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Abstract. Let G be a finite group. The Plesken Lie algebra is a subalgebra of

the complex group algebra C[G] and admits a direct-sum decomposition into
simple Lie algebras. We describe finite-field versions of the Plesken Lie algebra

via traditional and computational methods. The computations motivate our

conjectures on the general structure of the modular Plesken Lie algebra.

1. Introduction

Let G be a finite group, k a field, and k[G] the group algebra of G. Then k[G]
assumes the structure of a Lie algebra via the bracket (commutator) operation.
This leads to the natural question: what is the Lie algebra structure of k[G]? If
k is a characteristic-0 splitting field of G (for example, k algebraically closed),
then ordinary representation theory answers this question – k[G] is a direct sum
of matrix algebras, the summands endowed with the natural Lie algebra structure
of gl(V ), where V is an irreducible representation of G. On the other hand, if the
characteristic of k divides the order of G then the question is much more subtle. For
instance, in [14], the authors give necessary and sufficient conditions for k[G] to be
nilpotent and for k[G] to be solvable. Their results are for arbitrary characteristic,
but the arguments where char k | #G are more intricate. In a different (but related)
direction, the “Lie-representations” of finite groups in positive characteristic are an
active area of research (see, for example, [3]).

In this paper we study the structure of a certain Lie subalgebra of k[G] in positive
characteristic. This Lie algebra was introduced in [4], and, in a more general setting,
in [12]. We follow the notation and conventions of [4] and set

L (G) = spank{g − g−1 | g ∈ G}

to be the linear subspace of k[G] spanned by the g − g−1; one easily checks that
L (G) is a Lie subalgebra of k[G]. Following [4], we call this the Plesken Lie algebra
of G.

Given that the structure of finite-dimensional Lie algebras over C is well known,
it is natural to try to determine the structure of L (G) when k = C. The main
result of [4] is a structure theorem relating the constituents of the direct-sum de-
composition of L (G) to the complex-irreducible representations of the finite group
G. However, in positive characteristic one would expect the Lie algebra to have a
different flavor, especially when the characteristic divides the order of G. This is
the starting point for our paper, and for the purposes of computation we focus on
finite fields of prime order.
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Let p be a prime number and set k = Fp. There are two reasonable ways
to define the Plesken Lie algebra over Fp. One can start with the complex Lie
algebra L (G) equipped with a choice of Chevalley basis and construct the lattice
LZ(G) ⊂ L (G) relative to this basis. Since L (G) is a direct sum of complex Lie
algebras, this direct sum will be preserved under the reduction of LZ(G) modulo
p via

Lp(G) := LZ(G)⊗ Fp ' LZ(G)/pLZ(G).

In this way the main result of [4] is preserved via “reduction modulo p” (see below
for details).

Alternatively, one can start with the group algebra Fp[G] and construct the linear
span of the ĝ ∈ Fp[G]; we will denote this Lie-subalgebra of Fp[G] by Λp(G). One
can then ask how Lp(G) and Λp(G) are related. As one would expect, the answer
depends on whether p divides the order of G. In the ordinary case, any difference
between Lp(G) and Λp(G) is due to the fact that Fp may not be a splitting field
for the representations of G. However, since G is finite, there will be a positive
(computable) density of primes p for which the direct-sum constituents of Λp(G)
mirror those of Lp(G). Thus, [4, thm. 5.1] holds mutatis mutandis for the Fp-Lie
algebra Λp(G) when Fp is a splitting field for G; see Section 2 for details.

If p | #G, then the situation is far more complicated. The group algebra Fp[G]
is not semisimple, hence its simple composition factors as a Fp[G]-module do not
coincide with its direct summands, which is the basis for the structure theorem in
the semisimple case. Thus, the Lie algebra structure of Λp(G) should be different
in modular characteristic. To start, Fp[G] decomposes as a sum of blocks, each of
which is an Fp Lie algebra. Thus, one could (in theory) get information on the
dimensions of the summands of Λp(G) by intersecting with the blocks of Fp[G].
However, the block theory of finite groups can be extremely complicated and it is
unlikely that one could deduce a general structure theorem for Λp(G) in this way.

Another potential source of difficulty in determining the Lie algebra structure
of Λp(G) is the current status of the classification of finite dimensional simple Lie
algebras in positive characteristic. In this case, the classification is complete in
characteristic ≥ 5 over algebraically closed fields [15], but for characteristics 2 and
3, even in the restricted case, we do not have a complete classification.

In this paper we begin to outline the relationship between the simple factors of
the composition series of the Lie algebra Λp(G) with those of the composition series
of Fp[G] as an Fp[G]-module and lay the groundwork for future study. Because of
the ambiguity in using the term ‘composition series’ for both objects, we have taken
care to state which algebraic object we mean whenever we use the term. Our study
of the modular structure of Λp(G) is primarily computational and our conjectures
on the modular structure are based on the data gathered on many classes of groups,
which will be presented below. In the next section we recall the main result of [4]
and work out the ordinary structure of Λp(G). We then move to the modular case
where we present our computational data and conjectures. All computations were
performed with the computer-algebra package Magma and sample code appears in
Appendix A.

Acknowledgements: We would like to thank Don Taylor for helpful comments and
the referee for many suggestions which improved the exposition and strengthened
our theorems. John Cannon performed numerous computations for us and improved
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the functionality of the Magma packages for group algebras and Lie algebras in
order for us to tackle high-dimensional examples. We are very grateful for all of his
work.

2. The Ordinary Structure of Λp(G)

The ‘ordinary’ of the title of this section refers to the ordinary representation
theory of a finite group G; that is, the characteristic of the field where the represen-
tations are defined does not divide the order of the group. We define an ordinary
prime to be a prime number p that does not divide the order of G, and a modular
prime as one that does divide #G.

We begin by recalling the construction of the Plesken algebra as in [4]. If G is
a finite group then the group algebra C[G] inherits the structure of a Lie algebra
via the bracket operation [x, y] = xy − yx. The Plesken algebra is then defined
as L (G) = spanC{ĝ | g ∈ G} ⊂ C[G]. Given this finite dimensional complex Lie
algebra, one can study its direct-sum decomposition, which is the main result of
[4]:

L (G) =
⊕
χ∈R

o(χ(1))⊕
⊕
χ∈Sp

sp(χ(1))⊕
⊕
χ∈C

′gl(χ(1)),

where R,Sp, and C are the sets of irreducible characters of real, symplectic, and
complex types, respectively, and where the prime signifies that there is just one
summand gl(χ(1)) for each pair {χ, χ} from C. For example, the algebra L (A4)
has dimension 4 and admits the decomposition L (A4) = o(1) ⊕ o(3) ⊕ gl(1) =
o(3) ⊕ gl(1), corresponding to the three 1-dimensional representations (one real,
two complex) and the 3-dimensional real representation (note o(1) = 0).

Given a finite dimensional, semisimple, complex Lie algebra L defined over an al-
gebraically closed field of characteristic 0, one can choose an integral basis (Cheval-
ley basis) with respect to which the structure constants of L are integral. This
allows for the “reduction modulo p” of L by choosing a Chevalley basis for L,
taking the integral span LZ of this basis, then tensoring with Fp.

In general, the Plesken algebras are not semisimple because of the factors of com-
plex type. These reductive algebras admit the decomposition gl(χ(1)) = sl(χ(1))⊕
s(χ(1)), where s(χ(1)) is a one-dimensional abelian Lie algebra. It is not hard to
show, following the proofs in [10, §25], that integral bases for gl-type Lie algebras
exist and can be expressed as the union of a Chevalley basis for sl and the single-
ton {diag(1, . . . , 1)}. This observation shows that the complex Lie algebra L (G)
admits an integral basis. Moreover, each of the direct summands of L (G) do as
well. The following Lemma is simply the “reduction modulo p” of [4, thm. 5.1].

Lemma 2.1. Let G be a finite group, L (G) the complex Plesken algebra and Lp(G)
its reduction modulo p via an integral basis. Let X = X1

∐
X−1

∐
X0 be the set of

complex irreducible characters of G partitioned by Schur indicator. Then

Lp(G) =
⊕
χ∈X1

o(χ(1), p)⊕
⊕

χ∈X−1

sp(χ(1), p)⊕
⊕
χ∈X0

′gl(χ(1), p),

where the prime signifies that there is just one summand gl(χ(1), p) for each pair
{χ, χ} with indχ = 0.

Proof. It is not hard to check that there exists an integral basis B for L (G) such
that the projection of B onto any of its direct summands is an integral basis for
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that summand. Therefore, choose an integral basis for L (G) that is compatible
with the integral bases of the constituents of its direct-sum factors. The tensor
product distributes across the direct-sum decomposition of L (G) and one checks
that the Lie algebra structure is preserved also. �

Remark 2.2. Lemma 2.1 holds for all primes p, even for those primes dividing #G.
We will recover this decomposition for ordinary primes, but for modular primes the
decomposition of Lp(G) does not mimic that of Λp(G).

We now turn our attention to Λp(G) for ordinary primes. If p is ordinary for G,
then the group algebra Fp[G] is semisimple and the representation theory of G over
Fp resembles the representation theory over C. Let m denote the least common
multiple of the orders of the elements of G and suppose that p ≡ 1 (mod m) so
that Fp contains a primitive mth root of unity and hence is a splitting field for G.
Thus, the absolutely irreducible representations of G are realized over Fp (often,
however, this condition is not necessary for Fp to be a splitting field for G).

The Schur indicator of a complex representation of G can be extended to positive
characteristic. In particular, if χ is an irreducible character of G, then ind(χ) = ±1
if χ is orthogonal or symplectic, respectively, and ind(χ) = 0 otherwise. (In charac-
teristic 0, ind(χ) = 0 means the representation is unitary, but this is not necessarily
the case in positive characteristic; however, they still come in an even number of
Galois-conjugate sets.) Moreover, if p = 2, then orthogonal and symplectic char-
acters coincide. We write X0, X1, and X−1 for the sets of characters of Schur
indicator 0,1, and −1, respectively. With this notation in place, we state the fol-
lowing Lemma.

Lemma 2.3. If p - #G and Fp is a splitting field for G, then Λp(G) = Lp(G).

Proof. Since p - #G, the group algebra Fp[G] is semisimple. Moreover, since Fp is
a splitting field, the simple constituents of Fp[G] are absolutely simple. Thus,
the decomposition of Fp[G] mirrors that of C[G] and decomposes as Fp[G] =⊕r

j=1 End(Vj), for a set of representatives Vj of the irreducible Fp-representations

of G. At this point the proof of [4, thm. 5.2] carries over exactly to this case: Λp(G)
is the −1-eigenspace of the anti-involution g 7→ g−1 and the Schur indicator of each
Vj dictates the type of bilinear form preserved therein; the Lie algebra associated
to End(Vj) is the full Lie algebra associated to the form. Thus,

Λp(G) =
⊕
χ∈X1

o(χ(1), p)⊕
⊕

χ∈X−1

sp(χ(1), p)⊕
⊕
χ∈X0

′gl(χ(1), p),

which is what we wanted to show. �

This lemma says the condition that Fp be a splitting field is enough to recover
the decomposition obtained through a Chevalley basis. Indeed, the splitting of
C[G] into a direct sum of irreducible submodules is defined over a finite extension
K of Q, where K is a subfield of the cyclotomic field Q(ζm) and m is as above. In
particular, Chevalley bases for the decomposition of Lp(G) are defined over K.

If Fp is not a splitting field for G, then we must pass to a finite extension k of Fp
to realize all absolutely irreducible representations. In that case Galois-conjugate
representations may fuse to form larger direct summands that are defined over
subfields of k. For example, let G = L2(8), the simple group of order 504. Using
Atlas notation, the character table of G is [5, p. 6]:
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Table 1. Character Table of L2(8)

ind 1A 2A 3A 7A B*2 C*4 9A B*2 C*4

χ1 + 1 1 1 1 1 1 1 1 1
χ2 + 7 -1 -2 0 0 0 1 1 1
χ3 + 7 -1 1 0 0 0 -y9 *2 *4
χ4 + 7 -1 1 0 0 0 *4 -y9 *2
χ5 + 7 -1 1 0 0 0 *2 *4 -y9

χ6 + 8 0 -1 1 1 1 -1 -1 -1
χ7 + 9 1 0 y7 *2 *4 0 0 0
χ8 + 9 1 0 *4 y7 *2 0 0 0
χ9 + 9 1 0 *2 *4 y7 0 0 0

Here, y9 is a root of the polynomial x3−3x−1 and y7 a root of x3 +x2−2x−1.
The algebra Λp(L2(8)) has dimension 220. If p = 71, for example, then both
polynomials split modulo p and Λ71(L2(8)) admits the decomposition

Λ71(L2(8)) = o(7, 71)⊕4 ⊕ o(8, 71)⊕ o(9, 71)⊕3.

However, if p = 5 then neither polynomial splits and Λ5(L2(8)) decomposes as

Λ5(L2(8)) = o(7, 5)⊕ l1 ⊕ o(8, 5)⊕ l2,

where l1 is a 63-dimensional Lie algebra decomposing over F5(y9) into o(7, 5)⊕3

and l2 is a 108-dimensional Lie algebra decomposing over F5(y7) into o(9, 5)⊕3.

3. The modular structure of Λp(G)

For the rest of the paper, p denotes a modular prime. Thus, Fp[G] is no longer
semisimple, but decomposes as a sum of blocks: Fp[G] =

⊕
j bj . The blocks are

simultaneously vector subspaces and Lie subalgebras of Fp[G]. Moreover, the Lie
subalgebra Λp(G) of Fp[G] decomposes as a direct sum by intersecting with the
blocks of Fp[G]; we write Λp(G) =

⊕
j λj , where λj = bj ∩ Λp(G). However, the

dimensions of the λj do not necessarily coincide with the dimensions of simple Lie
algebras in positive characteristic (see below for explicit examples). Because of the
non-semisimplicity of the algebra Fp[G], in order to speak of simple factors we must
pass to a Lie algebra composition series of Fp[G] and Λp[G]. Just as the main result
of [4] relates the simple Lie algebra factors of L (G) to the ordinary representation
theory of G, we put forth the following:

Problem. Determine a dictionary between the Lie algebra composition factors of
Λp(G) and the modular representation theory of G.

Our aim in this section is to provide substantial computational data to support
some of our conjectures on the structure Λp(G). Recall that in addition to the clas-
sical algebras, there are exceptional simple Lie algebras in positive characteristic.
When p ≥ 5, the finite-dimensional simple Lie algebras over an algebraically closed
field of characteristic p have been classified. Any such algebra is either of classical
or Cartan type (Witt; Special; Hamiltonian; Contact) for p ≥ 7 or, additionally,
of Melikian type if p = 5 [15]. Recall that for classical Lie algebras, those of type
Amp−1, where m is a positive integer, fail to be simple in characteristic p (there is a
one-dimensional center). However, the quotient by this center is simple. By abuse
of terminology we refer to these “projective” Lie algebras as classical.
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Table 2 gives the dimensions of the exceptional algebras and gives the conditions
under which they are simple and restricted, the latter being an important distinction
in the classification of modular Lie algebras (see [15] for more details). With the
exception of the Melikian algebras, these Lie algebras are parameterized by m,n
with n = [n1, . . . , nm] ∈ Zm>0. Set N =

∑
ni.

Table 2. Exceptional Modular Lie Algebras

Lie algebra Dimension Simple Restricted
W (m,n) pN p 6= 2 and m 6= 1 W (m, [1, . . . , 1])

S(m,n) (m− 1)pN + 1 m ≥ 3 S(m, [1, . . . , 1])(1)

H(m,n) pN − 1 p > 2, m ≥ 2 H(m, [1, . . . , 1])(2)

K(m,n) pN p > 2, m ≥ 3 K(m, [1, . . . , 1])(1)

M(n1, n2) 5n1+n2+1 ni > 0 M(n1, n2)

We remark in passing that the group algebra Fp[G] is restricted since it is an
associative algebra endowed with the usual bracket and p-operations. This does not
immediately imply that Λp(G) is restricted, but one checks that Λp(G) is closed
under associative pth powers, which means that it is indeed restricted.

We now begin with an illustrative example. Let G = SL2(F5) and take p = 5.
The ordinary character table of G is given in Table 3 [5, p. 2]. The group algebra

Table 3. Character Table of SL2(F5)

ind 1A0 1A1 2A0 3A0 3A1 5A0 5A1 5B0 5B1

χ1 + 1 1 1 1 1 1 1 1 1
χ2 + 3 3 −1 0 0 −b5 −b5 −b∗5 −b∗5
χ3 + 3 3 −1 0 0 −b∗5 −b∗5 −b5 −b5
χ4 + 4 4 0 1 1 −1 −1 −1 −1
χ5 + 5 5 1 −1 −1 0 0 0 0
χ6 − 2 −2 0 −1 1 b5 −b5 b∗5 −b∗5
χ7 − 2 −2 0 −1 1 b∗5 −b∗5 b5 −b5
χ8 − 4 −4 0 1 −1 −1 1 −1 1
χ9 − 6 −6 0 0 0 1 −1 1 −1

admits the decomposition F5[G] = b1 ⊕ b2 ⊕ b3 with dim b1 = 35, dim b2 = 60
and dim b3 = 25. The block b1 contains the characters χ1, . . . , χ4; b2 contains
χ6, . . . , χ9; b3 has defect 0 and contains only the Steinberg χ5. Turning to the
Plesken Lie algebra, we get the decomposition

Λ5(G) = λ1 ⊕ λ2 ⊕ λ3 = λ1 ⊕ λ2 ⊕ o(5, 5),

where λ1 has dimension 12 and λ2 has dimension 37. Note that this is consistent
with the classical dimensions associated to the characters belonging to the blocks
b1 and b2:

dim o(1) + 2 dim o(3) + dim o(4) = 0 + 2× 3 + 6 = 12

2 dim sp(2) + dim sp(4) + dim sp(6) = 2× 3 + 10 + 21 = 37.
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Furthermore, if we compute the Lie algebra composition factors of the direct sum-
mands of Λ5(G) we get the following:

Λ5(G) = λ1 ⊕ λ2 ⊕ o(5, 5) ∼ (Ab(3),Ab(3),Ab(3), o(3, 5))︸ ︷︷ ︸
dim=12

⊕ (Ab(3),Ab(3),Ab(8),Ab(10), sp(2, 5), sp(4, 5))︸ ︷︷ ︸
dim=37

⊕o(5, 5),

where Ab(n) denotes an abelian Lie algebra of dimension n. Thus, as we stated
above, the simple Lie algebra composition factors of the modular Plesken Lie algebra
need not be the same as those of the ordinary Plesken Lie algebra. Note the
dimensions of the of the abelian terms are the same as the those of classical algebras.

This example illustrates an important aspect of the modular structure of Λp(G).
Suppose that ρ is a complex irreducible representation of a finite group G that
affords the character χ and let p | #G. If the reduction of ρ modulo p is irreducible
(so that #G/deg ρ is prime to p), then ρ gives rise to a block of defect 0. This
block in turn is a minimal ideal of Fp[G] and is isomorphic to a matrix algebra over
Fp. Suppose further that Fp is a splitting field for G. Then, Λp(G) will admit a
direct summand of orthogonal, symplectic, or general linear type according to the
value of indχ. The finite groups of Lie type are examples of groups that have an
irreducible representation with this property.

Let q be a power of a prime p and G(Fq) a finite group of Lie type over Fq.
The representation theory of these groups is an immense subject with many open
questions; see [11] for an overview. Associated to each G(Fq) is the Steinberg
representation which has degree equal to the largest power of p dividing #G(Fq).
While the modular group algebras in defining characteristic are quite mysterious in
general, we can predict one of the simple Lie algebras in the composition series of
the Plesken Lie algebra in this case.

Theorem 3.1. Let q be a power of a prime p, G(Fq) a finite group of Lie type,
and suppose pr is the largest power of p dividing #G(Fq). Then Λq(G(Fq)) admits
o(pr, p) as a direct summand.

Proof. Since the Steinberg representation V has degree pr, it remains irreducible
upon reduction modulo p and the corresponding ideal in the group algebra Fq[G(Fq)]
is a matrix algebra. Moreover, V is self-dual, which ensures that a non-degenerate
bilinear form f is preserved. When q is odd, the form is symmetric since there
is no symplectic structure on odd-dimensional vector spaces. If q is even, then
f is symmetric, since otherwise f(x, y) − f(y, x) = f(x, y) + f(y, x) would be a
non-zero, symmetric, non-degenerate bilinear form preserved by G(Fq), hence an
Fq-multiple of f , contradicting the assumption that f is not symmetric. Thus, the
Schur indicator of V is equal to 1 in all cases, which proves the Proposition. �

While this result holds for groups of Lie type, the essence of the theorem holds for
any group algebra which has a block of defect 0 – Λp(G) admits a direct summand
isomorphic to a classical Lie algebra which can be predicted from the ordinary
character table of G. For blocks of higher defect, however, the situation is much
more complicated. We now present some conjectures on specific families of groups
with the aim that they will lead to a general structure theorem for Λp(G). In
particular, we expect that the block theory of Fp[G] will play a fundamental role
in the Lie algebra structure of Λp(G).
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3.1. Group rings with the dimension property. For this subsection, k denotes
an arbitrary field of positive characteristic and G a finite group. In [9], the author
defines an important class of groups, whose group rings are called group rings with
the dimension property. One of several characterizations of these group rings is
that k[G] has the dimension property precisely when all irreducible representations
of G over k that belong to the principal block have k-dimension 1 (see [9, cor. 2.4]
for this, and equivalent statements). For example, supersolvable groups are an
important class of groups with this property, and their group rings have been studied
extensively from a computational point of view (see e.g. [1], [13]).

Using Magma, we ran through all groups G and all primes p for which Fp[G]
has the dimension property, up to the computational limit of the program. In every
case, the Lie algebra composition factors of λ1 had dimension 1. This suggests a
further connection between the Lie algebra composition factors of Λp(G) and the
representations of G. Based on this, we pose the following.

Conjecture 3.2. Let Fp[G] have the dimension property with principal block b1.
Then λ1 is a solvable Lie algebra, with all Lie algebra composition factors having
dimension 1.

For group rings without the dimension property, then the Lie algebra composition
factors of λ1 need not have dimension 1. For example, it can be shown using the
code in Appendix A that Λ5(A5) = λ1 ⊕ o(5, 5) and that the composition factors
of the 12-dimensional Lie algebra λ1 consist of nine dimension-1 factors and one
dimension-3 factor isomorphic to sl(2, 5).

3.2. Group algebras consisting of a single block. We start with examples
of groups whose Fp-group algebras consist of a single block and give a general
conjecture based on these and numerous other examples. We first quote a result
from [2, 6.2.2].

Theorem 3.3 (6.2.2. of [2]). Suppose D is a normal subgroup of G. Then every
idempotent in Z(kG) lies in kCG(D). In particular, if CG(D) ≤ D then kG has
only one block.

Thus, to find examples of groups satisfying the hypotheses of Theorem 3.3, it
is sufficient to exhibit G with CG(Op(G)) ⊆ Op(G), where Op(G) is the largest
normal p-subgroup of G.

Example 3.4. Let p > 2 be a prime. Then the group algebras

Fp[(Dp)
n] (p ≥ 3, n ≥ 1),F3[S3 o S3],F3[S3 o S2],Fp[p-group],AGL1(Fp)

(where Dp denotes the dihedral group of order 2p and AGL1(Fp) the affine general
linear group on the 1-dimensional vector space Fp) are examples of solvable G for
which Fp[G] has only one block. To see this, one can apply Theorem 3.3 above,
or use a direct argument using the criteria of [6, (85.11), (85.12)] (the ordinary
character tables of these groups are well-known). Using these and other examples
as test cases, we computed the composition factors of Λp(G), and showed they were
all abelian. For non-solvable examples, we present the following.

Example 3.5. Let n ≥ 5 and G = Z/p o An, so that #G = pnn!/2 and Op(G) '
(Z/p)n. Then G is a non-solvable group whose Fp-group algebra consists of a single
block. We look at two special cases:

Λ2(Z/2 oA5) and Λ3(Z/3 oA5).
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These Plesken Lie algebras have dimensions 884 and 7222, respectively, and the
former is solvable while the latter is not. The dimensions of the composition fac-
tors are given by the following tables:

Dimension Multiplicity Type
1 356 Abelian
2 104 Abelian
4 24 Abelian
8 28 Abelian
Total 884

Dimension Multiplicity Type
1 314 Abelian
3 4 A1(over F9)
4 269 Abelian
6 262 Abelian
9 200 Abelian
24 102 Abelian
Total 7222

Remark 3.6. The groups in the preceding example were initially too large (even
when p = 2) for Magma to create and store Λp(G), let alone determine the isomor-
phism type. As a result of our collaboration with the developers, Magma is now
able create Λp(G) for large groups and to compute the isomorphism types of the
Lie algebra composition factors in a reasonably short computing time (54 seconds
and 16 hours, respectively).

Based on these examples (and the preceding ones for non-solvable groups), we
present the following conjecture.

Conjecture 3.7. Suppose that G is a solvable group and that Fp[G] is a group
algebra that consists of a single block. Then the Lie algebra Λp(G) is solvable.

Remark 3.8. The Lie algebras Λp(G) for such G as in the conjecture are, in general,
non-abelian (e.g. Λ5(D5 ×D5)).

Remark 3.9. If the group algebra consists of more than a single block, then λ1 may
not have trivial composition factors. See the example following Lemma 3.2 above.

For groups with a more complicated block structure, it is considerably more
difficult to detect patterns in the simple composition factors of the Λp(G). Our
aim is to provide enough data to support conjectures that could be proved in a
subsequent work. In Table 4 we give some data on simple (and related) groups; see
Appendix A for details on the construction of the table. In particular, we compute
the absolutely simple composition factors of Λp(G) (i.e. we work over a splitting
field k of G) for odd primes p. For ease of comparison of the modular and ordinary
cases, we use A,B,C,D notation and use “PA” for the simple algebras psl(mp) in
characteristic p.

Conjecture 3.10. If Fp is a splitting field for G, then the composition factors of
Λp(G) are isomorphic to classical or projective classical Lie algebras, or are abelian
of dimension equal to a classical or projective classical Lie algebra.

Appendix A. Computations and Code

Our main computational tool was the computer-algebra package Magma. When
we began this project, some of the examples were too large for Magma to create.
After an initial draft of this paper was completed, we contacted the algebra group at
Magma to inquire about improving the functionality of the Lie algebra package; in
particular to speed up the creation of Λp(G) and its composition series and finally to
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Table 4. Plesken algebras of some simple (and related) groups

G p Composition Factors of Λp(G) Lp(G)

A5 3 Ab(4); Ab(3) × 2;D2 × 2 B1 × 4;B2

A5 5 Ab(3) × 3;B1;B2 B1 × 4;B2

S5 3 Ab(4) × 2; Ab(3) × 4;D2 × 2;D3 B1 × 4;B2 × 2;D3

S5 5 Ab(3) × 4; Ab(9);B1 × 2;B2 × 2 B1 × 4;B2 × 2;D3

L2(7) 3 Ab(1) × 2; Ab(7); Ab(21);PA2;D3;B3 Ab(1) × 2;PA2;D3;B3;D4

L2(7) 7 Ab(1); Ab(3); Ab(5) × 2; Ab(10); Ab(15);B1;B2;B3 Ab(1);A2;D3;B3;D4

SL2(F7) 3 Ab(1) × 4; Ab(7); Ab(15); Ab(20); Ab(21) Ab(1) × 2;PA2;A3;D3;C3 × 2;B3;C4;D4

PA2;A3;D3;C3 × 2;B3

SL2(F7) 7 Ab(1) × 2; Ab(3) × 2; Ab(5) × 3; Ab(8); Ab(1);A2;A3;D3;C3 × 2;B3;C4;D4

Ab(10) × 2; Ab(12); Ab(15); Ab(21)
B1 × 2;B2 × 2;B3×2

A6 3 Ab(4) × 4; Ab(3) × 12; Ab(9) × 1; Ab(24) × 2 B2 × 2;D4 × 2;B4;D5

B1 × 4;B4

A6 5 Ab(8); Ab(28) × 2;C2;B2;D4;D5 B2 × 2;D4 × 2;B4;D5

S6 3 Ab(1); Ab(4) × 8; Ab(6) × 2; Ab(3) × 12 B2 × 4;B4 × 2;D5 × 2;D8 × 2
Ab(15) × 2; Ab(16); Ab(24) × 4

B1 × 4;D3;B4 × 2

S6 5 Ab(8) × 2; Ab(28) × 2; Ab(64) B2 × 4;B4 × 2;D5 × 2;D8 × 2
B2 × 4;D4 × 2;D5 × 2

L2(8) 3 Ab(7); Ab(21) × 4;B3;B4 × 3 B3 × 4;D4;B4 × 3

L2(8) 7 Ab(8) × 3; Ab(28) × 3;B3 × 4;D4 B3 × 4;D4;B4 × 3

L2(11) 3 Ab(1) × 2; Ab(10) × 3; Ab(24); Ab(45) Ab(1);A4;D5 × 2;B5;D6 × 2
A4;D5;D6 × 2

L2(11) 5 Ab(1) × 2; Ab(11) × 2; Ab(55) × 2;PA4;D5 × 2;B5 Ab(1) × 2;PA4;D5 × 2;B5;D6 × 2

L2(16) 5 Ab(16) × 2; Ab(120) × 2; Ab(136) × 4;B7 × 8;D8;B8 B7 × 8;D8;B8 × 8

L2(19) 5 Ab(1) × 3; Ab(18); Ab(36) × 4; Ab(80) × 2; Ab(1);A2;D9 × 4;B9;D10 × 4
Ab(153) × 2;A8;D9;D10 × 4

L2(25) 5 Ab(6) × 7; Ab(9) × 2; Ab(16) × 2; Ab(20); B6 × 2;D12 × 6;B12;D13 × 5
Ab(24) × 2; Ab(25); Ab(30) × 2; Ab(36) × 8;
Ab(48) × 2; Ab(54); Ab(56) × 3; Ab(64) × 2;

Ab(90); Ab(96) × 2; Ab(120) × 3; Ab(144) × 2;
Ab(160) × 2; Ab(210); Ab(240) × 2;

A1 × 4;B2 × 2;B4;D4 × 2;D8;B7 × 2;D8 × 2

compute the isomorphism types of the composition factors. Before we collaborated
with the developers, the highest-dimensional Plesken algebra for which we could
compute its composition series was when G = L2(11) and dim Λp(L2(11)) = 302.
The largest group appearing presently in this paper has order 14 580 and the di-
mension of its Plesken algebra is 7 222. We now give a brief description of the code
used for our computations.

There are different types for this object in Magma (GenAlgebra, GrpAlgebra,
AssAlgebra, LieAlgebra) and care needs to be taken when combining functions that
are defined for specific types because they are not inherited. For the code below,
“G” is a permutation group and “F” is a finite field. This code will build the Plesken
Lie Algebra “P”.
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FG := GroupAlgebra(F, G);

L1,h:=Algebra(FG);

FFG,f:=LieAlgebra(L1);

L:=[];

for g in G do

if Order(g) ne 2 and Order(g) ne 1 and Inverse(g) notin L then

Append(~L,g);

end if;

end for;

LL:=[];

for g in L do

Append((~LL,FG!g-FG!Inverse(g) ));

end for;

LLL:=[];

for g in LL do

Append((~LLL, (g@h)@f ));

end for;

P:=sub<FFG|LLL>;

In order to clearly show how Table 4 was created, we work through a low-
dimensional example. Take G:=Sym(5);, F:=GF(5);, and build P as in the code
above. The command

C:=CompositionSeries(P);

builds and stores the composition series of P as a Lie algebra; note that P has
dimension 47. Then C has length 9, and the filtration consists of a chain of Lie
algebras of dimensions [10, 13, 16, 25, 28, 31, 34, 44, 47]. Thus, the quotients have
dimensions [10, 3, 3, 9, 3, 3, 3, 10, 3], respectively. Note that Magma may build C

with a different filtration each time; the dimension and structure of the quotients
is (obviously) always the same. In order to further study these quotients we build
them inside Magma using, for example:

qi:=quo<C[i] | C[i-1]>;

as i ranges over 2 . . . 9 (and q1:=C[1]). Now that the quotients are isolated from
each other, one can determine their Lie algebra structure using such commands as:

IsAbelian, CompositionSeries, IsSimple,

among others. When applied to P above, we obtain the following results:

q1 – Type B2;
q2 – Ab(9);
q3 – Type B1;
q4 – Ab(3);
q5 – Ab(3);
q6 – Type B1;
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q7 – Ab(3);
q8 – Type B2;
q9 – Ab(3).

Altogether, this gives the decomposition as indicated in the table.
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