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Abstract. The one-parameter family of polynomials Jn(x, y) =
Pn

j=0

`y+j
j

´
xj is a subfamily of the two-

parameter family of Jacobi polynomials. We prove that for each n ≥ 6, the polynomial Jn(x, y0) is irreducible
over Q for all but finitely many y0 ∈ Q. If n is odd, then with the exception of a finite set of y0, the Galois

group of Jn(x, y0) is Sn; if n is even, then the exceptional set is thin.

1. Introduction

For an integer n ≥ 1 and complex parameters α, β, define the polynomial

J (α,β)
n (x) :=

n∑
j=0

(
n+ α

n− j

)(
n+ α+ β + j

j

)
xj .

It is a slightly renormalized version of the Jacobi polynomial

P (α,β)
n (x) := J (α,β)

n

(
x− 1

2

)
.

In terms of the Gauss hypergeometric series

2F1(a, b;−, c|z) :=
∞∑
ν=0

(a)ν(b)ν
(c)ν

zν

ν!
, (a)ν := (a)(a+ 1) · · · (a+ ν − 1),

we have

P (α,β)
n (x) = 2F1

(
−n, n+ α+ 1 + β;−, α+ 1

∣∣1− x
2

)
.

Many important families of polynomials are obtained as specializations of Jacobi polynomials; among
them we mention the Tchebicheff polynomials of the first (Tn(x)) and second kind (Un(x)), the ultraspherical
polynomials P (α,α)

n (x) (also called Gegenbauer polynomials), and the Legendre polynomials P (0,0)
n (x). Jacobi

polynomials, together with the Generalized Laguerre polynomials

L(α)
n (x) :=

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
,

and the Hermite polynomials

H2n(x) := (−1)n22nn!L(−1/2)
n (x2)

H2n+1(x) := (−1)n22n+1n!xL(1/2)
n (x2)

are the three classical families of orthogonal polynomials. Among all families of orthogonal families, they are
distinguished by the fact that their derivatives are also members of the same family. Orthogonal polynomials
play a very important role in analysis, mathematical physics, and representation theory.

The systematic study of algebraic properties of families of orthogonal polynomials was initiated by Schur.
He showed, for instance, that the Hermite polynomials are irreducible over Q and determined their Galois
groups [13].

The algebraic properties of some of the specializations of P (α,β)
n (x) have been known for quite some time

(e.g. Tn, Un) whereas for others they appear to be quite difficult to establish (e.g. the Legendre polynomials
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P
(0,0)
n ). Other hypergeometric families related to the theory of modular forms are specializations of Jacobi

polynomials. For example, that the polynomials P (±1/2,±1/3)
n (x) are irreducible with Galois group Sn is

equivalent to the conjecture introduced and studied by Mahlburg and Ono in [11]; these polynomials are on
the one hand related to traces of singular moduli via work of Kaneko-Zagier [9], and, up to simple factors,
the supersingular polynomial for a prime p where n = bp/12c ([1], [2]).

In a recent work, Hajir-Wong [7] describe a method for studying the exceptional set for a one-parameter
family F

(t)
n (x) ∈ Q[x, t] of polynomials, i.e. the set of α ∈ Q for which F

(α)
n (x) is reducible. By applying

their method, which is a combination of group theory and algebraic geometry, they showed that for each
n ≥ 5, for all but finitely many α ∈ Q the generalized Laguerre polynomial L(α)

n (x) is irreducible over Q
and has Galois group Sn.

In the current work, we show a similar result for an arbitrary specialization at a point in P2
Q of the Jacobi

polynomial Jn(x, y) = (−1)nJ (−1−n,y+1)
n (−x) =

∑n
j=0

(
y+j
j

)
xj ; more precisely:

Theorem 1. Let n ≥ 6 be an integer and let Jn(x, y) =
∑n
j=0

(
y+j
j

)
xj. Then the polynomials Jn(x, y0) are

irreducible over Q for all but finitely many y0 ∈ Q. Moreover, if n is odd then the Galois group of Jn(x, y0)
is equal to Sn for all but finitely many y0 ∈ Q. If n is even, then there is a thin set of y0 for which the
Galois group is An.

This result is far from effective, however, since the main tool for obtaining the result is Faltings’ theorem.
We follow the strategy outlined in Hajir-Wong. We show that, as a polynomial over Q(y), Jn(x, y) is
irreducible with Galois group Sn. We then estimate the genus of the curve defined by the polynomial, as
well as other minimal subfields in the Galois closure of its function field, allowing us to apply the theorem
of Faltings to obtain the finitude of the exceptional set using a criterion described, for example, in Müller
[12]. In addition we also obtain an exact expression for the genus of the curve X1.

Theorem 2. Let X1 be the algebraic curve defined by Jn(x, y). Then the genus of the normalization of X1

is
(
n−1

2

)
.

Acknowledgements. We would like to thank Siman Wong for useful discussions and the referee for many
helpful comments and suggestions.

2. The One-Parameter Family

The linear change of variables

r = −1− n− α
s = −1− r + β

allows us to rewrite the Jacobi polynomials in terms of the parameters r and s:

P 〈r,s〉n (x) := (−1)nP (−1−n−r,r+s+1)
n (−x) =

n∑
j=0

(
−1− r
n− j

)(
s+ j

j

)
xj .(1)

Set r = 0 to get the one-parameter family (with s = y) given by:

Jn(x, y) = P 〈0,y〉n (x) =
n∑
j=0

(
y + j

j

)
xj =

n∑
j=0

(y + 1) · · · (y + j)
xj

j!
.

Let P̂n(x, y) be the reverse of Jn(x, y) as a polynomial in x, i.e.

P̂n(x, y) := xnJn(1/x, y) =
n∑
j=0

(
y + j

j

)
xn−j .

Clearly P̂n(x, y) and Jn(x, y) have the same irreducibility and Galois-theoretic properties. With another
linear change of variables we obtain a more convenient form of the polynomial, which we will work with for
the rest of the paper:

Pn(x, y) := (−1)nP̂n(−x,−y − 1) =
n∑
j=0

(
y

j

)
xn−j .
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Fix n ≥ 6 and define the algebraic curve X1 ⊂ P2
Q as the projective closure of the zero-set of Pn(x, y).

Let X ′ denote the smooth curve corresponding to the Galois closure K ′ of Pn(x, y) over Q(y). Following [7],
we will show:

• For each n ≥ 6, the polynomial Pn(x, y) has an irreducible Q-rational specialization with Galois
group Sn.

• The genera of the intermediate subfields Q(y) ⊂ E ⊂ K ′ are all ≥ 2 with the exception of the
fixed-field of An when n is even.

In fact, when n is even there will be a thin set of y0 for which the specialized polynomial Pn(x, y0) has Galois
group An. These steps will constitute a proof of Theorem 1 following the strategy outlined in [7].

3. Galois Properties of Pn(x, y)

In this section, we compute the Galois group of our polynomial Pn(x, y) over Q(y). In a first draft of this
paper, we did this by effectively finding an irreducible specialization with Galois group Sn over Q. We give
a brief sketch of our original argument. To establish irreducibility, we compare the p-adic Newton polygons
(for each p|n) of the Pn(x, y) to those of the truncated exponential polynomials en(x) which are known to
be irreducible [5, lem. 2.7]. Once irreducibility is established, one can show that there exists a prime in the
interval (n/2, n− 2) such that the `-adic Newton polygons of Pn(x, y) and en(x) coincide. By [6, thm. 2.2],
the Galois group of Pn(x, y) then contains An. To conclude that the Galois group is all of Sn, it suffices to
show the discriminant of Pn(x, y) is not a square. Effectivity is not required for the results of the paper, and
the details are intricate, so we present a simpler proof. We would like to take this opportunity to thank the
referee for providing us with this approach. We start by writing down the discriminant formula for Pn(x, y)
as a polynomial in y, which we get easily by specializing the formula for the discriminant of the Jacobi
Polynomial [16, p. 143]:

disc(Pn(x, y)) =
(−1)n(n−1)/2

(n!)n−2
(y)(y − n)

n∏
j=0

(y − j)n−2.

Proposition 1. For all n ≥ 2 the polynomial Pn(x, y) is irreducible and has Galois group Sn over Q(y).

Proof. It is easy to check that Pn(x, y) =
∑n
j=0

(
y
j

)
xn−j is Eisenstein at the place y. This gives irreducibility.

For the Galois group G, the discriminant formula above shows that specialization of Pn(x, y) at y0 =
0, . . . , n factors as Pn(x, y0) = xn−k(x+ 1)k for all k = 0, . . . , n. Hence, the inertia subgroup of G contains
permutations of cycle type (n−k, k) for all k = 0, . . . n. When k = 1, this means G contains an (n−1)-cycle
and hence is a 2-transitive subgroup of Sn. If n is odd, then the (n− 2)th power of an element of cycle type
(n− 2, 2) is a transposition. This implies G is all of Sn.

If n is even, let n = 2`u with u and odd integer. If u = 1, take k = 3, if u = 3 take k = 5, and if u ≥ 7,
take k = u− 2. This ensures that, except when n = 4 or 6, G contains a k-cycle with k in the range [2, n/2).
Thus G contains An. Since G contains odd permutations, G is all of Sn.

When n = 2, 4 or 6, the specialization y = 3, 8, or 11 (for example) yields a polynomial with Galois group
S2, S4 or S6, respectively. Since the Galois group of Pn(x, y0) is a subgroup of the Galois group of Pn(x, y)
for all good specializations, this means means P2(x, y), P4(x, y) and P6(x, y) have Galois groups S2, S4 and
S6, respectively. This completes the proof. �

4. A Genus Formula

The goal of this section is to prove Theorem 3 below on the genus of the curve X1. We remark that X1

is a singular curve, so by abuse of language, we refer to the genus of the normalization of X1 as the genus of
X1. Let ιn : X1 −→ P1 be the projection-to-y map. The discriminant formula above shows that the branch
locus of ιn is given by

Bn = {0, . . . , n}.
The Riemann-Hurwitz formula implies

2g(X1)− 2 = deg(ιn)(−2) +
∑
P∈X1

(eP − 1).
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As in the previous section, one checks that Pn(x, ν) = xn−ν(x+1)ν for all ν ∈ Bn. Moreover, one checks easily
that there is no ramification at infinity (taking note of the fact that en(x) =

∑n
j=0 x

j/j! has discriminant
n!
∏n
j=2 j

j−1 by [13, p. 229] hence is separable). Thus, there are 2n points of X1 ramified above P1, with
the given ramification indices. The degree of ιn is n, so altogether this gives

g(X1) =
1
2

(
−2n+

n(n+ 1)
2

+
n(n+ 1)

2
− 2n

)
+ 1 =

1
2
(
n2 − 3n+ 2

)
,

and hence:

Theorem 3. Let gn denote the geometric genus of the normalization of X1. Then gn =
(
n−1

2

)
.

5. Genus of Maximal Subfields

Recall the following notation: K ′ is the Galois closure of the field K1/Q(y) which is the function field of
the covering X1/P1 where X1 is given by the model Pn(x, y) = 0. We have shown in Section 3 that the
Galois group of K ′/Q(y) is Sn. We adopt the notation of [7]. Let E be an intermediate field of K ′/Q(y),
let E = Gal(K ′/E), and let XE be the smooth curve with function field E. Following [7, thm. 3], we will
now show that if Pn(x, y) is reducible over E, then the genus of XE is greater than 1. We will achieve this
by showing that the genera of the minimal subfields of K ′ over which Pn(x, y) is reducible (corresponding
to maximal subgroups of Sn) are each greater than 1.

Recall the definition of simple branch point from [7, def. 2], and recall our notation: Bn = {0, . . . , n} is
the branch locus of the projection-to-y map ιn : X1 −→ P1. Consequently:

Lemma 1. The branch points ν = 0, 1, (n−1), and n are simple of index n, n−1, n−1, and n, respectively.

Now we estimate the genera of the intermediate subfields. Our strategy is as follows. We start with the
maximal subgroups of Sn other than An; they will all be shown to have fixed field of genus exceeding 1. For
even n, the fixed field of An has genus 0 but it turns out that Pn(x, y) is irreducible over that field. It will
then remain to show that the fixed fields of the maximal subgroups of An all have genus exceeding 1.

Since the rest of the paper involves computations with the maximal subgroups of Sn, we appeal to the
structure theorem of [10]: if G is An or Sn, and E is any maximal subgroup of G with E 6= An, then E
satisfies one of the following:

(a) E = (Sm × Sk) ∩G, with n = m+ k and m 6= k.
(b) E = (Sm o Sk) ∩G, with n = mk, m > 1 and k > 1.
(c) E = AGLk(Fp) ∩G, with n = pk and p prime.
(d) E = (T k · (OutT × Sk)) ∩G, with T a non-abelian simple group, k ≥ 2 and n = #T k−1.
(e) E = (Sm o Sk) ∩G, with n = mk, m ≥ 5 and k > 1, excluding the case where E is imprimitive.
(f) T C E ≤ AutT , with T a non-abelian simple group, T 6= An, and E primitive.

For completeness, we recall the notion of a primitive group [4, p. 12]. Let G be a group acting transitively
on a set Ω. A non empty subset ∆ of Ω is called a block for G if for each x ∈ G either ∆x = ∆ or ∆x∩∆ = ∅.
The group G is called primitive if it has no nontrivial blocks. The groups of type (a) and (b) are imprimitive,
while types (c)-(f) are primitive.

Proposition 2. Let n ≥ 6. If E is a maximal subgroup of Sn other than An, with corresponding fixed-field
E, then g(XE) > 1.

Proof. Let V = {0, 1, n− 1, n} be the set of simple branch points of ιn : X1 −→ P1. Following [7], let d(k)
be the least prime divisor of the positive integer k, and define c1(ν) as in [7, defn. 1]. Every ν ∈ V is simple,
so by [7, lem. 6], c1(ν) is easily computed:

c1(ν) =
(# of eν-cycles in E)

#E
× eν(n− eν)! < eν(n− eν)!.

We now employ the genus estimate of [7, (4.1)]

g(XE) ≥ 1 +
[Sn : E ]

2

(
−2 +

∑
ν∈V

(
1− 1

d(eν)

))
− 1

2

∑
ν∈V

c1(ν)
(

1− 1
d(eν)

)
.
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For each ν ∈ V , the ramification index eν is either n or n− 1. In particular, two of the four eν are even
and for those, d(eν) = 2; for the others d(eν) ≥ 3. Let N be the odd element of the set {n, n− 1}. Then(

−2 +
∑
ν∈V

(
1− 1

d(eν)

))
= −2 + 4− 1

2
− 1

2
− 2
d(N)

≥ 1− 2
3

=
1
3
.

We now split the rest of the proof into three cases based on the structure of the maximal subgroup E .

Case 1 – imprimitive wreath products

Here we must take n ≥ 4. The maximal imprimitive wreath products contain no n or (n−1)-cycles, hence
c1(ν) = 0 for all ν ∈ V . The genus estimate for E = Sj o Sn/j is therefore

g(XE) ≥ 1 +
1
6
· n!

(j!)n/j(n/j)!
,

which is greater than 1.

Case 2 – intransitive subgroups

Take n ≥ 3. None of the subgroups Sj×Sn−j will contain an n-cycle, and will only contain an (n−1)-cycle
when j = 1. Hence for j = 2, . . . , bn−1

2 c, the genus estimate is

g(XE) ≥ 1 +
n!

j!(n− j)!
,

which is greater than 1. When j = 1, the subgroup Sn−1 of Sn contains (n − 2)! cycles of length (n − 1).
Hence the genus estimate becomes

g(XE) ≥ 1 +
1
6

n!
(n− 1)!

− 1
2
· 2 · (n− 2)!

(n− 1)!
· (n− 1) · 1!(1− 1

3
) =

n

6
+

1
3
,

which is greater than 1 when n ≥ 5.

Case 3 – primitive subgroups

If E is a proper primitive subgroup of Sn other than An, then Bochert’s theorem [4, p. 79] bounds its
index in Sn:

[Sn : E ] ≥ bn+ 1
2
c!.

The basic estimate (1− 1/d(eν)) ≤ 1− 1/n gives us

g(XE) ≥ 1 +
1
6
· bn+ 1

2
c!− 1

2

(
1− 1

n

)∑
ν∈V

c1(ν)

≥ 1 +
1
6
· bn+ 1

2
c!− 1

2

(
1− 1

n

)
(n+ (n− 1) + (n− 1) + n)

= 1 +
1
6
· bn+ 1

2
c!−

(
2n− 3 +

1
n

)
.

This gives g(XE) > 1 when n ≥ 9. For a more refined estimate, we investigate the primitive subgroups of
the symmetric groups.

Let n = 8. Then the maximal primitive subgroups of S8 other than A8 are 23.PSL2(F7) and PGL2(F7).
The group 23.PSL2(F7) has order 1344, contains 384 7-cycles, and no 8-cycles. This gives

g(XE) ≥ 1 +
1
6
· 8!

1344
− 1

2

(
1− 1

8

)(
0 + 0 +

384
1344

· 7 · 1! +
384
1344

· 7 · 1!
)

=
17
4
.
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The order of PGL2(F7) is 336 and it contains 48 7-cycles and 84 8-cycles, hence

g(XE) ≥ 1 +
1
6
· 8!

336
− 1

2

(
1− 1

8

)(
2 · 48

336
· 7 · 1! + 2 · 84

336
· 8 · 0!

)
=

147
8
.

Now take n = 7. There is a unique maximal primitive subgroup of S7 other than A7, namely PSL2(F7),
which contains 48 7-cycles and no 6-cycles. Therefore

g(XE) ≥ 1 +
1
6
· 7!

168
− 1

2

(
1− 1

7

)(
2 · 48

168
· 7 · 0!

)
=

30
7
.

The group S6 has a unique maximal primitive subgroup other thanA6, namely PGL2(F5). But PGL2(F5) '
S5 ' S5×S1 is an intransitive direct-product subgroup of S6 and hence was already analyzed. This completes
the proof of the Proposition. �

Remark. When n = 5, the unique maximal primitive subgroup of S5 other than A5 is the Frobenius group
F20 of order 20. It contains 10 4-cycles and 4 5-cycles. Using the exact values for the d(eν) yields

g(XE) ≥ 1 +
1
2
· 5!

20

(
−2 + 2

(
1− 1

d(5)

)
+ 2

(
1− 1

d(4)

))
− 1

2

(
2 · 10

20
· 4 · 1! ·

(
1− 1

d(4)

)
+ 2 · 5

20
· 5 · 0! ·

(
1− 1

d(5)

))
=

4
5
,

so a more detailed analysis would be required determine whether the genus of XE is greater than 1.

The unique index-2 subgroup An of Sn corresponds to the field Q(y,∆n) where ∆n :=
√

disc(Pn(x, y)).
We have two different results based on whether n is even or odd.

Lemma 2. Let Cn be the curve corresponding to the degree-2 field extension Q(y,∆n)/Q(y). If n is odd,
then Cn has genus bn−2

2 c; if n is even, then Cn has genus 0. In particular, for odd n ≥ 7 and E = An, we
have g(XE) > 1.

Proof. Recall the discriminant of Pn(x, y) as a polynomial in y is given by

disc(Pn(x, y)) = ± 1
(n!)n−2

(y)(y − n)
n−1∏
j=1

(y − j)n−2,

where ± = (−1)n(n−1)/2. When n is even the square-free part of the discriminant is ±y(y − n), hence a
model for C is given by

z2 = ±y(y − n),

which defines a smooth curve of genus 0. If n is odd, the square-free part of the discriminant is ±1
n!

∏n−1
j=1 (y−j),

and a model for Cn is given by

z2 =
±1
n!

n−1∏
j=1

(y − j).

Therefore Cn is a hyperelliptic curve of genus bn−2
2 c. �

We now take up the case where n is even, so that the genus of the fixed-field of An is always 0. By [7,
Prop. 3], it suffices to consider the maximal proper subgroups of An, which are described in the structure
theorem above. The groups of type (a) and (b) are imprimitive, while types (c)-(f) are primitive. None of
the imprimitive groups are contained in An, so their indices in Sn are as follows:

[Sn : E ∩An] =

{
2 ·
(
n
k

)
if E = Sm × Sk

2 · n!
j!n/j(n/j)!

if E = Sj o Sn/j .

Proposition 3. Let n ≥ 6 be an even integer and E a maximal proper subgroup of An. Then the genus of
XE is greater than 1.
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Proof. As in the proof of Proposition 2 we split the proof into three cases according to the structure of E .

Case 1 – imprimitive wreath products

In this case we require n ≥ 4 and take E = (Sj o Sn/j)∩An, so that [Sn : E ] =
2 · n!

j!n/j(n/j)!
. The subgroup

Sj o Sn/j of Sn contains no n or (n− 1)-cycles so that c1(ν) = 0 for all ν ∈ V . Hence g(XE) > 1.

Case 2 – intransitive subgroups

Here we take n ≥ 4 (recall n is even) and consider the subgroups E = (Sj × Sn−j) ∩ An. None of the E
contain an n-cycle, and only S1×Sn−1 contains an (n−1)-cycle. When j = 1 we have E = (S1×Sn−1)∩An '
An−1. The order of An−1 is (n− 1)!/2 and it contains (n− 2)! (n− 1)-cycles. Altogether this gives:

g(XE) ≥ 1 +
1
6
· n!

(n− 1)!/2
− 1

2

(
0 + 0 + 2 ·

(
1− 1

n

)
·
(

(n− 2)!
(n− 1)!/2

· (n− 1) · 1!
))

= 2n− 1 +
2
n
,

which is greater than 1.

Case 3 – primitive subgroups

If E is a primitive subgroup of An, then it is automatically a primitive subgroup of Sn, and hence is
contained in some maximal primitive subgroup of Sn. All the maximal primitive subgroups of Sn (other
than An) have been analyzed in Proposition 2. Moreover, before the proof of this proposition we noted
that it suffices to consider the maximal proper subgroups of An, so we need not estimate the genus of the
fixed-field coming from An itself. This completes the proof. �
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