemma 3.3. The points P and Q are independent on E.

To prove Lemma 3.3 we will use the height pairing to show that P and Q are independent.
Briefly, recall [Si, III.7], [Sh] that if E is an elliptic curve over a function field k(λ) and
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P,Q ∈ E(k(λ)), then the height pairing 〈 , 〉 : E× E→ Z is a bilinear form on E(k(λ)) given
by

〈P,Q〉 = χ+ P ·O+Q ·O− P ·Q−
∑

bad λ

(P ·Q)λ,

〈P,P〉 = 2χ+ 2 · P ·O−
∑

bad λ

(P · P)λ

where χ is the arithmetic genus of E, P ·Q is the intersection number of the divisors P and
Q, and (P ·Q)λ is the local intersection index at λ (the possible values can be found in
the table in [Sh] preceding Theorem 8.7), where the sum is over the singular fibers. A
collection of points {Pi}

n
i=1 ⊂ E(k(λ)) spans a rank-n sublattice of the Mordell-Weil group

precisely when the determinant det
(
〈Pi,Pj〉

)
ij

is non-zero. We now apply this formalism
in the context of our elliptic curve.

Proof of Lemma 3.3. It suffices to show that the determinant det
(
〈P,P〉 〈P,Q〉
〈Q,P〉 〈Q,Q〉

)
is non-zero.

Since E is a rational elliptic surface (the coefficients ai of a minimal model have degree
6 i), we know that χ = 1. We now compute

〈P,P〉 = 2+ 0− 1 = 1,
〈P,Q〉 = 〈Q,P〉 = 1+ 0+ 0− 1− 1/2,
〈Q,Q〉 = 2+ 0− 1 = 1.

Substituting these values into the height pairing matrix shows the determinant equals 3/4,
whence P and Q are independent. �

The most difficult part of the proof of Theorem 1.2 is showing that r = 2. Our approach
is via the Shioda-Tate formula, which relates the Mordell-Weil rank of an elliptic curve over
a function field to the number and type of singularities of the bad fibers. The Shioda-Tate
formula tells us the rank of the Mordell-Weil group E(Q(λ)), while Theorem 1.2 concerns
that of E(Q(λ)). To establish the latter we will need to find explicit Q(λ)-points on E and
show they are independent, which we will do through the height pairing. Before we prove
Theorem 1.2, we give a brief recap of the background in the context of our specific example
E. For general details, see the original paper of Shioda [Sh]. Our approach to Theorem 1.2
follows that of [TZ].

The fibration E → P1 defines a rational elliptic surface, hence the Shioda-Tate formula
[Sh] reduces to

rankE(Q(λ)) = 8−
∑

bad λ

(mλ − 1),

where the sum is taken over the singular fibers and mλ denotes the geometric multiplicity
of the fiber. Because ∆λ is nonzero for all λ ∈ Q, the only contribution to the sum comes
from λ = ∞. Changing variables, let t = 1/λ and take z = t2X and w = t3Y so that the fiber
over ∞ is given by

w2 = z3 − 9t2z− (27/4)t6 + 27t4

with discriminant 36t6(27t6 − 216t4 + 432t2 − 64). By the Kodaira classification of singulari-
ties, it follows that ∞ is a singularity of type I∗0 with 5 components. Hence the Mordell-Weil
rank of E(Q(λ)) equals 4.

Shioda-Tate and Lemma 3.3 together show that r ∈ {2, 3, 4}. To prove r = 2 is more
difficult, so we first give evidence for the equality. In [RS] it was shown for elliptic
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fibrations satisfying the Tate conjecture that the rank r can be computed via

r = rankE(Q(λ)) = Res
s=1

∑
p

logp
ps+1

∑
λ∈P1(Fp)

−ap(Eλ).

Since E is a rational surface, the Tate conjecture holds and we may estimate the residue
using the limit

lim
x→∞ 1

x

∑
p6x

logp
p

p−1∑
λ=0

−ap(Eλ)

 ,

where Eλ denotes the reduction modulo p of Eλ at a good prime p and we define ap(Eλ) = 0
for singular fibers. Let δ(x) = 1

x

∑
p6x

logp
p

(∑p−1
λ=0 −ap(Eλ)

)
. Computations performed in

PARI/GP suggest r = 2:

x 100 500 5000 10000 50000

δ(x) 1.454 1.911 1.944 1.973 1.990

To show the rank of E(Q(λ)) equals 2, we employ the following strategy: search for all
points of E(C(λ)) of the form

(aλ2 + bλ+ c,Aλ3 +Bλ2 +Cλ+D),

where a,b, c,A,B,C,D ∈ C and show that there are four independent points on E. This
amounts to computing the ideal I of the polynomial ring C[a,b, c,A,B,C,D] defined by the
relations

− a3 +A2,−3ba2 + 2BA,−3ca2 − 3b2 + 9a+ 2CA+B2,

− 6cba− b3 + 9b+ 2DA+ 2CB,−3c2a− 3cb2 + 9c+ 2DB+C2 − 27,−3c2b+ 2DC,

− c3 +D2 + 27/4,

and then computing the variety V(I). One checks by computer algebra (we used Magma)
that V(I) is 0-dimensional and consists of 48 septuples of the form (a,b, c,A,B,C,D). We
select two of these points and set

R
def
=
(
−3λ+ u/3− 3/2,

(
−u2/27+ u+ 9/4

)
λ+ u

)
S

def
= ((−v4/2187+ v2/27)λ2 − v4/2916− v2/18+ 3/4,

(−v5/6561+ 2v3/243− v/3)λ3 + vλ))

where u and v satisfy

2u3 − 18u2 + 243 = 0 and v4 − 81v2 + 6561 = 0,

respectively (with this information, one can easily show that R,S ∈ E(Q(λ))). At this point
it is a computation (which we omit) to show that the height pairing matrix for the four
points P,Q,R,S has non-zero determinant. From this we may conclude that the points
P,Q,R,S generate a rank-4 sublattice of E(Q(λ)).

To see that rankE(Q(λ)) = 2 it is not sufficient simply to observe that R and S are not
Q(λ)-rational. Instead, we appeal to the fact that for good primes p, the reduction mod p
map E(Q(λ))→ E(Fp(λ)) is injective [L, Proposition 6.2]. The prime p = 7 is good for E and
one checks that E(F7(λ)) = Z×Z; this is easily performed in Magma via the command

k<t>:=FunctionField(GF(7));
E:=EllipticCurve([-9tˆ2,27tˆ2-27/4]);
MordellWeilGroup(E);
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Moreover, the height pairing computed in Lemma 3.3 is invertible modulo 7. Altogether,
this shows rankE(Q(λ)) 6 2 and we knew a priori that rankE(Q(λ)) ∈ {2, 3, 4}. Therefore
rankE(Q(λ)) = 2. �

To finish the proof of Theorem 1.2, we must show that P and Q generate the Mordell-
Weil group E(Q(λ)), rather than simply generate a sublattice. We use the same reasoning
as in [L]: if P and Q generated an index-n sublattice of E(Q(λ)), then the height pairing
determinant would equal 3/(4n2). But the denominator of a determinant of two points can
be at most 4 because the singularity is of type I∗0 and the rest of the entries of the matrix
are integral. Thus, n = 1. This finishes the proof of Theorem 1.2. �

4.. Conclusion

We conclude with some final observations on the combinatorial properties of the
solutions to Equation (1.1) for general n and offer other avenues into enumerating the
integral solutions. Let S (z,m | k)n denote the number of winning cases on a z-wheel with
a safe zone of size m, increments of size k and playing n rounds (including the 0th round).
We have already established that S (y+m,m | k)n = (y+m | k)n − (y | k)n. It is easy to see
that for fixed z, m and k

S (z,m | k)n =

First landing is not in the safe zone

(z−m)S (z− k,m | k)n−1 +

First landing is in the safe zone

m (z−m− k | k)n−1 +mS (z− k,m | k)n−1

(4.3) = m (z−m− k | k)n−1 + z S (z− k,m | k)n−1 .

Note that (z | k)0 = 1 and S (z,m | k)0 = 0 and S (z,m | k)n = 0 when m+ k > z > 0 and
n > 1. Using the recursion above it is easy to show that

S (z,m | k)n = m

[
N∑
i=1

(z | k)i−1 (z−m− ik | k)n−i

]
+ (z | k)N S (z−Nk,m | k)n−N

where N = min{n− 1, b(z−m)/kc}. For the game interpretation, we assumed that z−m = y

to be strictly greater than (n− 1)k; hence, N = n− 1 and we have

S (z,m | k)n = m

[
n−1∑
i=1

(z | k)i−1 (z−m− ik | k)n−i

]
+ (z | k)n−1 S (z− (n− 1)k,m | k)1

= m

[
n−1∑
i=1

(z | k)i−1 (z−m− ik | k)n−i

]
+ (z | k)n−1m [z > m+nk]δ

= m

[
n−1∑
i=1

(z | k)i−1 (y− ik | k)n−i

]
+ (z | k)n−1m [y > nk]δ,

where [ ]δ is the Iverson bracket (i.e. [X]δ equals 1 if X is true and equals 0 otherwise).
Assuming that y > nk, we have

S (z,m | k)n =

n∑
i=1

(z | k)i−1m (y− ik | k)n−i .

There is a combinatorial argument for the validity of this identity which is based on at
which round the last landing in the safe zone happens. If we use a combinatorial argument
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based on when the first landing the safe zone occurs, we have

S (z,m | k)n = m

n∑
i=1

(y | k)i−1 (z− ik | k)n−i .

Hence, we have the following proposition:

Proposition 1. Let n,k ∈ N. If y and z are positive integers such z > y > nk, then
n∑
i=1

(y | k)i−1 (z− ik | k)n−i =

n∑
i=1

(z | k)i−1 (y− ik | k)n−i . �

Remark. It is easy to show that in fact Proposition 1 holds for y, z arbitrary integers.

Given y, z ∈ Z, define S(z,m | k)n
def
= (z | k)n − (y | k)n where m = z − y. Using the

recursive relation

(4.4) S(ζ,m | k)n = m (ζ−m− k | k)n−1 + ζS(ζ− k,m | k)n−1

we will find the ordinary generating function fζ,m,k(t) for S(ζ,m | k)n for fixed ζ, m and
k, and n > 1. However, we first need to find gξ,k(t) the ordinary generating function for
(ξ | k)n for fixed ξ and k and n > 1. As shown in the previous section using techniques
from algebraic number theory, finding the solutions to Equation (1.1) is an intricate problem.
These intricacies will be reaffirmed below using techniques from algebraic combinatorics.
To start, the generating function gξ,k(t) satisfies the following linear differential equation:

gξ,k(t) = 1+ ξtgξ,k(t) − kt
2 d

dt
gξ,k(t),

whence gξ,k(t) = e1/(kt) tξ/k
[
kξ/kΓ

(
1+ ξ

k , 1kt
)
+Cξ,k

]
, where Γ(a, x) =

∫∞
x t

a−1e−t dt is
the incomplete gamma function. One can show

lim
t→0+

e1/(kt) tξ/k kz/kΓ(1+ ξ/k, 1/(kt)) = 1;

so that limt→0+ e1/(kt) tξ/k Cξ,k = 0. Moreover, since limt→0+ e1/(kt)tξ/k = ∞ we con-
clude that Cξ,k = 0 and so

gξ,k(t) = e
1/(kt) tξ/k kξ/kΓ

(
1+

ξ

k
,
1

kt

)
.

To derive an expression for fζ,m,k(t), one can directly use (4.4), or use its rewritten form
as a sum

(4.5) S(ζ,m | k)n = m

n∑
i=1

(ζ | k)i−1 (ζ−m− ik | k)n−i .

We omit the details and conclude that

fζ,m,k(t) = m

∞∑
i=1

(ζ | k)i−1 t
i gζ−m−ik,k(t).

Using the closed formula for gζ,k(t), we have

fζ,m,k(t) = me
1/(kt)t(ζ−m)/kk(ζ−m)/k

∞∑
i=1

(ζ | k)i−1
ki

Γ

(
ζ−m

k
− i+ 1,

1

kt

)
.

With the assumption that (ζ−m)/k = ν ∈ N, the above identity can be simplified further to

(4.6) fζ,m,k(t) = m

∞∑
i=1

ν−i∑
j=0

(ζ | k)i−1
(ν− i)!
j!

kν−i−jtν−j
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using the fact that for n ∈ N and x ∈ R, Γ(n, x) = (n− 1)!e−x
∑n−1
j=0

xj

j! . (N.B. we cannot use
this to tackle the general problem, as expected, since the coefficient of tn in (4.6) leads us
back to (4.5).) Finally, the fact that (ζ | k)n =

∑∞
i=0S(ζ− im,m | k)n gives us∞∑

n=0

(ζ | k)n t
n =

∞∑
n=0

∞∑
i=0

S(ζ− im,m | k)n t
n =

∞∑
i=0

∞∑
n=0

S(ζ− im,m | k)n t
n;

hence,

gζ,k(t) =

∞∑
i=0

fζ−im,m,k(t).

In the aforementioned combinatorial game, instead of considering the special case
discussed in this paper where ki = k for 1 6 i 6 n− 1, one can consider the general case
and see whether there is a combinatorial interpretation for the difference

n−1∏
i=0

(z− si) −

n−1∏
i=0

(y− si).

This consideration motivates the following number theoretic problem: For k1,k2 ∈ N,
determine the non-trivial integer solutions to the equation

x(x− k1)(x− (k1 + k2)) + y(y− k1)(y− (k1 + k2)) = z(z− k1)(z− (k1 + k2)).

Another direction is determining non-trivial integer solutions to the (probabilistic)
equation

(4.7)
(x | k)n
xn

+
(y | k)n
yn

=
(z | k)n
zn

,

where k,n ∈ N. This equation can be rewritten as

yn−1zn−1 (x− k | k)n−1 + x
n−1zn−1 (y− k | k)n−1 = xn−1yn−1 (z− k | k)n−1 ;

in particular, when n = 2, we have yz(x − k) + xz(y − k) = xy(z − k) or equivalently,
xyz = k(yz+ xz− xy).

Since (x | k)n is the number of favorable outcomes in the above variant of roulette on
an x-wheel where the ball is equiprobable to land in any of the slots, one can consider an
x-wheel where the ball lands in the ith slot with probability πi and find the probability that
the player survives n rounds of the game on this biased wheel. If Xπ,k,n is the Bernoulli
random variable for player’s success (surviving n rounds) on a biased x-wheel where
π = (π1, . . . ,πx), (4.7) can be generalized to

P(Xπ,k,n = 1) + P(Yπ,k,n = 1) = P(Zπ,k,n = 1).
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